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Let F,: M"— R"*! be a hypersurface moving by its mean curvature in Euclidean
space. That is, F,=F(-,t) is a one-parameter family of smooth immersions,
with images M,=F,(M"), satisfying the evolution equation

) 4 Fp0=Hp.0,  peM, 130

Here H(p, t)= —H (p, t)-v(p, t) is the mean curvature vector of M, at F(p, t) and
v denotes a choice of unit normal for M,.

Mean curvature evolution of smooth hypersurfaces was studied previously
under various global assumptions: It was shown in [8, 6] that compact convex
surfaces in R"*!, n>2 and embedded curves in the plane contract smoothly
to a point. In [4] the authors characterized the longterm behaviour of entire
graphs of controlled growth.

It is the aim of this paper to study the local properties of mean curvature
flow and obtain reguldrity estimates which are interior both in space and time.
Working in a region sufficiently small such that M, can be written as the graph
of a function w over some hyperplane, we use the gradient function v

=]/1+4|Dw|? to obtain interior estimates for the second fundamental form A4
and all its derivatives, compare Theorem 34. Under additional curvature
assumptions on M, we furthermore obtain improved estimates with respect to
time dependence for the derivatives of A4 without having to assume that M,
can be locally written as a graph. It is worth noting that all the interior estimates
also apply to the case of minimal hypersurfaces as these are stationary solutions
of (1), compare Remark 3.6.

An immediate consequence of the interior estimates is a shorttime existence
result for the mean curvature flow of complete surfaces, assuming only a uniform
local Lipschitz condition for the initial surface. In Sect. 4 we extend a method
of Liao and Tam [16] to prove a general maximum principle for parabolic
equations on such complete Riemannian manifolds with time-dependent metric.
As an application of this maximum principle we obtain that nonnegative mean
curvature is preserved by (1) under reasonably weak conditions.
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Finally, in Sect. 5 we use the interior estimates to deduce the somewhat
surprising result that if M, is a locally Lipschitz continuous entire graph over
R", then the mean curvature flow Eq. (1) has a smooth solution with initial
data M, which exists for all times ¢t>0. In particular, it is not necessary to
make any assumption on the growth and the curvature of M, for |x|— c0.

1 Preliminaries

We will use the same notation as in [10] and [4], in particular we will often
write x=F(p,7) to denote the position of a point in M, and write A={h;;}
for the second fundamental form of M,.

Furthermore, if M, is locally given as a graph over some hyperplane in
R"*1 such that (v, @) >0 for some fixed vector weR"* !, |w|= 1, we will consider
the gradient function v defined by

v={, )" L

With this notation we recall the following evolution equations from [10] and
[4].
1.1 Lemma. If M, satisfies (1) we have

o (o)t

(i) (d_ A>u=0 where u=<{x, ®),
(iii) (? A)v —|APPv—=20"1|Vy|?
d 2
(:T A) —H|AP,
v) (-(Z- A)lAIZ— —2|VA* 42|44,

Vl)( A)|V”‘A[2< 2|V 4R+ Cimn) Y [VMA|VIALIVI 4] |VEA]

itjt+k=m

In the case M,=graph w,, the parabolic system (1) is up to tangential diffeo-
morphisms equivalent to the quasilinear scalar equation

@ &, 0=)/THIDwP div (l/w%—,—z)(y 0.

Indeed, suppose that w(y, t) is a smooth solution of Eq. (2) on Qx [0, T), where
Q is some open subset of R”. Then we define in the obvious way

F.0=0,w,0eR™™",  yeQ, te[0,T)

and the normal component of % will yield the flow in (1). To be precise let

@ Q@x[0, T)->R"
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be the solution of the following system of ordinary differential equations:

d oF -1 (oF T
3) Fr oy, )= —(5; (@(r.1), t)) ( a7 (o3 1), t))

e(y,0)=y

where “T” denotes the tangential component of a vector. Now observe that
v=]/1+|Dw|? and the right hand side of (2) equals —vH. We then define

Fy,0=Fe(,0,9
and obtain from (2) and (3) that

d 0 = F
FF00=5 F00.0.0+ 5 (000,05 0000
6 L
| Flot0.0]

A
vt

=—H-v=H({,1).
Notice that the solution of (3) exists and is a diffeomorphism as long as ¢(y, t)
remains in Q since ¥ is a smooth diffeomorphism. The quantity ()@= —Hv
. _ d T
+Hv ‘e, is the projection of (—(E) F‘) onto the hyperplane R".

Conversely, given a smooth solution F, of the mean curvature flow equation
which can be written as a graph locally, it is easy to compute that any function
w(y, t) with

w(F(p, )—<(F(p, 1), 8,11 €41, )=<F(p, 1), 6,4 >
satisfies

- d
—Hv lza‘EW(F(p, t)_<F(p7 t)sen+1>en+1’t)

0 -
=EW(F(p, )—<F(p,1),€,11) €y, )+Hv ' [Dw|?.
Therefore
Ed; wy, t)=—Hv
which is Eq. (2).

2 Local gradient estimates

Let us assume that M| is locally given as a graph over some hyperplane deter-
mined by weR"*!, |w|=1. Then we have the following result.
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2.1 Theorem. Let R>0 and x,eR**' be arbitrary and define ¢(x,t)=R>—
|x—Xo|?>—2nt. If ¢, denotes the positive part of @ we have the estimate

o(X, 1) @, (X, ) Ssupve .,

Mo

as long as v(x, t) is defined everywhere on the support of ¢, .

2.2 Remark. By letting R — oo we obtain the global gradient estimate for entire
graphs which was derived in [4] by use of a monotonicity formula, see also

[13].

Proof of Theorem 2.1. We may assume without loss of generality that x,=0.
For R >0 we define 7(r)=(R?—r)%. Note that % satisfies

4 - rY¥=4 and y'=2

where ' denotes differentiation with respect to r. If r=|x|?>+ 2nt we derive from
Lemma 1.1 (i) that

) (%—A)ﬂ= —2VIxPP.

Combining (5) with Lemma 1.1 (iii) we obtain
(6) (%—A) = —2|AP v*n—6|Vo|>n=2|V|x|*? v* —2Vv*-Vy.

Observe that
—2V02- V= —60VuVn+n ' VyV@w? -y 1|Vy?v?
as well as by (4)
n” V=0T ) IVIXPP 02 =4]V x| 0%

Substituting these identities into (6) implies the estimate

(%—A)vzng —6|Vo]2n—6|VIx]*Pv?—60Vo-Vy+n Vi V(2.

Young’s inequality and (4) yield

6vVu-Vy<6|Vol2n+2v2n~ ()2 |VIx|?2
=6|Vo|? n+6]VIx[*? %

If we replace # by ¢% this computation remains valid on the support of ¢
as long as v is defined. The weak parabolic maximum principle then implies
the result.

Next we shall establish a bound for the gradient in terms of the height
over a fixed set in our reference hyperplane. As in [4] we define the height
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of M, with respect to the hyperplane orthogonal to @ by u=<{x, w), see Lem-
ma 1.1 (ii).

In contrast, we define the height function w(y,t) to be the height at time
t over a fixed point y in this hyperplane.

2.3 Theorem. The gradient of the height function w satisfies the estimate

J/ 1+1Dw(yo, )* S Cy(n) sup |/1+[Dwol*

Br (o)

-exp[Co(M)R™Zsup( sup  w—w(yo,1)’]

[0, T] Br(yo) x [0, T]

where 0t < T, Bg(yo) is a ball in the hyperplane orthogonal to w and w, denotes
the initial height function over this hyperplane.

2.4 Remark. This estimate should be compared with the corresponding interior
gradient estimate for the equation

ﬁtw—div(——l)w )
dt Y 1+[Dw]?

Proof of Theorem 2.3. We are going to adapt the techniques employed in [14]
to the parabolic setting and will work with the functions v and u rather than
the height function w.

Let us first assume that u <0 in the set M,= {xe M,/|x|*—u* <1} for te[0, T]
and let n=#(x,t)=0 be a smooth function which for each t€[0, T] vanishes
outside some compact subset of R**1. Suppose then that maxvn reaches some

on R” obtained in [3].

Mt . .
value larger than maxvn for the first time at 0<t,< 7T At a maximum point

My,
on M, we have

) ' V(on)=0

®) (%—A) (on)20.

In view of the evolution equation for v in Lemma 1.1 (iii) we obtain from (7)
and (8) the inequality

d
< —— — 2
0=v(dt A)n A|* vy

where we used the relation

—2Vy-Vo=—20"1Vu-V(on)+2v 1|Vu|]*y
=207 Voul* 5.
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Since v and 5 are nonnegative we therefore conclude
d

9 ——Alnz

©) (Fi-4)nz0

at a maximum point of vy on M, .
Let now n=—1+exp A¢ where the function ¢ will be chosen later and
where 4> 0. From (9) we infer

d
—_— > 2
(10) (dt A>¢=A|V<p| .

Asin [14] set

1 _
(—~u+1—(|x12—u2)) ,  xeM,, B>0 tobechosen
+

else.

Since u<0 in M,, ¢ is a Lipschitz function vanishing outside M,. On the set
where ¢ is positive we compute

1

=§EVu—V(|x[2—u2)

(11) Ve

1 1
IV¢|2=W IVul®+ IV(|X|2~u2)!2—E Vu-V(x|*—u?)

d 1 {d d 2 2
(e
From Lemma 1.1 (i) and (ii) we obtain finally

(12) (%— )(p=2(n~—qu!2)§2n.

Substituting (11) and (12) into (10) we arrive at the inequality

(13) i(z%|Vu|2—%Vu-V(|x|2—u2))§2n.

Now note that Vu=w— (v, w)> and V(|x|> —u?)=2(x— {x, v) v—uVu) such that
Vu- V(x> —u?)=2(u—<{x,v) v, 0> —u|Vul?).
Using also that [Vu|>=1—v"2 we therefore derive

Vu-V(x*—u?)=2v"ur ! —{x, v))=20" 1 (u{v,0)> — (X, VD)
=207 v, x—uw) 20" | |x—uo| 2071,
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since |[x—uw|?>=|x{*—u?<1 in the set under consideration. Thus, again using
{Vu|?>=1—v"2 we deduce from (13) that

1 2
14 gprl=v =507 )<2n.
(14) /1(4[),2{1 v %) }30 )_2n
Let now 4=64n 2 Then at the maximum point of v on M, we have
v=4+168.
Hence
max v =(4+16f) supy
M, Mlo

S@+16pB) e*=(4+ 16p) 5487,

where we used the fact that ¢ <1. This proves that for all te[0, T] we have
inside M, the estimate

(15) vy <supvn +(4+ 16 B) e,
Mo
As described in Sect. 1 this estimate implies an equivalent bound for the height

function w. At the point y=0 in the hyperplane orthogonal to v we obtain
in equivalence to (15) for te[0, T] and arbitrary f>0

(16) [e64nﬁ2((2ﬂ)'1w(0,t)+ 1)+ 1] 1/1 +‘DW(0, t)lz
Se®*"(sup |/ 1+ [Dwol* +4+16 ).
B1(0)

Now choose f= sup —w(0, t). We then infer from (16)

te[0, T]

/1+1Dw(0, > £C,{(n) sup ]/T-}—]Dwolz exp[C,(n) sup (—w(0, )*].
[0, T1

B1(0)
To achieve the condition w<0 on B,(0) we replace w by w— sup  w(y,t)
B(0)x[0, T}
and the estimate on Bg(y,) is then obtained by scaling and translating.

3 Local curvature and higher order estimates

In this section we prove that as long as M, can be written as a graph with
bounded gradient, the curvature and all its derivatives remain bounded as well.
Let r=r(x, t) be a smooth nonnegative function such that

17) ’(%—A)r

holds on any surface M, moving by its mean curvature. We begin with a curva-
ture estimate.

<C(n) and (VrPSC(nr
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3.1 Theorem. Let R>0 be such that {xeM,/r(x,)SR?*} is compact and can
be written as a graph over some hyperplane for te[0, T). Then for any te[0, T]
and 00 <1 we have the estimate

sup JAPScm)(1—-6)"2¢ " "+R™? sup ve,

{{xeM/r(x,t) S6R?) {xeMgq/r(x,s) < R2,s5¢{0,t]}

3.2 Corollary. (i) Let R>0 and 0£0<1 be as above. Then for x,eR"*! and
te[0, T'] we have the estimate

sup |AP<cm(1—0)"2t ! sup sup v*

K(x0,t,0R2) 0<sstK(xp,s, R2)

where K(Xo,t, OR?)={xeM,/|x—xo|*+2n1 S OR?}.
(ii) Let R>0and 0L60<1 be as above. Then we have for te[0, T'] the estimate

sup |A|2(t)gc(n)(l-()z)’z(;{ﬁl—%) sup v*

2
Bor (o) R Br(yo)*[0,1]

where Bg(y,) denotes a ball in the hyperplane orthogonal to w.

Proof of Corollary 3.2. We may assume w.Lo.g. that x,=0, y,=0. To prove

(i) we note that r=|x|>+2nt satisfies condition (17) in view of Lemma 1.1 (i)

and the inequality |V|x|*?<4|x|% The estimate then follows in view of the
2

R
fact téﬁ when r(x, )< R?. To prove the second estimate observe that r(x, t)
=|x|*>—u? satisfies condition (17) in view of Lemma 1.1 (i) and (ii), the inequality
|[Vu|<1 and the fact that |V(x|2—u?)|> <4(x|* —u?).

3.3 Remark. (i) By combining Theorem 2.1 with Corollary 3.2 (i) and letting
R — oo we obtain the global curvature estimate derived in [4].

(ii) By combining Theorem 2.3 with Corollary 3.2 we can estimate the curvature
in terms of a height bound and the initial gradient.

(iii) Corollary 3.2 (ii) includes the estimate in [2] for H=0 as a special case,
see also Remark 3.6 (ii).

Proof of Theorem 3.1. From Lemma 1.1(v) and Schwarz’ inequality we infer
that

(18) (;d;—A)|A|2§2|A|4—2|VIAHZ.

Utilizing an idea of Caffarelli, Nirenberg and Spruck in [2] we combine (18)
with the evolution equation for the gradient in Lemma 1.1 (iii) to deduce that

d 2 2
(5-2)142 02
<2(p— ¢/ v?) |41 2V IAIR o —(60+ 490 AP Vo ~2V14P2 Ve,
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where @=¢(v?) is a smooth nonnegative function of v? to be determined later
and ' denotes derivatives with respect to v?. The last term can be estimated
by
—2VIAP Vo=—¢ 'V V(AP @) +¢ ' Vo|* |4 —4|A|vg'V|A|- Vo
S—07 ' Vo V(AP @) +4o (@) 02 |VolP AP +2|VIAIR @
+2|AP v @ Vol
=—¢ Vo V(AP @) +2|VIAI ¢+ 607 (@) v*|A]* {V |2

Hence we obtain
d 2 7 4.2 4
19 {5-8)I4Pe=2(0—¢'v?) 14
-9 'Vo-V(AP@)— (69 (1—0~ ¢ v))+4¢"v?)|A]* Vo).

2

Asin [2] we let @(v?) = k>0 to be chosen. Observe that then

v

1—ko*’
o= v'=—ko?

2
1 =12 "2

69’ (1—@™ ¢'v)+49"v T

and

¢ 'Vo=2¢0v V.

Substituting these identities into (19) we derive for g=14|? ¢(v?) the inequality

(20) (i—A)gg kgt

2k -
dt leulzg—Z(pv 3VU‘Vg.

(
Now let n=#(r)=(R? ~r)? where r=r(x, t) satisfies (17). Since by (4) and (17)
d d Y 2
(5— )n—n (5—A)r——n V7]
<2c¢(nyRZ=2{Vr)?

we compute from (20)

d 2k _
(21) (E—A)gng~2kg2n—m-f)~5wv|2gr/~2(pv *Vo-Vg-n

+c(n)R?g—2g|Vr|>*—2Vg-Vy

where c(n) denotes constants depending on n only. The last term can be written
as

(22) —2Vg-Vy=—2n""'Vy-V(gn+8g|Vr|?
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in view of (4). We also estimate

(23) —2¢v 3Vv-Vgy
=—2¢v 3Vo-V(gn+2¢v gy Vuv-Vr

_ 2k (1 —kv®)?
20073 Vo Vign) + s IVoP g1+ 20 L gyvp

(1

2
2 Vol gn+ 5 8lVrf?

= —2(pv_3Vv-V(g11)+(1i-)—

where we again used (4) and the fact that
Qv 5 (1—kv?)P=v" %

Substituting (22) and (23) into (21) and using (17) we derive

d 1
(E_ )gﬂé —2kg2n—2(<pv_3Vv+r/‘1V11)-V(gn)+c(n)((l+W)r+R2)g

and hence
d
(J-4) cans —2ke?ne—20007 Vo0~ V) Vi)
1 2
+c(n) 1+W r+R*)tg+gn.
At a point where m(T)= sup sup tgn is attained for t, >0 we compute

0SI<T {(xeMr(x, 1)< R2}

1
2kg2nt0§c(n)(1+m> R2gty+gn.

Multiplying by # ;—(]’( yields since t, < T

m(Ty? << C(”) ((1 +%> RT+ n) m(T).

Since n < R* we arrive at

(24) gn Té—(i}((l +T) R2T+ R4>

in the set {xe M/r(x, T)< R*}. Let now

k=1 inf v 2
(xeMr(x, 1) < R?, 1[0, TT)
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Since @(@*)=1 and n=(1—0)?R* in {xeM/r(x, T)<O0R?} we finally obtain
from (24) replacing T by any te[0, T]

{1 1
sup A Lcn) (1 —6) 2(—2+~) sup sup v*
{xeMyirix, ) S R?) R% 1] ocosi memyrin 95 R
as desired.
We will now extend these estimates to all derivatives of A.

34 Theorem. Let r=r(x,t)=0 be as in (17) and let R>0 be such that
{xeM,/r(x, )< R?} is compact and can be written as a graph over some hyperplane
Jor te[0, T). Then for any m=0,0<60<1 and te[0, T] we have the estimate

1 1 m+1

sup IV"‘Aizgcm(——ﬁ-f)

fxeMcir(x, ) < R?} R "t

where ¢, =c,(0,n,m, sup v)
(XeM/r(x,s) < R2,5€[0, 1]}

As in Corollary 2.2 setting r =|x —x,|* +2nt or r=|x|?> —u? implies
g 0 b

3.5 Corollary. (i) Let R>0 and 0£6<1, m>0 be as above. Then we have for
XoeR" "1 te[0, T] the estimate

sup t"THV"A|?Zc,
K(xg,t,0R2)

where K (Xq,t, 0R?)={xe M/|x—x,|* +2nt < R?} and c,, is as in Theorem 3.4.

(i) Let R>0, 0<0<1 and m=0 be as above. Then we have for te[0, T] the
estimate

1 1 m+1
sup lV"'Alz(t)éa,.( +~)

2
Bgr(yo) R t

where By(y,) denotes a ball in the hyperplane orthogonal to w and ¢, is as above.

3.6 Remark. (i) By combining Theorem 2.1 and Corollary 3.5(i) and letting
R — oo we obtain the global estimates derived in [4].

(ii) From the proof of Theorem 3.4 we infer that the constant c,, is of the form
cm=c(n, B, m) ci™ where a(m) is a positive integer (bounded by 2™) and ¢, is
s.t.

1
wp iarsalhel)

{xeM,/r(x,5) S R?} §

for any se[0,t]. The graph property of M, is only used to bound [A4]* as in
Theorem 3.1. One determines an optimal exponent a(m) by estimating the last
term in the evolution equation for |V™AJ* (see Lemma 1.1 (vi)) similarly as in
Proposition 4.4 of [4].

(iii) Since minimal hypersurfaces (H =0) are stationary solutions of (1) the esti-
mates 3.5 (i), (ii) for m = 0 with ¢ proportional to R? provide an interior regularity
theory for solutions of the minimal surface equation obtained entirely from
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geometric computations. To minimize the exponent of v in the |V™ A|-estimate
one uses the curvature bound in [5] and then finds the optimal exponent o(m)
as in (ii) above.

Proof of Theorem 3.4. We proceed by induction on m in a similar way to that
in [4]. The case m=0 was proved in Theorem 3.1. For fixed R>0 let y(¢)
2

R?t
=m. Suppose

(25) sup VIV L AP e

{xeM,/r(x,1) < R2,1e[0, TT}

has been established for 1 <k<m. We then want to estimate Y™ !|V"A4|? in
{xeM,/r(x,1)<OR?*}. From Lemma 1.1 (vi) we obtain for m=1

(%—A) l//m+1|VmA|2§ «2wm+1|vm+1A[2

+emmuyymrt S VA |VIA4]|VEA| |V A] +<%l//"‘“)|V”‘A|2.

i+jthk=m
In {xe M,/r(x, ) <OR*} we have by (25)
Yty IVIALVI AL VEALIVR A Sc ) R vEAL

i+jtk=m k=m

similarly as in [4], where c=c(n,m, ¢y, ..., Cc,—1). Since

4

d o mir - R m
E‘/’ 1—(m+1)l// (R2+t)2§(m+1)lﬁ

we infer in {xe M,/r(x, t) < R?} the inequality

(i__A) lperllva'Zé_2¢m+1|vm+1A|2+C Z l//k|VkA|2,

dt ol
where c=c(n, m, ¢, ..., Cp— ;). Following the work of Shi in [17] we now define
f=um VAR (A VAP,

where A >0 will be chosen appropriately. We then compute, using again (25)

(fr=8)r=—20m e v ARG
+C Y YHIVRAP (A4 Y™V AP
k=m
_2¢2m+xlva|4+ Z l//klva‘Z l//m-}—llva'Z

ksm—1

—*21//2m+1VleA|2'V!Vm_1A!Z.
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The last term we estimate by

2lﬁ2m+1V|V"‘A|2~V]V"’71A|2§2l//m+1|V"'A|Z(A +¢,m|vm—1A|2)
l[/m Vm 1A|2

2Zm-+1
+8l// A+l//"'|V"‘ IA|

5 (VAL
Noting that
PUVTIAR e
A+Y™V T AP T A+,

we obtain in {xe M,/r(x, ) < R?} that

d _ de, -y mA 1 Om 4122
(E~A>f§—2w 1(1—m)(w V™ A4]%)

+Cl//—l<z l//k+l|VkA|2(A+i//m|VM7‘AI2)
k

<m

+ Z lpk+1|va|2wm+llva!2>.

kfm-—-1
Setting A=7c¢,_,+1 and collecting terms we obtain in view of (25) in
{xeM,/r(x, ) <R?}
d
(Fi-a)r= v rpmwmap e )

where ¢ depends on n, m, ¢, ..., ¢, - Applying now (25) to the f2-term and
using Young’s inequality on the second term we arrive at

d -1 2
(E—A>f§—l/f (65 ~0),

where 6 and ¢ depend on n, m, ¢, ..., ¢,_ ;. Similarly as in the proof of Theo-
rem 3.1 we compute for n=(R?—r)? using (17) that

(ﬁ—A>fn§¢f"(—5f2+6)'1—2rr"V'?'V(f??)+c(”)sz

Since ¥ (0)=0 we have fn=0 at t=0 At the point where m(T)

= sup sup [ is attained for t, >0 we compute
0LtST{xeM/r(x, 1) SR2}

Ja—y

frnsgen+elm R2)

Multiplying by # and using #<R* and ¢ <R? we obtain since
6=25(n,mgy,Cq, ..., Cr— 1) the estimate

Fin? Sc(R®+R*fy),
where c=c(n, m, cg, ..., Cn-1)- Hence, by Young’s inequality we derive

m(T)?*<c-R8
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and therefore
fnZcR*

in {xeMp/r(x, T)SR?} with c=c(n,m,cq, ..., (). Thus we finally arrive at

sup Yy VAR (1)
{xeMr/rix, T)<R?}
where ¢=c(n,m,cq, ..., ¢n_,) and where we used the fact that n=>(1 —6)>R*
and A= 1. Replacing T by any te[0, T] yields the result.
If we assume additional smoothness of M, we can improve the time depen-
dence of the higher derivative estimates. In particular, it is not necessary to
assume that M, can be locally written as a graph.

3.7 Theorem. Let r=r(x,1)=0 be as in (17) and let R>0 be such that
{xeM,/r(x,t))<R?} is compact for te[0, T). Then for 0<60<1, te[0, T] and
any integers £ 20, m=0 we have the estimate

m+£ 2 1 1 ‘
sup A% Al*Zc 1+ +
{(xeM/r(x,1) £ R?}

where c=c<m, ¢,n, 6, sup > |V‘A|2).

{xeM/r(x,s)<R2,s¢[0,t]) i=0
In particular, we obtain the estimate

sup |V"tYAP<Zct™?
K(xo.t, 6R2)

3.8 Remark. For m=0 and /=1 we have
c=c(n,0) sup |42

{xeMg/r(x,s)< R2,se[0, 1]}

For general m and ¢ the constant can be optimized as outlined in Remark
3.6 (ii).

Proof of Theorem 3.7. Observe that similar as in the proof of Theorem 3.4 the

function f=y* V" AP (A +¢ V™ 1 4]%) with ¢=(1+§1~2+%>_‘ satisfies

an inequality of the form

(i—A)fw 1312 -C).

4 Flow of complete surfaces

In this section we want to establish a number of results for complete, noncompact
surfaces moving by mean curvature. In particular, we will use the interior esti-
mates from the previous section to obtain a short time existence result for
arbitrary immersed, complete initial surfaces assuming only a uniform local
Lipschitz condition. A similar approach to a short time existence result is also
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known to R. Hamilton [9]. Furthermore, we will derive a general maximum
principle for heat equations on Riemannian manifolds with a time dependent
metric.

We begin with a result for the Dirichlet problem. Let M” be a smooth
manifold with boundary 0 M" a compact (n — 1) dimensional smooth submanifold
such that M"=M"UdM" is compact. Then the following shorttime existence
result holds.

4.1 Proposition. Suppose that F,: M" - R*** is a smooth isometric immersion.
Then there is T, >0 such that the initial value problem

(26) %F(pt)=H(p, 0, peM", O0<t<T,
F(p,0)=Fq(p), peM"
F(p,t)=F;(pj, pedM”, 0<(<T,

has a unique smooth solution on 0Zt<T,. The constant Ty>0 only depends
on a bound for the second fundamental form of My and O M,.

Proof. Since F, is smooth there is a tubular neighbourhood of M with Gaussian
coordinates £(p)=(xy, ..., X,), y such that at a point g in this neighbourhood
y(q) is the length of the geodesic arc perpendicular to M, through g and 2(g)
denotes the coordinate vector at the base point of the geodesic on M,. Let
w(X) be the unit normal to M, at . In these coordinates consider the scalar
initial value problem

27 Ew(ﬁ, D= (%0, 0> " PHER, ), XeM, 0<t<T,
w(x,0)=0, XeM,
w(x,t)=0, XedM,, 0Zt<T,

where v and H are the unit normal and the mean curvature respectively of
the hypersurface given by w. This is a quasilinear second order equation which
is uniformly parabolic as long as {v,w) "' remains uniformly bounded. At time
t=0 we have {v,w)>=1 and standard arguments yield an a priori estimate
for <v,w»™' on a time interval [0, T,) which only depends on a bound for
the curvature of My and 8 M,. Note that an interior estimate for the gradient
function (v, w)> ! also follows from Theorem 2.3. Then the results of Ladyzhens-
kaya et al. [15] apply and yield a smooth solution of (27) on [0, T). Using
an appropriate tangential diffeomorphism exactly as in Sect. 1 we then construct
a smooth solution of the original problem (26).

Now let Fy: M"— R"*! be the smooth isometric immersion of a complete
hypersurface with bounded curvature in R"*!. Fix a point poe M" and as in
[17] choose a family of domains {Dk=1,2,3,...} on M" such that for each
k the boundary 9D, is a compact C,,, (n— 1)-dimensional submanifold of M"
and
(i) D,=D,udD, is a compact subset of M”,

(i) the geodesic ball B{p, k) is contained in D,.

For each k=1,2,3, ... let F¥ be the solution of the Dirichlet problem (26) with
initial data F, on D,. Proposition 4.1 guarantees that such a solution exists
for each k on a time interval [0, T,) with 0< T, independent of k. Since M,
has bounded curvature our interior estimates in Theorem 3.4 apply and we
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may take the limit k — oo to obtain a smooth solution of the mean curvature
flow (1) with initial data M.

Furthermore, in view of the interior gradient estimate in Theorem 2.3 a
simple approximation argument shows that it is sufficient for the short time
existence result to assume the following uniform local Lipschitz condition on
M.

For geM" let U, , be the g-component of F5 ' (Br*'(Fy(g)). We say that
M, satisfies a uniform local Lipschitz condition if there are fixed numbers ry >0,
Co< oo such that for each ge M", Fy(U, ) can be written as the graph of
a Lipschitz function over a hyperplane in R**! through F,(q) with Lipschitz
constant less than C,.

Using Theorem 2.3 and the special time dependence of the curvature esti-
mates in Corollary 3.5 (ii) we obtain after approximation:

4.2 Theorem. Let F,: M" — R"*! satisfy a uniform local Lipschitz condition. Then
the mean curvature flow problem

—dd'tF(p, t)=H(p,t), peM", t>0

F(p,0)=F,(p)

has a solution F, on some time interval [0, Tp). ¥, is smooth for t>0 and at
t=0 it is Holder continuous in time with Hélder exponent o= 3.

We will now adapt a method of Liao and Tam [14] to establishing a maxi-
mum principle for heat equations which not only applies to our noncompact
hypersurfaces, but to general Riemannian manifolds with a time dependent met-
ric. Notice that a maximum principle for the mean curvature flow was obtained
in [4] assuming more restrictive growth properties of the solution. Let M" be
a complete, non-compact Riemannian manifold with time dependent metric
g(t)={g:;(t)} for 0=t < T. We denote by B;(p) the geodesic ball of radius r centred
at p at time t and will often use a superscript or subscript ¢ to denote other
time dependent quantities.

4.3 Theorem. Suppose that the manifold M" with Riemannian metrics g(t) satisfies
a uniform volume growth restriction, namely

vol'(B}(p) Sexp(k(1 +r?)

holds for some point pe M" and a uniform constant k>0 for all t€[0, T].
Let be a function on M" x [0, T] which is smooth on M" x (0, T} and continuous
on M" x [0, T]. Assume that f and g(t) satisfy

(i) %fg A'f+a-Vf+bf where the function b satisfies sup |b|Saq for some
Mnx[0,T]

0o < 00 and the vector field a satisfies sup |a|Sa, for some a; < 0,
Mnx([0,T]

(i) f(p, 90 for all peM”,
T

(i) §(f exp(—a3r'(p,»)) IVSI* (y)dp)dt < co, for some u;>0
oM

d
77 8ii <us, for some a5 < 0.

(iv) sup

Mnx{0, T}

Then we have f<0 on M"x [0, T].
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Proof. First notice that in view of (iv) and ([8, Lemma 14]) all metrics g(t)
are uniformly equivalent, i.e. there is a constant «, depending only on a5 and
T such that for any vector v(g), ge M" we have for te[0, T]

28) oy 'gi(q,0) v (q) vV (g) £ gi5(g, 1) V(q) vV (g9) S g £15(q, 0) v (q) v (9).

We then proceed as in [16] and let 0 <p<min

) be a fixed con-
stant. Define for 8> 0 to be chosen

1
(T’ 64K 32a,

_0r2(p,y)
4@2n—s)’

h(ys S)'__

O<s<n

where r (p, y) is the distance between p and y at time s. Then & is Lipschitz
continuous and

4, 0y  Or, d
ds”~  42n—s? 202y—s)ds °
Org d
T2Qn—s)ds'

——0 '|Vh]?

Now observe that for any curve y with length /(s) we have

Sty lls)

such that in particular

iA

1
U3 F.

4,
ds *®
We therefore conclude that

%h§ — 0 VA2 407 Loy VA2 (25 —s).

. 1 .
Using then néﬁ we obtain for =%
3

d
o h< 2
(29 dshz 2|Vh}2

Proceeding similarly as in [16] we obtain for fx=max {min(f, K),0} and some
smooth time independent compactly supported function ¢ on M" that for 0<e
<n

f (] o ers(81=L)anas

n "
> —a, [e P ([ @?fkIVIldp)ds—aofe (| o*efy fdu)ds
M M

€ £
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where >0 will be chosen later and where we used that fi f=0. Performing
an integration by parts yields

n
0 —fe ®(§ @2 fx{V fx, V> dpn)ds
M

&

—fe ([ 9P (VR VS duyds

&

_2{e (] @M (TR, VY dw)ds
M

£

n o "
e ([ ot el dufds o fe 0" i s
M M

£ £

+ay [e ([ @2etfc|Vfldp)ds
M

&

=14+II+II+IV+V4+ VL

We compute

I — e 85( | pe"V /il dy) ds.
M

£

Using Schwarz’ inequality we obtain

II/\

n n
12 fe (] o2 \VfIPdp)ds+ fe #*(| VR f} dpy) ds,
& M M

n n
HI<E fe 25(f 2|V du)ds+2 (e (| '|Vh>fZ dp)ds.
3 M & M
To estimate the terms I'V 4V observe that as in [16]

—e'fy af e"fx afx+‘—{ =1

whenever —Iﬁ exists. Since fg is uniformly Lipschitz continuous on compact

ds
subsets of M" x [0, T] we derive

IV+Vs— Ie‘ﬂ‘<§¢2e”fx f"dus)dwje-/’s(fw 5- (Hlfe=} du)ds

n
+ag [ e ([ p?eMfx fdu) ds.
€ M
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Now observe that

éna?fd)us

d
in view of condition (iv).
Therefore,
n

a 1o
VS g [e ([ 0 Uauds+ | S | P felfem ) dmd ds
£ M

£

+8 f e P(J @ fi(fx—f)du)ds—nas [e P o> fx(fx~f)dus)ds

"
tog fe ([ o2 fx fduds
& M

Choosing now =2na, +4a, and observing that f (fx—f) <0 we derive

IV=-1le” ”‘f¢2ehf2dusls .t —ﬁsjwzehﬁczdﬂs|s=e

T oh _
+3 e P (] qoze”f;?gdus)ds—-ﬁfe ”S(j~ p*ef¢du)ds
& M

+e P f P fx(fx—f)dpls=y—e " | €02€"fx(fx—f)dlts|s=e-

M M

The integral VI can be estimated by

n

"
VIZife ™ ([ o?" VP duyds+oi e (| p?efZdpu)ds
M

€ M £

Combining the estimates for I-VI, using (29) and choosing fZ=max(2na;
+4duay, }) we conclude for £ — 0 that

0= — ] e 8] g2V Sl dp)ds+ | e (| 92V f1? dps) ds

0 M O M

n
+2fe ([ Vol fEdu)ds—te™ | @?e'f dul,—,

4] M M

Here we also used that fi(fx—f)<0and fy=0at s=0. For R>0let 0S¢ =<1
satisfy ¢ =1 on B%(p), p=0 outside B}, ,(p) and |V ¢|°<2. We then conclude
in view of (28)

3 fEdu-, _"”<§e"”( [ VAPVl duyds

BX(p) BR +1(p)

+2a4fe"ﬁs( | e'fidu)ds.

0 BY ., (DB (p)
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. . 1 1 .

Since 0<n<min (671_5’ m) we infer h(y,s)<—2kr2(p,y) and h(y,s)=<
—a, r2(p,y) for all 0<s<y. Since fZ < K? we obtain from the volume growth
assumptions on M" that the second term on the RHS tends to zero as R — co.
Finally, since 0|V f1?>—|V fx|* < |V f]* we derive for R — o0

3 fRdul=ye < [ P([ LUV =V S du) ds

M o M

in view of assumption (iii).
Now let K — 0. Then fZ —(max(f, 0))*> and for all s, |V fx|* - |V f]*. Using
again assumption (iii) we finally conclude

3 | e (max(£,0) du—, <
M

. 1 1 . . .
where 0 <7 <min (7} K’ 32—‘12) By means of an inductive argument we arrive

at f <0 everywhere in M" x [0, T].

4.4 Corollary. Let Fy=M"— R**! be a smooth isometric immersion of a complete
hypersurface with bounded C* *-norm. Suppose M =F,(M") has nonnegative mean
curvature. Then the smooth solution of (1), M,=F (M"), has nonnegative mean
curvature for te[0, T] where T depends on n and the initial curvature bound.

Proof. Since M, has bounded curvature, sup|A|=<c,, it satisfies a uniform local
Mg
Lipschitz condition as in Sect. 4. Using the gradient estimates in Theorem 2.1
we infer that v stays bounded on some small time interval [0, T depending
on ¢,. By a simple modification of the arguments in the proof of Theorem 3.1
we can bound sup|4| on [0, T] in terms of ¢, again. Since Ricy, = —2|4|?
M,

the uniform volume growth condition of Theorem 4.3 holds for &[0, T] as
we have the uniform bound on | 4| on this time interval. In view of the C**
initial data and parabolic regularity theory we obtain the estimate

supt! "*|VH|*<c

M,

where ¢ depends on n, T, ¢, and the C**-norm of M,,.
This and the volume growth condition then imply the validity of condition
(iii) in Theorem 4.3. Moreover (iv) holds in view of the equation

d

—d_tgijz —ZHh

ij

derived in [§].
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In view of Lemma 1.1 (iv) and the curvature bound the mean curvature H
satisfies the conditions of Theorem 4.3 with b=|A4}* for te[0, T]. This implies
the result.

4.5 Remark. In a forthcoming paper Theorem 4.3 will be applied to spacelike
slices moving by mean curvature in asymptotically flat spacetimes.

5 Flow for entire graphs of arbitrary growth

In [4] the authors established longtime existence for the initial value problem
corresponding to (1) in the class of linearly growing graphs. In this section
we use the interior estimates of Sect. 3 in conjunction with a spherical barrier
argument to show that (1) admits a smooth solution for all t>0 in the class
of entire graphs. In particular, no smoothness or growth assumptions have to
imposed on the initial graph.

5.1 Theorem. Let M,=F(R") be a locally Lipschitz continuous entire graph over
R". Then the initial value problem (1) has a smooth solution M,=F(R") for all
t>0. Moreover, each M, is an entire graph over R".

5.2 Remark. (i) In view of the equivalence of solutions of (1) and (2) discussed
in Sect. 1. Theorem 5.1 also establishes the existence of a smooth solution of
the initial value problem

SR

w=]/1+|Dw|? div(?#h) in R*x(0, occ)
w(*,0))=w, in R"

assuming that w,: R*— R is merely locally Lipschitz continuous. Moreover,
the special form of the curvature estimate in Corollary 3.2 (ii) in conjunction
with the gradient estimate in Theorem 2.3 yields that at ¢=0 the solution w
is Hoélder continuous in time with Holder exponent a=4.

(ii) Note that in contrast to the above result a solution of the ordinary heat
equation becomes unbounded in finite time, unless certain growth conditions
for |y| —» oo are imposed on the initial data.

Proof of Theorem 5.1. Assume first M,=F,(R")=graph w, for woe C**(R"),
a>0.

Using Theorem 2.1 of [12] as well as the tangential diffeomorphisms defined
in Sect. 1 we infer that for any R>0 the boundary value problem

LRGO=HO0, (0,080 x (0, 0)

F(y,0)=F(y) y€Br(0)
F(y,)=F(y), (3. )ed Bg(0) x [0, <o)

admits a smooth solution MR=FF(B(0)) which for each ¢>0 can be written
as a graph over BR(0)=R".
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Let now T>0 be fixed and < R" be compact. Choose R;>0 s.t. Q< B (0)

and define R, =]/4R}+2nT.

We also define a* =(0, sup wo+R,+1)eR"*!. Then we have for R>R,
Br,(0)

M§n By '(a*)=0
where By ' denotes a ball in R"*'. Furthermore
OM{ By a")=0
for t = 0. Using Theorem 3.7 of [1], or Lemma 3.2 of [11], we infer

MZ B3k, (a®)=0
for te[0, T].
Using a similar argument for B} '(a™), where a~ =(0, inf wy—R,;~1)
)

Ry

€R"*! we conclude that the height function wg(+, t) of M® satisfies

sup  [wg|=co
Bapy*(0.7T]

where ¢, =co(n, Ry, T, sup wy) is independent of R.
Br,(0)
Applying the gradient estimate of Theorem 2.3 we obtain

sup  [Dwel=e,
B3/2ry(0) %[0, T]

where ¢; =c¢,(n, Ry, co, sup |Dwyl).
B2Rry(0)
From Corollary 3.5 (ii) we then conclude for any integer m=0

sup  [D"wgl e,
Bro(0)x[0,T1

where c,,=c,,(m,n, Ry, ¢y, cy)-

We can therefore select a sequence of solutions (wg,) for Ry — o0 (R, >R,
for any k=2) st. wg, —»w in C* uniformly on x[0, T]. Since Q and T>0
were arbitrary this establishes the existence of a family of entire graphs M,
=graph w(-, t) solving (1) where we C*(R" x (0, 0)). As the second and higher
order derivative estimates for w on each compact subset of R" depend only
on the initial height and gradient on a slightly larger subset, an approximation
argument yields a smooth solution of (1) also for locally Lipschitz initial data.
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