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The evolution of the linear density of kinks on a cosmic string network is examined, and new
possibilities about the behavior of the string network are considered. These include (1) allowing
kinky regions to selectively chop off; (2) allowing the kink density to determine the lifetime of
kinks; and (3) allowing the mean distance between kinks to determine the length of newly formed
loops. Under certain of these assumptions, one obtains results also found by Hindmarsh and by
Quashnock and Piran. If the average kink density on loops is more than 3 times the average kink
density on long strings, then loop production prevents the buildup of kinks on long strings, the
mean distance between kinks scales proportional to the horizon length, and the distance between
kinks is about the horizon length. In contrast, if the average kink density on loops is less than 3
times that on long strings, then the kink density only scales at late time due to kink decay, and
the distance between kinks is at least 4 orders of magnitude smaller than the horizon length.

In previous work, !> we have considered the buildup of
small-scale structure on a cosmic string network in an ex-
panding spacetime. The structure is composed of kinks
—velocity discontinuities on the string created by inter-
communications.> 7 In our earlier work, we calculated
the linear density of these kinks under the following as-
sumptions: (i) We assume a spatially flat Friedmann-
Robertson-Walker (FRW) cosmological model with
power-law scale factor; (ii) the energy density of long
strings scales; (iii) the kinks are uniformly distributed on
the long strings; (iv) the kink lifetime is proportional to
“time of birth” of the kink; (v) the size of newly formed
loops is a fixed fraction of the horizon size. Our main con-
clusion was that the kink density increases to very large
values, in effect creating a “second” length scale in what
was expected to be a “one”’-scale model.

In this Rapid Communication, we consider the effects
of modifying assumptions (iv) and (v) above. In Sec. I,
we briefly restate the earlier results, obtained under as-
sumptions (i)-(v) above. We will assume that the reader
is familiar with the notation and conventions of our earlier
work, which are also used here. In Sec. II we change as-
sumption (iv) and make the kink lifetime proportional to
the average distance between kinks. Hindmarsh'® and
Quashnock and Spergel'® have shown that this is the
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correct way to incorporate the effects of gravitational
back reaction. In Sec. III we additionally modify assump-
tion (v), which is part of the standard “one-scale” model.
Instead, we take a stab at the notion that kinks are respon-
sible for loop formation, and assume that new loops are
formed with an average length proportional to the mean
distance between kinks.

In addition, we generalize our earlier results, by weak-
ening assumption (iii). To do this, we incorporate an ad-
ditional dimensionless parameter ¢, originally defined by
Kibble and Copeland. This parameter measures the rela-
tive kinkiness of the loops compared to the infinite strings.

As long as g < 3, the modifications to our original as-
sumptions do not change the main conclusion—kinks
build up on the long strings at early times, and the mean
distance between kinks becomes proportional to the hor-
izon length at late times. On the other hand, if ¢ > 3,
then the kink density scales at all times.

I. SUMMARY OF EARLIER ASSUMPTIONS

This section shows how assumptions (i)-(v) lead to our
earlier results. This will lay the basis for the following
sections.
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In the context of the standard cosmological model with
metric

ds?=—dt’+a*(t)(dx*+dy*+dz?) )

and a radiation-dominated scale factor a(¢) =+/t/t¢ the
radius of the particle horizon (“horizon length”) is

1O =a() [ a™ (dr' =2t )

We picture the universe as a fixed comoving volume
L3, with physical volume V(t)=L3a3(t), containing
a3(¢)L31 ~3(2) horizon cells.

The one-scale model states that there is a single length,
the horizon length /(z), which characterizes all features of
the cosmic strings. We define any closed string segment
smaller than some fixed fraction of the horizon length to
be a “loop.” Anything longer than this is called “long” or
“infinite.” The one-scale model implies that the energy
density of the infinite strings scales in the same manner as
the radiation-dominated cosmological fluid:

Poo =vut "2 3)

(this assumption is well supported by numerical simula-
tions®~!"). The constant v is the average number of
string segments occupying a single horizon cell, and u
is the string mass per unit length. The total length
of infinite string in the universe is Lo =pV()/u
=vL 3t0_3/ 24 =12 The one-scale model also implies that
new loops, which are formed when the infinite string net-
work self-intersects and chops a closed loop off of itself,
are formed with a mean size which is a constant fraction
of the horizon length. This means that the mean size of a
loop at formation time #100p iS Lioop = @Z100p-

We also assume that the loops which are chopped off
the infinite string network have (at the moment of their
formation) a linear kink density g times greater than the
linear kink density of the infinite strings. This is reason-
able if the kinks are able to enhance the probability of
loop formation, as has been suggested by some authors.
In our previous work on this subject, we assumed that the
kinks were uniformly distributed along the infinite strings,
and hence that g =1.

In the absence of any mechanism for kink decay, the
differential rate equation describing the evolution of the
kink density on the long string network is

dN

LK OLI=1C—gaiK (]2 )
On the left-hand side of this equation, K(¢) is the linear
kink density, and so K(¢)L is the total number of kinks
on the infinite string. On the right-hand side is the num-
ber of kinks added, minus the number of kinks removed
per loop formed, times the rate of loop formation. Here
C, which is at least 2, is the average number of kinks add-
ed to the infinite string network per loop formed, and
qatK (¢) is the number of kinks removed per loop formed.
The rate of loop formation may be found from conserva-
tion of the stress-energy tensor [here we make the simpli-
fying assumption that (v2)=% as in flat space; see Ap-
pendix A and Eq. (A11) of Ref. 2 for further justifi-
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cation]:

dNwop _ _ 1 d =Y y3,-32, -5~

_dt nar di (Vpo) 2aL to 't . (5)
In Secs. IT and III we consider the ways in which the rate
equation (4) is changed when our assumptions are
modified.

The differential rate equation does not include the
effects of kink decay. Before kinks have begun to disap-
pear through decay, the kink density is thus obtained by
solving Eq. (4); one finds

(3—-9)/2
- C t _
K@) a(3—g)t [[tfo,m ] 1} ’

for t < tiome®, (6)

where Zorm is the time of formation of the cosmic string
network. We see that if ¢ <3 then the kink density does
not fall off as rapidly as the function 1/¢. This means that
the number of kinks on a horizon-length segment, tK(¢),
grows. If g > 3 then the kink density falls off as 1/¢ al-
most immediately, and the number of kinks on a horizon-
length segment approaches a constant.

After kinks have begun to disappear through decay,
more careful analysis (partial differential equations are
needed '2) shows that

<
a(3—g)t

where e? is the ratio fgeatn/firn for a kink. This function
is shown in Fig. 1. Thus, after kink decay takes effect, the

K@)= [e ®=992— 1] fort> tiome’, @)

Linear Kink Density K(t)

In(K)
T

In(t)

FIG. 1. The linear density of kinks under the original as-
sumptions (i)-(v) of our earlier work is shown as a solid line.
We assume throughout that ¢ =1, so that the kinks density on
loops at the moment of their formation is the same as the kink
density on infinite strings. If the rate of kink decay is taken to
be proportional to the linear density of kinks, one obtains a
modified result, shown by the dotted line. If the size of loops cut
off the infinite strings is then taken to be proportional to the
mean distance between kinks, one obtains the kink density
shown by the dashed line. In all cases, if ¢ < 3, the kink density
rises rapidly, and after it begins to scale the mean number of
kinks per horizon length is quite large.
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kink density scales as expected; the product K(¢)/(¢) is a
constant, indicating a constant number of kinks present
per horizon-sized segment. In this case, if ¢ < 3 then the
dominant effect which enables the kink density to scale is
the kink-decay mechanism. In this case, since e’ is quite
large, the number of kinks per horizon-sized segment is
considerable: of order e®/a. The other possibility, g > 3,
is less interesting. In this case, the number of kinks on a
horizon-length segment is quite small: of order 1/a.

II. MODIFIED KINK DECAY RATE

It has been shown in Refs. 18 and 19 that the rate of
kink decay due to the emission of gravitational radiation is
inversely proportional to the distance between neighboring
kinks. This is unlike the case of decay due to stretch-
ing,>!! where assumption (iv) is correct. In the first
modification of our earlier work, we let the rate of kink
decay depend on the kink density. One obtains a new rate
equation

A1) L] =IC = qatk ()12 _ g (LK (D)]
dt dt
®)

The additional term describes the rate of kink loss as
dNyinks/ Niinks = — €K (¢)dt. Here e=T;Gu is a small di-
mensionless parameter ~10 ~> which characterizes the
strength of the gravitational back reaction. This differ-
ential equation is the same as Eq. (29) of Hindmarsh'? if
we let N =tK (z). However, in our simple model, one can
determine the various dimensionless parameters describ-
ing the evolution of the kink density. With the assump-
tions that we have made, we find that Hindmarsh’s pa-
rameter ¢ =(qg —1)/2, and the Hindmarsh’s parameter
b= C/2a is larger than order 1. We therefore agree with
Hindmarsh about the critical value of the parameter ¢ =1
corresponding to our g =3.
The solution to this differential equation is

4e

1— (t(orm/t) G-q)8/2

| TF LB+ DB = Do) O~ D2 | ©

where B=[14+8Ce/a(3—¢)?1"%2. This kink density
satisfies the boundary condition K (¢form) =0. Figure 1
shows the behavior of the kink density in this case.

If one assumes (quite reasonably) that the size of loops
produced is larger than the distance between kinks which
decay rapidly due to emission of gravitational radiation,
then € < a. If g <3 then the solution only converges to a
scaling solution at late times: tK(¢)— (3 —g)/2¢. In this
case, the slow decay of kinks through the emission of grav-
itational radiation is responsible for the scaling behavior,
and the kink density is quite high. On the other hand, if
q > 3 then the kink density scales almost immediately. In
this case it is the loop formation process which maintains
the scaling behavior, and fairly rapidly the number of
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kinks on a horizon-length string becomes tK(t:)— C/
[a(g —3)].

If, rather unreasonably, the size of loops produced is
smaller than the distance between kinks which decay rap-
idly due to emission of gravitational radiation, then € > a.
In this case, regardless of the size of g, the kink densit
rapidly approaches scaling, with 1K (t)— (C/2ea)'?
kinks present per horizon-length segment of infinite string
at late times.

II1. MODIFIED RATE OF LOOP FORMATION

The second modification of our earlier work, which was
also examined independently by Quashnock and Piran,?
changes the fifth assumption; the size of newly formed
loops is no longer a constant fraction of the horizon length
(at least not until the kink density begins to scale as 1/7).
We still assume, as in Sec. II, that the rate of kink decay
depends on the kink density. But now we also assume that
the size of a loop at formation is Ljoep =D/K(¢), where D
is a dimensionless parameter. Here gD is the number of
kinks on the loop which is formed. (One might expect gD
to be of order 10.) The differential equation governing the
kink density becomes

dN1o0p

—eK()ILK()].
dt

d = —
r [K(t)L]=[C—¢qD]
(10)

If we assume that the energy density in long strings scales
[assumption (ii)] then conservation of the stress-energy
tensor implies that the rate of loop formation is

leoop - K@) d V_53,-3/2,-3/2
¥ D di (Vp) sp Lot K@).
(11)

The solution to the rate equation for the kink density is
now

K@)t =xle+(T/t)<171, 12)

where k =(C/D+3—¢g)/2, and T is a constant of integra-
tion. This result is shown in Fig. 1; it is identical to that of
Quashnock and Piran in Ref. 20. Defining No=xle+ (T/
trorm)*] ~! to be the number of kinks on a horizon-sized
segment at the time of formation #¢,m, one has

K1 —1
_1___£ tform
Ny K t '

We may now make a direct identification with the formu-
la given by Quashnock and Piran:

=for [ -] (2] ]

where n is the kink density, a=c I'yGu/A, and A =1
+c¢3/2y. To convert their parameters (on the left) to ours
(on the right),

y=D, c\I'«Gu=¢, c;=C+(1—¢q)D.

K@= |5+ 13)
K

(14)

(15)
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In our simple model, the approximate values for these pa-
rameters would be c¢3 about 2, y of order 10, and ¢, of or-
der unity. We see that these two expressions for the kink
density are identical.

In this model of small-scale structure, the critical value
of q is ¢ =3+ C/D, which is slightly larger than 3. If g is
larger than this critical value, then at late times the num-
ber of kinks present on a horizon-sized segment vanishes,
and so the loop size goes to infinity. The model only
makes sense if g is smaller than this critical value. In that
case x is positive and the number of kinks on a horizon-
length string at late times approaches the large number
x/e€~10°. If for some reason, g were larger than the criti-
cal value, then the assumptions become inconsistent: the
mean distance between kinks becomes so large that the
loops which are cut off are longer than the horizon scale
(and therefore are not “loops” anymore).

IV. CONCLUSION

In this paper, we have reviewed the main arguments
needed to estimate the mean density of kinks on a cosmic
string network. Certain assumptions are needed for these
calculations, and we show that by various choices of these
assumptions, one may reproduce some of the results ob-
tained independently by Hindmarsh and by Quashnock
and Piran.

The main point of this paper is that two mechanisms
can cause the kink density to scale. If the ratio g of linear
kink density on loops to the linear kink density on long
strings is greater than 3, then the loops can carry off
enough extra kinks so that the density scales. However, in
this case the kink density is fairly low, and does not ap-
pear to closely resemble the simulations. The other mech-
anism that may permit the kink density to scale is the de-
cay of kinks due to stretching or emission of gravitational
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radiation. In this case, when ¢ <3, the mechanism of
kink decay is slow enough so that the kink density attains
very high values before it begins to scale. In all the work
done to date, including both our own and that of Hind-
marsh and of Quashnock and Piran, and in spite of ‘the
different assumptions and quantitatively different results,
this is the qualitative conclusion.

It is appealing to assume, as we did in Sec. III and as
Quashnock and Piran did, that the mean distance between
kinks determines the size of loops that are cut off of the
long string network. The basic picture that goes with this
is that when some region of the infinite string becomes
crinkled by enough kinks, the probability of self-inter-
section becomes large and it tends to cut off a small loop.
This may well be the case; however, it is important to
stress that if it is so, then it is not obvious why the energy
density in the infinite strings should scale. This point has
also been stressed by Shellard and Allen?! and by Kibble
and Copeland.?? The point is that in order for the energy
density in the infinite strings to scale, they need to have a
crossing rate determined by the large-scale structure of
the network, and not just by the local distribution of
kinks. The preliminary conclusion seems to be that the in-
frequent intersections between uncorrelated infinite
strings is necessary to maintain the scaling behavior of the
energy density in the infinite strings; however, the chop-
ping off of small loops by isolated correlated regions of the
infinite string network is the primary energy-loss mecha-
nism.
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