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New integrable 1 + 1 dimensional classical field theories are found that include infinite dimensional analogues of N-particle 

Toda- and Calogero-Moser systems, as well as non-relativistic theories with an interaction that is polynomial in the first (spatial) 

derivative of the field. The existence, as well as the involutivity, of an infinite set of independent conserved quantities follows 

most easily from a 2+ 1 dimensional Lax-pair which uses as its underlying infinite dimensional Lie algebra a Poisson algebra of 

functions in two variables. 

For the simplest finite dimensional integrable sys- 
tems, e.g. the Calogero-Moser system with pair po- 
tentials proportional to the inverse square distance 
[ 11, and the Toda lattice (see e.g. ref. [ 21 and refer- 
ences therein), with an exponential interaction be- 
tween nearest neighbours, one not only knows how 
to write the equations of motion in Lax-form (which 
implies the existence of sufficiently many indepen- 
dent conserved quantities) but one can also explic- 
itly solve them, by viewing the non-trivial dynamics 
as a projection [ 31 of some higher dimensional “free” 
system. 

It seems natural to look for non-trivial infinite di- 
mensional analogues of this desirable situation - an 
obvious possibility being to simply let the number N 
(of particles) explicitly go to infinity in the N-body 
hamiltonian (which, in the language of Lie algebra 
underlying the Lax equation, corresponds to taking 
the usual [4] N+cc limit of the classical matrix al- 
gebras), while more interesting N-tcx, limits could be 
related to the Poisson algebra of smooth functions on 
the sphere [ 5 1, or the torus [ 6-8 1. 

In this letter, we consider a continuous class of field 
theories whose equation of motion can be written in 
the form d/dt L = [L, M], where L and M are func- 
tions of time, and two other variables with respect to 
which [L, M] is the Poisson bracket a,L dZM 

- &L a,M. In analogy with the above mentioned li- 
nite dimensional systems, where the matrix elements 
of L and M depend (in a very specific way, of course) 
on a finite number of canonically conjugate coordi- 

nates 41, . . . . qN, PI, . . . . pN, we assume (having refs. [ 4- 
8 ] in mind) L and M to depend on a 1 ( + 1) dimen- 
sional field, q ( PI, t ) , and its canonical conjugate, p ((oi , 
t ), while depending on pX (and in principle vi as well) 
explicitly. To be specific, let 

L=P(R, t)+e(pz)F(4’(0r, 0) , (1) 

M=m tq; P)I I -f(v,F”(q’) . (2) 

where e and f are phase space independent functions, 
and ’ always means differentiation with respect to the 
relevant argument (not counting t, which we will 
suppress from now on) Using ( 1) and (2) it is not 
difficult to convince oneself that 

3 = d/d& provided 

cj=p, Lj=Kq”F’2(q’) ) 

e=-f’, 

FF”=cuFt2, 

(4) 

(5) 

(6) 
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f ' 2  + ( l l - a f ) f " = x  , (7) 

dm 
- -  F= ltq"F'2 , (8) 
d~o~ 

and or, x, and/t are real constants. 

Hence 
2r~ 2~ 

d¢fll 

Q" '= t ~ ( p + e f )  ~ (9) 
o 0 

is time-independent for any nsN, provided e,f, q, p, 
and m are periodic functions of their arguments (with 
period 2~), or fulfil certain (less restricted) bound- 
ary conditions, that will be specified below; in fact, 
one may use compact or non-compact parameter- 
spaces. 

As the hamiltonian of an effective 1 + 1 dimen- 
sional field theory one can e.g. take H =  ½Q> i.e. (as- 
suming f ~  e = 0 )  

2n 

H=½ ~ [p2+2F2(q ' )] ,  
0 

2~ 

9 2~z e 2 ( c p 2 )  ' (10) 
0 

with corresponding equations of motion 

¢~=~¢q'F '2, ~:=2(o¢+1).  (11) 

Remarkably, one can show that the Q, Poisson- 
commute not only with H, but also among themselves: 

2~r 

0 

= 0 ,  V m , n e ~ q  , (12) 

provided ( 5 ) -  (7) and certain boundary conditions 
hold: While (6) can easily be integrated, yielding 

F ( q ' ) = ( a q ' + b )  ~/~-a) ,  a, beR,  (13) 

for c~= 1, and a exp(bq' ) for a =  1, (7),  respectively 

g'2=Cg2/a-FK, g=f-- l t /o l ,  C ~ ,  (14) 

can in general not be integrated in closed form. 
However, one can show that (at least ) for 0 < ot ~ 1 

(14), with g2/~,= (g2)~/,~, possesses periodic solu- 
tions (the period can always be arranged to be 2~, as 
g(px)  solves (14), with C---',p2c and K---~p2t¢). If, on 

the other hand, g(~o)=g+(~0-n), with g+(-~0) 
=g+ (~0), then g(0)  =g(2n) ,  and fo z" e=0;  choosing 
/t=c~f(0) will make g(0) ( = g ( 2 n ) ) = 0  (and 
g'2(0) = x = g ' 2 ( 2 n ) ) ;  this property (as an alterna- 
tive to strict periodicity) turns out to be also suffi- 
cient for the proof of Poisson-commutativity. 

Before sketching our proof of (12), let us give three 
explicit examples for H (which can be thought of as 
infinite dimensional analogues of Toda [2], Calo- 
gero-Moser 1/x 2 [ 1 ], and in view of its quartic in- 
teraction, the Gamier [9 ] systems): 
~ = 1 :  

F=aexp(bq'), f=-sin~2, /~=0, x = l ,  

L = p + a  cos qh exp(bq' ) ,  

2n 

~d~p [p2+ ½a 2 exp(2bq' ) ], (15) H=½ 
0 

a = 2 :  

F = ( a q ' + b )  -~,  f ( ~ 2 ) = ½ ( ~ 2 - n )  2, ,u=rt2=x, 

L = p -  (~2 - 7r) (aq'+ b) - t, 

2n 

3 (aq'-+b)5) ' (16) 
o 

F= (aq '+b)  2 , 

f(~o2)=v,~ rt cn( 2K 3 
2K \ ~r ( ~ 2 - z t ) ] ,  

= ~ [ r ( ~ ) l  2, u=0, x=~, 

2n 

H=½ fdfp  ~n [p2+ (aq,+b)4] . (17) 
0 

Also note that choosing o~= 1/Nleads to 

2n 

H=½ fde [p2+ (aq,+b)g] . (18) 
0 

Quite as H, Q, can also be written as a purely one- 
dimensional object, i.e. without any reference to the 
~2 variable, or the Lax pair, by noting that (7) and 

375 



Volume 267. number 3 PHYSICS LETTERS B 19 September 1991 

(5) imply (provided gg’“(O)=gg’“(2rr) for all in- 

teger m) 

K,,:= qzexp(n)=O, nodd, 
0 

where 

=K n/2]@) 
n , n even , (19) 

(2/?--1)(2&3)...(l) 

12’= (2k-l+cu)(2k-3+cr)...(~~+l)’ 
(20) 

and ( 10 ) reduces to the identity 

(21) 

x ( (2J+a-l) 
(2k-J)(m-2k)(n+2k-25) cN_2J_ 1j 

-k(n+2k-2J)(2k+a-1) 
> 

=o, 

J=l,2 ,..., [+(m+n)J-1. (22) 

The best way to prove ( 12), however, is to note 
that ( 12) is equivalent to 

s dg, W 
(2n)9{exp[~~((p)l,exp[~~(~‘)l~=O, 

Vfl,/LEIR. (23) 

When calculating the LI-IS one finds (after several in- 
tegrations by parts, with respect to Q, and/or @, ) that 

( 5 ), (6) and ( 7 ) are sufficient to obtain 0; as part of 
the calculation one may use that (7 ) implies 

J,(x)=- 2 [Jz(x)-KJdx)l > 

if 
2n 

Jk(x):= (-g’)Lexp(-xg’)$, 
s 
b 

(24) 

with x independent of I,D~, and, as before, either 
g( 0) =g( 27c) = 0, or g and g’ periodic. 
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