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Let Ft: M" ~ R "+ 1 be a hypersurface moving by its mean curvature in Euclidean 
space. That  is, F t = F ( ' , t )  is a one-parameter family of smooth immersions, 
with images Mr = Fr(M"), satisfying the evolution equat ion 

d 
(i) ~F(p,t)=H(p,t),  p~M", t > 0 .  

Here H(p, t)= -H(p, t).v(p, t) is the mean curvature vector of Mt at F(p, t) and 
v denotes a choice of unit normal  for Mr. 

Mean curvature evolution of smooth hypersurfaces was studied previously 
under various global assumptions: It was shown in [8, 6] that compact  convex 
surfaces in R "+1, n > 2  and embedded curves in the plane contract smoothly 
to a point. In [4] the authors characterized the longterm behaviour of entire 
graphs of controlled growth. 

It is the aim of this paper to study the local properties of mean curvature 
flow and obtain regularity estimates which are interior both in space and time. 
Working in a region sufficiently small such that M~ can be written as the graph 
of a function w over some hyperplane, we use the gradient function v 

= ~  to obtain interior estimates for the second fundamental form A 
and all its derivatives, compare Theorem 3.4. Under  additional curvature 
assumptions on Mr we furthermore obtain improved estimates with respect to 
time dependence for the derivatives of A without having to assume that M~ 
can be locally written as a graph. It is worth noting that  all the interior estimates 
also apply to the case of minimal hypersurfaces as these are stationary solutions 
of (1), compare Remark  3.6. 

An immediate consequence of the interior estimates is a shortt ime existence 
result for the mean curvature flow of complete surfaces, assuming only a uniform 
local Lipschitz condit ion for the initial surface. In Sect. 4 we extend a method  
of Liao and Tam [-16] to prove a general maximum principle for parabolic 
equations on such complete Riemannian manifolds with time-dependent metric. 
As an application of this maximum principle we obtain that nonnegative mean 
curvature is preserved by (1) under reasonably weak conditions. 
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Finally, in Sect. 5 we use the interior estimates to deduce the somewhat 
surprising result that if Mo is a locally Lipschitz continuous entire graph over 
R", then the mean curvature flow Eq. (1) has a smooth solution with initial 
data Mo which exists for all times t>0 .  In particular, it is not necessary to 
make any assumption on the growth and the curvature of M o for Ix[ ~ ~ .  

1 Preliminaries 

We will use the same notat ion as in [10] and [4], in particular we will often 
write x = F ( p , t )  to denote the position of a point in M, and write A={hi i  } 
for the second fundamental  form of M r . 

Furthermore,  if M, is locally given as a graph over some hyperplane in 
R" + 1 such that (v, o9) > 0 for some fixed vector ~o e R" + 1, 1(3) I = 1, we will consider 
the gradient function v defined by 

v =  (v, ~o)- '. 

With this notat ion we recall the following evolution equations from [10] and 
[4]. 

1.1 Lemma. If M t satisfies (1) we have 

(i) ( ~ t - A )  l x ' 2 = - - 2 n ,  

(ii) (d -A)u=O,  whereu=(x,~o), 

(iii) (d-A)v=--IAl2v-2v-~lVvl  z, 

(iv) ( d - A ) H = H I A ,  z, 

(v) (d-A),AI2=--21VAI2 + 2IAI ", 

(vi) (d-A)lVmAl2<-2lVm+lAl2+C(m,n) ~ [VmAI[ViAIIWAIIVkA,. 
i+j+k=m 

In the case M , = g r a p h  w,, the parabolic system (1) is up to tangential diffeo- 
morphisms equivalent to the quasilinear scalar equation 

(2) d~ w(y, t) = V1 + ID wl dlv, (y, t). 

Indeed, suppose that w(y, t) is a smooth solution of Eq. (2) on ~2 • [0, T), where 
O is some open subset of R". Then we define in the obvious way 

~(y,t)=(y,w(y,t))~R "+1, y~f2, te[0,  T) 

and the normal  component  of Ol~ ~ -  will yield the flow in (1). To be precise let 

q~: f2 x [0, T ) ~ R "  
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be the solution of the following system of ordinary differential equations:  

T 
(3) ~[(p  y , t ) = - - \ ~ y  (~O(y, 

q~(y,0)=y 

where " T "  denotes the tangential component  of a vector. Now observe that  
v =  ~ 1  + [Dw[ 2, and the right hand side of (2) equals - v H .  We then define 

F(y, t )=  l~(~o(y, t), t) 

and obtain from (2) and (3) that  

ff~tF(Y ' 8 0~" d t) = ~-~ 1~ (~o (y, t), t) + ~ -y  (q) (y, t), t) o ~ ~o (y, t) 

= [ ~ t  ~(~o(y, t), t)] • 

d ~ - - W . U - I . v  
dt  

= - - H .  v = H ( y ,  t). 

Notice that  the solution of (3) exists and is a diffeomorphism as long as <p(y, t) 

remains in s since ~ is a smooth diffeomorphism. The quanti ty (Aa---3 ~0 = - H  v 

+ H v -  t e,+ 1 is the projection of - ~ onto the hyperplane R". 

Conversely, given a smooth solution F t of the mean curvature flow equation 
which can be written as a graph locally, it is easy to compute  that  any function 
w (y, t) with 

w(F(p, t ) -  (F(p ,  t), e.+ 1) e.+ , ,  t )=  (F(p ,  t), e.+ 1) 
satisfies 

-- H v -  1 = d  w(F(p,  t ) -  (F (p ,  t), e .+ 1) e .+ 1, t) 

= ~  w(F (p, t)--  (F (p ,  t), e,+ 1 ) e,+ 1, t) + H v -  ' lDwl  2. 

Therefore 
d 

w(y,  t )= -- H v 

which is Eq. (2). 

2 Local  gradient est imates  

Let us assume that M0 is locally given as a graph over some hyperplane deter- 
mined by coeR "+ l, ]col = 1. Then we have the following result. 
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23 Theorem. Let R > 0  and xo~R "+1 be arbitrary and define cp(x,t)=R 2 -  
I X - X o l / - 2 n t .  I f  ~o + denotes the positive part of  ~p we have the estimate 

v(x, t) ~o+ (x, t) < supv~p+ 
Mo 

as long as v(x, t) is defined everywhere on the support of  ~p + . 

2.2 Remark. By letting R ~ ~ we obtain the global gradient estimate for entire 
graphs which was derived in [-4] by use of a monotonici ty formula, see also 
[133. 

Proof of Theorem 2.1. We may assume without loss of generality that xo=0.  
For  R > 0  we define q(r)=(R2--r) 2. Note that ~/satisfies 

(4) q -  1 (q,)2 = 4 and ~/" = 2 

where ' denotes differentiation with respect to r. If r =  Ixl2+ 2nt  we derive from 
Lemma 1.1 (i) that 

d A~/  (5) ( ~ - - )  = - 2 l V l x l e l  2. 

Combining (5) with Lemma 1.1 (iii) we obtain 

d A (6) ( d r - )  v z q = - 2 1 A I z v z r l - 6 l V v l 2 ~ l - R l V I x l z l z v z - 2 V v z ' V q "  

Observe that 

- -2VvZ.Vr l= - 6 v V v V q + r l - a v q v ( v 2 q ) - q  - llVr/I2 v 2 

as well as by (4) 

q-1 iVql 2 v2 =/~-1 (?],)2 iVlxl212 v 2 =41Vlx1212 v 2. 

Substituting these identities into (6) implies the estimate 

( d _  A)v2 r/~_~ < - 6 [ V  v] 2 q - 6  IV Ix]212 V2--6vV v. Vt/-b r t/. V (v2 t/). 

Young's  inequality and (4) yield 

6 vV v. V q <= 61V vl z ~l + 3 v2 ~l- ~ (q') z IVlxl2l 2 

=61Vvl 2 rt+61VIxl212 v z. 

If we replace q by ~pZ+ this computat ion remains valid on the support  of ~p + 
as long as v is defined. The weak parabolic maximum principle then implies 
the result. 

Next we shall establish a bound  for the gradient in terms of the height 
over a fixed set in our reference hyperplane. As in [4] we define the height 
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of M t with respect to the hyperplane orthogonal  to co by u = (x,  co), see Lem- 
ma 1.1 (ii). 

In contrast, we define the height function w(y, t) to be the height at time 
t over a fixed point y in this hyperplane. 

2.3 Theorem. The gradient of  the height function w satisfies the estimate 

]/1 + [D w(y o, t)] 2 N C1 (n) sup ]/1 + [D Wo[ 2 
BR (Yo) 

�9 exp[C2(n )R-Zsup(  sup w - w ( y o , t ) )  2] 
[0, T] BR(yo) x [0, T] 

where 0 <-t <_ T, BR(Yo) is a ball in the hyperplane orthogonal to co and w o denotes 
the initial height function over this hyperplane. 

2.4 Remark. This estimate should be compared with the corresponding interior 
gradient estimate for the equation 

d [ Dw \ 
~ - w = d i v !  ! 
. t  

on R" obtained in [3]. 

Proof of  Theorem 2.3. We are going to adapt the techniques employed in [14] 
to the parabolic setting and will work with the functions v and u rather than 
the height function w. 

Let us first assume that u < 0 in the set Mt = {x ~ Mr~Ix12- b/2~_~ 1 } for t ~ [0, T] 
and let ~/=t/(x, t ) > 0  be a smooth function which for each rE[0, T] vanishes 
outside some compact  subset of R "+ 1. Suppose then that maxvq  reaches some 

Mt 
value larger than max v t/ for the first time at 0 <  to < T. At a maximum point 

Mt 0 
o n  m t o  w e  h a v e  

(7) v(v~)=0 

(8) (~ -A]  (v~)>0. 
\ a l  / 

In view of the evolution equation for v in Lemma 1.1 (iii) we obtain from (7) 
and (8) the inequality 

0=<v ( ~ t - - A ) q - - [ A , 2  vq 

where we used the relation 

- 2 V q .  V v =  - 2 v -  1Vv.V(vrl)+2 v-  1 [Vvl2 ~/ 

=2v-11Vv12q. 
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Since v and q are nonnegative we therefore conclude 

,9, 

at a maximum point  of vr /on Mto. 
Let now t / = -  1 +exp  2q~ where the function q~ will be chosen later and 

where 2 > 0. F rom (9) we infer 

d A _ (10) ( ~ - ) q o ~ 2 l V q o [  2. 

As in [14] set 

( 2 ~  u+l-(lxl2--U2))+ ' 

~0= O, 

x ~ M , ,  /3>0 t o b e c h o s e n  

else. 

Since u < 0 in a~r t, q~ is a Lipschitz function vanishing outside Mr. On the set 
where cp is positive we compute 

(11) Vcp = ~ f l  Vu-V(lx[Z-u 2) 

2 1 IVul2+IV(Ixl2_u2)I2_I/3vu. V(IxIZ_u2 ) IVcPl = ~  

d 1 d d 2 

F r o m  Lemma 1.1 (i) and (ii) we obtain finally 

(12) ( d _  A ) ~ o = 2 ( n - , V u [ 2 ) < 2 n .  

Substi tuting (11) and (12) into (10) we arrive at the inequality 

(13) 2 ( +  IVul2-~Vu.V(lxl2-u2))<2n. 

Now note that  V u = o) - (v, co) and V (Ixl 2 - u 2) = 2 (x - ( x, v ) v - u V u) such that  

Vu. V(lxlZ-u2)=2(u-(x, v) (v, ~o)-ulVul2). 

Using also that  IVulZ = 1 -  v -2  we therefore derive 

Vu.V(Ixl2--u2)=2v-l(uv-l-(x, v))=2v-l(u(v, og)-(x, v>) 
= - 2 v-  t (v, x - u c o )  < 2v-  11vl I x - u ~ l  < 2 v -  1 
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since ]x-u~12:lxl2-u2~= 1 in the set under consideration. Thus, again using 
IVul2= 1 --v  -2 we deduce from (13) that  

(14) 2 (41/3 z (1 2 2 - v -  ) - ~  v - ~ ) < 2 n .  

Let now 2 =  64n//z. Then at the maximum point of vq on M,o we have 

v < 4 + 1 6 / / .  
Hence 

maxvq < (4+ 16/3) supq 
M to ~Tf tO 

< ( 4 +  16/3) eZ=(4 + 16fl) e 64"t~, 

where we used the fact that  q~< 1. This proves that for all t~[0,  T] we have 
inside M, the estimate 

(15) wl<=supvrl+(4+16/3) e 64"~2. 
/~o 

As described in Sect. I this estimate implies an equivalent bound for the height 
function w. At the point y = 0  in the hyperplane or thogonal  to o7 we obtain 
in equivalence to (15) for t e l0 ,  T] and a rb i t r a ry /3>0  

(16) [ - e 6 4 n / ~ 2 ( ( 2 b ' )  - '  w(O,t)+ 1 ) +  _ 1] V1 + IDw(0, t)l 2 

< e64"a2(sup ]//1 + IDw012+4+ 16//). 
Bt(O) 

Now choose f l= sup - w ( 0 ,  t). We then infer from (16) 
t~[O, T] 

V1 + IDw(0, t)l z < C, (n) sup l / i - +  ID Wol 2 exp [C2 (n) sup ( - w(0, 0)23. 
B1 (0) [0, T] 

To achieve the condit ion w < 0  on B~(0) we replace w by w--  sup w(y,t) 
Bt (0) • [0, T] 

and the estimate on BR(Yo) is then obtained by scaling and translating. 

3 Local curvature and higher order estimates 

In this section we prove that  as long as M, can be written as a graph with 
bounded gradient, the curvature and all its derivatives remain bounded as well. 

Let r = r(x, t) be a smooth nonnegative function such that 

(17) ( d - A ) r  <C(n) and jVr[ 2 < C ( n ) r  

holds on any surface M t moving by its mean curvature. We begin with a curva- 
ture estimate. 



554 K. Ecker and G. Huisken 

3.1 Theorem. Let R > 0  be such that {xeMt/r(x,t)<-_R 2} is compact and can 
be written as a graph over some hyperplane for t e l0 ,  T]. Then for any rE[0, T] 
and 0 <= 0 < 1 we have the estimate 

sup IAI2<=c(n)(1--O)-Z(t-l+R -z) sup v 4. 
{(xe Mt/r(x ,  t) <_ OR e) {x e Ms /r (x ,  s) ~ R 2, s e [ O ,  t]} 

3.2 Corollary. (i) Let R > 0  and 0__<0<1 be as above. Then for x0eR "+1 and 
t~[0, T] we have the estimate 

sup [A[2<=c(n)(1--O) -2 t -1 sup sup v 4 
K ( x o , t ,  OR 2 ) O < s ~ t  K ( x O , S , R  2) 

where K(xo, t, 0R2)= {x~Mt/ lX-Xo[ 2 + 2nt < OR2}. 
(ii) Let R > 0  and 0 < 0 <  1 be as above. Then we have for te[0,  T] the estimate 

sup [Al2( t )<=c(n)(1-02)-2(~+ 1)  sup v 4 
BOR(YO) BR(yo) x [0 ,  t] 

where BR(yo) denotes a ball in the hyperplane orthogonal to co. 

Proof of  Corollary 3.2. We may assume w.l.o.g, that Xo=0, yo=0- To prove 
(i) we note that r=fx l2+2n t  satisfies condition 07)  in view of Lemma 1.1 (i) 
and the inequality IVIxlEI2~41xl 2. The estimate then follows in view of the 

R 2 
fact t < ~  n when r(x, t )<R 2. To prove the second estimate observe that r(x, t) 

= Ixl 2 - u 2 satisfies condit ion (17) in view of Lemma 1.1 (i) and (ii), the inequality 
IVu[ =< 1 and the fact that IV(Ixl 2 -  u2)l 2 =< 4(Ix[ 2 -  u2). 

3.3 Remark. (i) By combining Theorem 2.1 with Corollary 3.2 (i) and letting 
R-*  ~ we obtain the global curvature estimate derived in [4]. 

(ii) By combining Theorem 2.3 with Corollary 3.2 we can estimate the curvature 
in terms of a height bound and the initial gradient. 

(iii) Corollary 3.2(ii) includes the estimate in [2] for H - 0  as a special case, 
see also Remark 3.6 (ii). 

Proof of  Theorem 3.1. From Lemma 1.1 (v) and Schwarz' inequality we infer 
that 

(18) 

Utilizing an idea of Caffarelli, Nirenberg and Spruck in [2] we combine (18) 
with the evolution equation for the gradient in Lemma 1.1 (iii) to deduce that 

(~-A)lal2 ~(v 2) 
=~2((p--tp'v 2) [A[4-2[VIA[] 2 (p-(6tp'-k4q~"v 2) [AI2[Vv[2-2VIA[2.Vqg, 
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where q~=q)(v 2) is a smooth nonnegative function of v 2 to be determined later 
and ' denotes derivatives with respect to v 2. The last term can be estimated 
by 

--2VIAIg-Vq) = -q~-~Vq).V(lAlZq))+q)-tlV~olZlAl2-41AI v~0'VlAl.Vv 

< --rp-~V~o.V(IZlZ~p)+4~o t(~o')Zv21Vu121AI24-21Vlhl12 q~ 
+2IAt2 vz qg- ~ (q/)2 tv vl2 

= --q)-tVqo.V(IA[Z(p)+2IVIA{[2 q~ + 6~p- 1 (qr 2 v2tAl z IVvt z. 

Hence we obtain 

(19) ( J t - A ) [ A l e  ~o < 2(~o-~o' v 2) ,A[ 4 

_q~-  1V~o. V(lZ 12 ~o)- (6 qr (1 - q ~ - '  q/vZ)+4~p"/3 z) [AI z IVvl 2. 

/3 2 

As in [2] we let q~(v 2) = 1 - k  v ~ '  k > 0 to be chosen. Observe that then 

(p-- q0'/32 = --kqO 2, 

2k 
6 (,0' (1 -- q) - 1 (P' vZ) + 4 (P ''/32 ( l_kv2)2  q), 

and 

~p- ~ V qo= 2q~/3- 3V v. 

Substituting these identities into (19) we derive for g =  IAI 2 q~(v 2) the inequality 

( d )  2klVv[2g_2~p/3_3Vv.  Vg" (20) d t - k  g = < - 2 k g  2 ( l_kv2)2  

Now let q = q ( r ) = ( R  2 ~ r )  2 where r = r ( x ,  t) satisfies (17). Since by (4) and (17) 

<2c(n) RZ-21Vr] z 
we compute from (20) 

( d  ) 2k [Vvl2grl_2(,ov 3Vv.Vg.t l (21) - A  g t /<  - 2 k g 2 t /  (l_kv2)2 

+c(n) R2g--2glVrl2--2Vg.Vq 

where c(n) denotes constants depending on n only. The last term can be written 
a s  

(22) -- 2 V g . V t / =  - 2 r / -  ~ Vq. V(gt/) + 8glVr[ 2 



556 

in view of (4). We also estimate 

(23) -2q) v-3Vv.Vgq 
= -2q)v-3Vv. V(grl)+2q)v-3gq'Vv. Vr 

2k =< -2~~ (1 --kv2) 2 IVvlZgq+2fPzv-6 (1-kv2)2k glVrl2 

2k =--2q~v-3Vv.V(gq)-~ ( l_kv2)2  IVvlagq + glVrl 2 

where we again used (4) and the fact that  

( p 2 v - 6 ( 1 - - k v 2 ) 2 = v -  2 

Substituting (22) and (23) into (21) and using (17) we derive 

( ~ t -  A ) g r / = < - 2 k g 2 q - 2 ( t p v - 3 V v + r l - l V q ) ' V ( g q ) + c ( n ) ( ( l + k ~ 2 ) r + R 2 ) g  

and hence 

(d--  A) t gq<= -- 2k g2qt-- 2(q~v- 3V v + q -1V q). v (grlt ) 

K. Ecker and G. Huisken 

+c(n)((l + ~--~)r + RE) tg+grl. 

At a point  where m(T) = sup sup tg ~/is at tained for to > 0 we compute  
0 <= t <_ T {x~Mt / r (x ,  t) < R 2} 

2kg2tlto<c(n)(l+k~2)R2gto+grl. 

to 
Multiplying by ~ /~ -  yields since t o < T 

m(T)Z<=~k ((l + ~--~f)R2T+q)m(T). 

Since q < R 4 we arrive at 

in the set {xeMr/r(x, T)<R2}.  Let now 

k= �89  inf V -2. 
{ xeM t / r ( x ,  t) < R 2, re[0, TI} 
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Since q~(v2)>__l and q > ( 1 - 0 ) 2 R  4 in {x~Mr/r(x,T)<=OR 2} we finally obtain 
from (24) replacing T by any te [0, T] 

sup ]A]2<c(n)(1--O)-Zi-3~+y,  sup sup / )4  

{x~Mtlr(x ,  t) <: R 2} \ ~  t /  0 <= s < F {x~Ms/r(x,  s) <= R 2 } 

as desired. 
We will now extend these estimates to all derivatives of A. 

3.4 Theorem. Let r=r(x, t )=>0 be as in (17) and let R > 0  be such that 
{x6Mt/r(x,  t)<-_ R E} is compact and can be written as a graph over some hyperplane 
for te l0 ,  T]. Then for any m >=O, 0<_0<1 and t~[0, T] we have the estimate 

/ 1 1 \m+l 
sup ] W " A [ 2 < c , , [ ~ + t )  

{x~Mtlr(x ,  t) <- R z} 

where Cm=cm(O, n, m, sup v) 
{xEMs/r(x,s)<=R2,se[O,t]} 

As in Corollary 2.2 setting r = Ix - x0 ]2 + 2 n t or r = I xl 2 - u2 implies 

3.5 Corollary. (i) Let R > 0 and 0 < 0 < 1, m > 0 be as above. Then we have for 
Xo ~ R n + 1, t ~ [0, T] the estimate 

sup t"+I[V'~AIZ~cm 
K(Xo,t ,  OR 2) 

where K(xo, t, 0R2)=  {x E mt/lX-- Xo] 2 + 2nt  < R 2} and c,. is as in Theorem 3.4. 

(ii) Let R > 0 ,  0 < 0 < 1  and m>O be as above. Then we have for t~[0, T] the 
estimate 

/ 1 1\,,+ 1 
sup [V"~A[2( t )<c , . l~+~)  

BoR(Yo) 

where BR(Yo) denotes a ball in the hyperptane orthogonal to to and c,, is as above. 

3.6 Remark. (i) By "combining Theorem 2.1 and Corollary 3.5(i) and letting 
R ~ ~ we obtain the global estimates derived in [-4]. 
(ii) From the proof of Theorem 3.4 we infer that the constant c,, is of the form 
c,,=c(n,O,m)c~ (m) where ~(m) is a positive integer (bounded by 2") and Co is 
s.t. (,1) 

sup IAI2<c~ R - ~ + s  
{ x e M J r ( x ,  s) ~ R z} 

for any sE[0, t]. The graph property of M, is only used to bound ]AI 2 as in 
Theorem 3.1. One determines an optimal exponent a(m) by estimating the last 
term in the evolution equation for ]VmA[ 2 (see Lemma 1.1 (vi)) similarly as in 
Proposition 4.4 of [4]. 
(iii) Since minimal hypersurfaces (H=0 )  are stationary solutions of (1) the esti- 
mates 3.5 (i), (ii) for m >_-0 with t proport ional  to R 2 provide an interior regularity 
theory for solutions of the minimal surface equation obtained entirely from 
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geometric computations.  To minimize the exponent  of v in the IVmAl-estimate 
one uses the curvature bound in [5] and then finds the opt imal  exponent c~(m) 
as in (ii) above. 

Proof of Theorem 3.4. We proceed by induction on m in a similar way to that 
in [4]. The case m = 0  was proved in Theorem 3.1. Fo r  fixed R > 0  let O(t) 

R2t 
- (R E + t)" Suppose 

(25) sup ok [V k - 1 A I z _<- Ck- 1 
{xeMdr(x, t) <_ R e, tel0, T]} 

has been established for 1 <_k<_m. We then want  to estimate ~,m+liVmA[2 in 
{x e Mt/r(x , t)<= OR2}. F r o m  Lemma 1.1 (vi) we obta in  for m_-> 1 

d A = 1 ( ~ - - ) ~ k " + I I V m A I 2 < - - 2 ~ p " + t I V  "+ A[ z 

+c(m,n)O"+l y ", [V'A[IVJAllVkAllVmAI +(fftt ~k"+t)IV"A, e. 
i + j + k = m  

In {xeM]r(x, t)<OR 2} we have by (25) 

~,,,+1 ~, [VgAllVSAI IWAllV,,AI<c ~. tpklVkA[2 
i + j + k - - m  k < m  

similarly as in 1-4], where c=c(n, m, c o . . . . .  %- 1). Since 

d .m+l R4 
~ q l  =(m+l)~"(R2+t)2 <(m+l )~"  

we infer in {x ~ Mt/r(x, t) ~ R 2} the inequality 

k < m  

where c = c(n, m, Co, ..., c,,_ 1). Following the work  of Shi in [17] we now define 

f =  O m+ 11VmA[2 (A + 0 m l v  m- ~ A[2), 

where A > 0 will be chosen appropriately.  We then compute, us ing  again (25) 

( d - A ) f < - 2 ~ k m + ~ I V " + 1 A , 2 ( A + ~ b ' , v m - 1 A ]  2) 

+C ~ OkIVkAIZ(A+OmIV"-IAI 2) 
k<-m 

-2r 4+ 2 r VmAI2 
k<-m - 1 

_ 2~2m+ 1 V l W A I 2  .VlV m- ~ AI 2. 
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The last term we estimate by 

202'~+ 1VIV'~AI2.V]V ., 1AlZ<2tp'~+llV'~AIZ(A+tp~jV"-lAI2 ) 

+ 8~p2m+x ~ ' IV '~ -  IAI 2 
A+@~IV,,,-~AI2 W~A] 4. 

Noting that 

~'mlVm-1AI2 cm-t 
< - -  

A +~/~IV'~- t A[2 = A +c~,_ I 

we obtain in { x e M J r ( x ,  t)<R z} that 

A + ~ c ~  ~ / ( ~  IVmAI2)2 

+c~-l( ,~,  ~kk+'lV*A[Z(A+OmlV'~ ' A, 2) 

+ ~ O~+llVkAI2C"+'IV'A[2). 
k < m - 1  

Setting A = 7 c m _ l + l  and collecting terms we obtain in view of (25) in 
{x~ M J r  (x, t)<=R 2 } 

(d-A)f<____-O-l(A+O"lvm 'AlZ)-2f2+ctp-l(l+f), 

where c depends on n, m, co . . . .  , c,._ 1. Applying now (25) to the f2 - te rm and 
using Young's inequality on the second term we arrive at 

( d -  A ) f <  -O-~(6f2-c) ,  

where (5 and c depend on n, m, c o . . . .  , c,, 1- Similarly as in the proof  of Theo- 
rem 3.1 we compute for r /=(R 2 - r )  2 using (17) that 

== - l v . . v ( f . t  + 

Since 0 ( 0 ) = 0  we have frl=-O at t = 0 ,  At the point where re(T) 
= sup sup f r / i s  attained for t o > 0 we compute 

0 <= t <= T { x ~ M t / r ( x ,  t) <-/12} 

2 1 f rl<=~(ctl+c(n)RZf~). 

Multiplying by q and using q__<R 4 and O < Rz we obtain since 
= 6 (n, too, co, ..., cm- 1) the estimate 

f2 t12 <= c(R s + R4f q), 

where c = c (n, m, Co, . . . ,  c,~_ 1)- Hence, by Young's  inequality we derive 

re(T) 2 -< c. R s 
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and therefore 
f r l ~ c R  4 

in {X~MT/r(x , T ) < R  2} with c=c(n,  m, Co . . . . .  c,,_ l). Thus we finally arrive at 

sup ~km+llV"~AI2<c(l-O)-2 
{xeMT/r ( x ,  T) <= R 2} 

where c=c(n,m,  co . . . . .  c , , - t )  and where we used the fact that r/ _> ( 1 -  0)2 R 4 
and A > 1. Replacing T b y  any t e l0 ,  T] yields the result. 

tf we assume additional smoothness of M, we can improve the time depen- 
dence of the higher derivative estimates. In particular, it is not  necessary to 
assume that M, can be locally written as a graph. 

3.7 Theorem. Let r = r ( x , t ) > 0  be as in (17) and let R > 0  be such that 
{x~Mt/r(x ,  t)=<R 2} is compact for t~[0, T]. Then for 0 < 0 <  1, tE[0, T] and 
any integers ~ > O, m > 0 we have the estimate 

1 1~ e 
sup IVm+eAI2<c 1 + ~ 2 ~ + t )  

{x ~ Mt/r(x ,  t) < R 2} 

where c = c  m, f, n, 0, sup ~ IViAI 2 . 
{xeMs/r (x , s )<Ra,sE[O, t ] )  i = 0  / 

In particular, we obtain the estimate 

sup Ivm+eAI2<ct -e. 
K(xo , t ,  OR 2) 

3.8 Remark. For m = 0 and ~ = 1 we have 

c=c(n,  0). sup IZl 2. 
{xeMs/r(x ,  s) <_ R 2, se [0 ,  t]} 

For  general m and f the constant  can be optimized as outlined in Remark 
3.6 (ii). 

Proof of  Theorem 3.7. Observe that similar as in the proof of Theorem 3.4 the 

funct ionf=OeIV'~+eA12(A+t)e- l IV"+e-~AT2)with ~ =  i + ~ +  -1 satisfies 

an inequality of the form 

d -  A) f <  ~k- ~(6 f z - C). 

4 Flow of complete surfaces 

In  this section we want to establish a number  of results for complete, noncompact  
surfaces moving by mean curvature. In particular, we will use the interior esti- 
mates from the previous section to obtain a short time existence result for 
arbitrary immersed, complete initial surfaces assuming only a uniform local 
Lipschitz condition. A similar approach to a short time existence result is also 
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known to R. Hamil ton [9]. Furthermore,  we will derive a general maximum 
principle for heat equations on Riemannian manifolds with a time dependent 
metric. 

We begin with a result for the Dirichlet problem. Let M" be a smooth 
manifold with boundary 0 M" a compact  ( n -  1) dimensional smooth submanifold 
such that ~ n = M ,  u O M ,  is compact. Then the following shorttime existence 
result holds. 

4.1 Proposition. Suppose that Fo: .~n ~ R , + I  is a smooth isometric immersion. 
Then there is T o > 0 such that the initial value problem 

d 
(26) ~ t F ( p t ) = H ( p , t ) ,  peM", 0 < t < T  o 

F(p, 0) =Fo(P), peM" 
F(p, t)=Fo(p) , pe~3M", O < t < T  o 

has a unique smooth solution on 0 < t <  T o. The constant To>0 only depends 
on a bound for the second fundamental form of Mo and t~ M o . 

Proof. Since F o is smooth there is a tubular neighbourhood of M 0 with Gaussian 
coordinates 2(p)=(Xl,  ..., x,), y such that at a point q in this neighbourhood 
y(q) is the length of the geodesic arc perpendicular to M o through q and ~(q) 
denotes the coordinate vector at the base point of the geodesic on Mo. Let 
~(~) be the unit normal to Mo at 2. In these coordinates consider the scalar 
initial value problem 

d 
(27) ~ w ( 2 ,  t)=<v(2, t) ,co(2))-l  H(2, t), 2 e M o ,  0 < t <  T0 

w(~c, O) = O, 2 e M  o 
w(2, t )=0,  ~ e a M 0 ,  0 < t < T  0 

where v and H are the unit normal and the mean curvature respectively of 
the hypersurface given by w. This is a quasilinear second order equation which 
is uniformly parabolic as long as <v, e J ) -  ~ remains uniformly bounded. At time 
t = 0  we have <v,~o>=l  and standard arguments yield an a priori estimate 
for <v, o~) -1 on a time interval [0, To) which only depends on a bound for 
the curvature of M 0 and 8M o. Note  that an interior estimate for the gradient 
function <v, o~)- 1 also follows from Theorem 2.3. Then the results of Ladyzhens- 
kaya et al. [15] apply and yield a smooth solution of  (27) on [0, To). Using 
an appropriate tangential diffeomorphism exactly as in Sect. 1 we then construct 
a smooth solution of the original problem (26). 

Now let Fo: M " ~  R "+ ~ be the smooth isometric immersion of a complete 
hypersurface with bounded curvature in R "+1. Fix a point poeM" and as in 
[17] choose a family of domains {Dklk= 1, 2, 3 . . . .  } on M" such that for each 
k the boundary 9D k is a compact  Coo, (n-1)-dimensional  submanifold of M" 
and 

(i) /)k = Dk U 8Dk is a compact subset of M", 

(ii) the geodesic ball B(p, k) is contained in Dk. 
For  each k =  1, 2, 3, ... let F~ be the solution of the Dirichlet problem (26) with 
initial data Fo on /)k- Proposition 4.1 guarantees that such a solution exists 
for each k on a time interval [0, To) with 0 < T O independent of k. Since M o 
has bounded curvature our interior estimates in Theorem 3.4 apply and we 



562 K. Ecker and G. Huisken 

may take the limit k ~ oo to obtain a smooth solution of the mean curvature 
flow (1) with initial data Mo. 

Furthermore, in view of the interior gradient estimate in Theorem 2.3 a 
simple approximation argument shows that it is sufficient for the short time 
existence result to assume the following uniform local Lipschitz condit ion on 
Mo. 

For qoM" let U~,q be the q-component of Fol(B~+l(Fo(q))). We say that 
Mo satisfies a uniform local Lipschitz condition if there are fixed numbers ro >0,  
C o < ~  such that for each qEM", F0(Uro.q ) can be written as the graph of 

in R through Fo(q) with Lipschitz a Lipschitz function over a hyperplane ,+1 
constant less than C o . 

Using Theorem 2.3 and the special time dependence of the curvature esti- 
mates in Corollary 3.5 (ii) we obtain after approximation: 

4.2 Theorem. Let Fo: M" ~ R ~+ l satisfy a uniform local Lipschitz condition. Then 
the mean curvature f low problem 

d 
d t F ( p , t ) = H ( p , t ) ,  p~M", t > 0  

F (p, 0) = F o (p) 

has a solution Ft on some time interval [-0, To). Ft is smooth for t > 0  and at 
t = 0 it is HOlder continuous in time with HOlder exponent c~ = �89 

We will now adapt a method of Liao and Tam 1-14] to establishing a maxi- 
mum principle for heat equations which not  only applies to our noncompact  
hypersurfaces, but to general Riemannian manifolds with a time dependent met- 
ric. Notice that a maximum principle for the mean curvature flow was obtained 
in [4] assuming more restrictive growth properties of the solution. Let M" be 
a complete, non-compact  Riemannian  manifold with time dependent metric 
g(t) = {gii(t)} for 0 < t < T. We denote by Bit(p) the geodesic ball of radius r centred 
at p at time t and will often use a superscript or subscript t to denote other 
time dependent quantities. 

4.3 Theorem. Suppose that the manifold M" with Riemannian metrics g(t) satisfies 
a uniform volume growth restriction, namely 

volt(Btr(p))<exp(k(1 +rZ)) 

holds for some point p~ M n and a uniform constant k > 0 for all t~ [0, T]. 
Let be a function on M" x [0, T] which is smooth on M" • (0, T] and continuous 

on M" • I-0, T]. Assume that f and g(t) satisfy 

(i) d f < A t f  + a . V f  + b f  where the function b satisfies sup Ibl<~o for some 
s163 L 

M n • [0 ,  T ]  

~o < ~ and the vector field a satisfies sup l al < c~l for some ~1 < ~ ,  
M n • [0 ,  T]  

(ii) f (p ,  O) <0  for all p~M", 
T 

(iii) ~ ( ~ e x p ( -  ~ r'(p, y)Z) iVfl  z (y) d l~,) dt  < ~ ,  f o r  some  ~ > o 
0 M 

(iv) sup ~ gij < ~3, for some ~3 < ~ .  
M n x [ O , T ]  ~ 

Then we have f <O on M" • 1-0, T]. 
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Proof First notice that in view of (iv) and ([8, Lemma 14]) all metrics g(t) 
are uniformly equivalent, i.e. there is a constant ct 4 depending only on a3 and 
Tsuch  that for any vector v(q), qEM" we have for t e l0 ,  T] 

(28) 0;41 gij(q, O) vi(q) vJ(q)<= gij(q, t) vi(q) vJ(q)< 0; 4 gi~(q, O) vi(q) vJ(q). 

T. 1 1 ] b e a  fixed con- We then proceed as in [16] and let 0 < q < m i n  ' ~ K '  320;2 
/ 

stant. Define for 0 > 0 to be chosen 

o rs ~ (p, y) 
h(y,s)-  4 ( 2 q - s ) '  O<s<~t  

where rs(p,y) is the distance between p and y at time s. Then h is Lipschitz 

ds 

continuous and 
Or2(p, y) Or s d 

h -  4(2q_s)2 2 (2r l - s )  ds r~ 

Ors d 
= - 0  l lVhl 2 2 ( 2 q - s )  ds rs" 

Now observe that for any curve 7 with length l(s) we have 

such that in particular 

We therefore conclude that 

d i 
dss~'S ~ ~0;3 rs �9 

d 
dss h ~ - O- 11Vh]2 + 0 -10;3 IVhl 2 '  (2q - s ) .  

1 
Using then q <  2~3 we obtain for 0=�88 

d 
(29) ~ssh_- < - 2 l V h ]  2. 

Proceeding similarly as in [-16] we obtain for fK = max {min(f, K), 0} and some 
smooth time independent compactly supported function q~ on M" that for 0 < e 
< q  

=> - -a l  5 e-OS( ~ q~2 ehfKIVf[ d#s)ds-ao S e-t~*( ~ q~2ehf~fd#*)ds 
e M e M 
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where fl>O will be chosen later and where we used that fKf>O. Performing 
an integration by parts yields 

0 < - ~ e -~(  j r ehf~ (Vf~,  V f }  dp,) ds 
t: M 

-- ~ e- ~( 5 ~p2 ehfx (V h, V f }  d#~) d s 
M 

--2 f e -~ (  5 (PehfK(Vh, Vf}d#~) ds 
* M 

- r e  - ~  f ~o efK~-jdla~ as+=ole- *(I ~o2e%fd~Ods 
e M I g M 

i1 

+~, ~ e-a*( ~ q~eehf~lV f l  d14) ds 
M 

= I  + I I + I I I + I V + V + V I .  

We compute 
J/ 

I = -- ~ e-a*( ~ q~2eh IVfd 2 dm)ds. 
M 

Using Schwarz' inequality we obtain 

II <�88 5 e-~*( 5 q~ d ~,) ds + I e-~*( I q)E ehlV hle fK 2 d,u,) ds, 
e M ~ M 

rt n 

III <�89 S e -a ' (  S ~ ~ ehlV f l  z dlA)ds+ 2 S e-P~( ~ ehlVhl2 fd  dIQ ds. 
e M e M 

To estimate the terms IV + V observe that as in [16] 

- e  f r  ~ss <= - e  f~ ~Ts +~s  {e f ~ ( f x -  f)}, 

whenever ~ .~  exists. Since fK is uniformly Lipschitz continuous on compact 

subsets of M" x [0, T] we derive 

I V + V < - ! e  -p* (p2ehf K d#~ ds+Se-e*~ ,;o ~ s { e f ~ ( f r - f ) } d l t ,  ds 

tl 

+~o I e-e~( I (#2e%fd#~) ds. 
M 
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Now observe that 

in view of condit ion (iv). 
Therefore, 

d (d u~) ___< n c~ 3 -d/~ 

~o e ff-s (f~)dv,)ds+ I [ e-a* 5 q~2ehfK(fK--f) d#s] ds iV<=_.~!e-aS 2 h ~ 2 

e M 

+ fl f e-P'( I ~02enfKtfK--f) d#O d s -  na 3 ~ e-a*( ~ q~2ehfx(fK--f) d#,) ds 
e M e M 

+ao ~ e-a~( ~ ~gEehfKf dl~,)ds. 
e M 

Choosing now fl > 2 n a3 + 4 c% and observing that fK (fK--f) < 0 we derive 

I V = - l e - # S  f q )2ehfk2 d,u~l*=n+�89 e-as ~ (~ ehfk2 d/~l,=~ 
M M 

I/ 2 h 2 c3h  1 " -a~ 
+ � 8 9  rp e ' f ~ - d p , ) d s - z f l l e  (~ (p2ehf~dp,)ds 

M U S  e M 

+e a, 5 q~%"fK(fK--f) dl41,:,--e e, ~ q)eehfr(fr_f)dN~l~=e. 
M M 

The integral VI can be estimated by 

VI=<�88 j e - # ' (  j q~2ehlVfJZ d#,)ds+ c~ j e a,( J r dlt, ) ds. 
e M e M 

Combining the estimates for I -VI,  using (29) and choosing f l > m a x ( 2 n a  3 
+ 4ao, ~ )  we conclude for e ~ 0 that  

O <  - S e-a*( ~ ~~ ehlV fxl 2 dl4)as + ~ e-aS( ~ q~2ehlV fl2 dlt~) ds 
0 M 0 M 

+ 2  y e - a t (  ~ ehlVglZfr 2 dl~,)ds-�89 -as ~ q~ZeafKz d#~l~=,. 
0 M M 

Here we also used thatfx(fK--f)<O and fr==-O at s = 0 .  For  R > 0  let 0 < ~ o < 1  
satisfy ~o---1 on B~ ~o =-0 outside B~ I(P) and IV ~ol ~  2. We then conclude 
in view of (28) 

�89 ~ ehf2dl-ts[s=,'e-an<=Se-I~s( ~ eh(IVflZ-lVfKI2)d#,)ds 
~ o  (p) o B ~  + ~ (p) 

+ 2 c q  j" e-a*( j" enf2dl~,)ds. 
o o 

0 BR + 1 (P) \BR(P)  
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(, 1) 
we infer h ( y , s ) < - 2 k r ~ ( p , y )  and h(y,s)< Since 0 < r / < m i n  6Z~K, 32~2 

- -  c~ 2 r~ (p, y) for all 0 < s < r/. Since f2  < K 2 we obtain from the volume growth 
assumptions on M" that the second term on the RHS tends to zero as R--+ oo. 
Finally, since 0 <  tVfl  2 -  IVfKI2 < IVfl 2 we derive for R ~ Go 

�89 ~ ehf 2 d/.**l,=,, e - e " <  j" e-P~( j" eh(lVfl 2 -  IVJKI z) dl~,) ds 
M 0 M 

in view of assumption (iii). 
Now let K --+ oo. Then f~  --.(max(f, 0)) 2 and for all s, IVfKI 2 -+ IV f [  z. Using 

again assumption (iii) we finally conclude 

�89 ~ eh(max(fO)) 2 d/~sls=,=<0, 
M 

where 0 < q < min T, , 3 2 - 2  . By means of an inductive argument we arrive 

at f < O  everywhere in M" x [0, T]. 

4.4 Corollary. Let Fo = M" ---, R "+ i be a smooth isometric immersion of  a complete 
hypersurfaee with bounded C 2'~-norm. Suppose M o = F o (M") has nonnegative mean 
curvature. Then the smooth solution of (1), Mt=Ft(M"),  has nonnegative mean 
curvature for t~ [0, T] where T depends on n and the initial curvature bound. 

Proof Since M o has bounded curvature, sup [AI < Co, it satisfies a uniform local 
Mo 

Lipschitz condit ion as in Sect. 4. Using the gradient estimates in Theorem 2.1 
we infer that v stays bounded on some small time interval [0, T] depending 
on c 0. By a simple modification of the arguments in the proof  of Theorem 3.1 
we can bound suprA] on [0, T] in terms of c o again. Since R i c M > - 2 1 A I  2 

Mt 

the uniform volume growth condit ion of Theorem 4.3 holds for t~[0,  T] as 
we have the uniform bound on IAI on this t ime interval. In view of the C 2'" 
initial data and parabolic regularity theory we obtain the estimate 

supt  I -~ IVHI2~c  
Mt 

where c depends on n, T, c o and the C2'~-norm of M o. 
This and the volume growth condit ion then imply the validity of  condit ion 

(iii) in Theorem 4.3. Moreover  (iv) holds in view of the equat ion 

d 
~ g i j = - 2 H h i j  

derived in [8]. 
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In view of Lemma 1.1 (iv) and the curvature bound the mean curvature /4 
satisfies the conditions of Theorem 4.3 with b =  IAI 2 for tel-0, T]. This implies 
the result. 

4.5 Remark. In a forthcoming paper Theorem 4.3 will be applied to spacelike 
slices moving by mean curvature in asymptotically flat spacetimes. 

5 Flow for entire graphs of arbitrary growth 

In [4] the authors established longtime existence for the initial value problem 
corresponding to (1) in the class of linearly growing graphs. In this section 
we use the interior estimates of Sect. 3 in conjunction with a spherical barrier 
argument to show that (1) admits a smooth solution for all t > 0  in the class 
of entire graphs. In particular, no smoothness or growth assumptions have to 
imposed on the initial graph. 

5.1 Theorem. Let M o-- Fo(R" ) be a locally Lipschitz continuous entire graph over 
R". Then the initial value problem (1) has a smooth solution Mt=Ft(R')  for all 
t>0 .  Moreover, each Mr is an entire graph over R". 

5.2 Remark. (i) In view of the equivalence of solutions of (1) and (2) discussed 
in Sect. 1. Theorem 5.1 also establishes the existence of a smooth solution of 
the initial value problem 

d w = ] / 1  +IDwl 2 d iv(  D w  / 
\]/1 +lDwl2/ 

w(',  0)) = w o in R" 

in R" x (0, oo) 

assuming that wo: R " ~ R  is merely locally Lipschitz continuous. Moreover, 
the special form of the curvature estimate in Corollary 3.2(ii) in conjunction 
with the gradient estimate in Theorem 2.3 yields that at t = 0  the solution w 
is H61der continuous in time with H61der exponent ~ = �89 

(ii) Note that in contrast to the above result a solution of the ordinary heat 
equation becomes unbounded in finite time, unless certain growth conditions 
for [y[ ~ ~ are imposed on the initial data. 

Proof of  Theorem 5.I. Assume first M o = F o ( R " ) = g r a p h  Wo for woeC2"(R"), 
ct>0. 

Using Theorem 2.1 of [12] as well as the tangential diffeomorphisms defined 
in Sect. 1 we infer that for any R > 0 the boundary value problem 

d 
d t  F(y, t )=  H(y, t), (y, t)~ BR(0) • (0, oo) 

F(y, 0) = F(y), y~BR(O) 

F(y, t) = F(y), (y, t)EOBR(O ) X [0, o0) 

admits a smooth solution MR=Fff(BR(0)) which for each t > 0  can be written 
as a graph over BR (0) ~ R". 
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Let now T > 0  be fixed and ~2cR" be compact.  Choose R o > 0  s.t. f 2c  BRo(0) 

and define R1 = ]/4 Ro 2 + 2 n T. 
We also define a + =(0, sup wo+R 1 + 1)eR "+~. Then we have for R>R1 

BR l (0) 

R n + l  + M0 c~ BR, ( a )  = 0 

where B~,-- 1 denotes a ball in R "+ 1. Fur thermore 

R n + l  + t3Mt ~BR, ( a ) = 0  

for t>0 .  Using Theorem 3.7 of [1], or Lemma 3.2 of [11], we infer 

R n + l  + 
Mr ~B2Ro(a ) = 0  

for t e [0, T]. 
Using a similar argument for "+~ - BR, ( a ) ,  where a - = ( O ,  inf w o - - R l - - 1 )  

BR 1 (0) 

e R  "+1 we conclude that the height function wR(., t) of MR satisfies 

sup IwRl_-<Co 
B 2 RO x [0, T] 

where c o = co(n, Ro, T, sup Wo) is independent of R. 
BR 1 (0) 

Applying the gradient estimate of Theorem 2.3 we obtain 

sup [DwRI<cl 
B3/2RO(0 ) x [0, T] 

w h e r e c l = c x ( n ,  Ro,co,  sup IDwoD. 
B2Ro{O) 

From Corollary 3.5 (ii) we then conclude for any integer m > 0 

sup [D"WRI<Cm 
BRo(O) • [0, T] 

where c,,=c,,(m, n, R o, Co, cJ .  
We can therefore select a sequence of solutions (WRk) for Rk--* o0 (Rk>R 1 

for any k > 2 )  s.t. WR~--*W in C ~ uniformly on f2• [0, T]. Since f2 and T > 0  
were arbitrary this establishes the existence of a family of entire graphs Mt 
= g r a p h  w( ' ,  t) solving (1) where weC~(R"•  (0, oo)). As the second and higher 
order derivative estimates for w on each compact  subset of R" depend only 
on the initial height and gradient on a slightly larger subset, an approximation 
argument yields a smooth solution of (1) also for locally Lipschitz initial data. 
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