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The algebra of local and rigid symmetries of N = 16 supergravity in three dimensions is
discussed in detail . The conserved charges associated with the rigid E, symmetry are constructed
and shown to be physical observables in that they weakly commute with all constraints . The
phase-space variables, which render the constraints polynomial, are identified . they are related
to the variables used in the SO(1, 2) x SO(16)-invariant reformulation of d = 11 supergravity .
This indicates that Ashtekar's approach to canonical gravity can be generalized to higher
dimensions if suitable matter degrees of freedom are added to gravity .

This paper serves a twofold purpose . First of all, it explains in detail the results
of a recent investigation of the algebra of local and rigid symmetries of three-
dimensional extended supergravities [1] . Secondly, it reveals a possibly important
analogy between the "new variables" introduced by Ashtekar in his reformulation
of canonical gravity [2] and certain geometrical quantities introduced in refs . [3,41
for the construction of new versions of d = 11 supergravity [5] with enlarged
tangent space symmetry* . This raises the prospect that the approach of ref. [2] can
be generalized to higher dimensions, provided suitable matter fields are added to
gravity .

In contrast to the pure gravity and supergravity theories in three dimensions,
which have received much attention in the past few 1-Pars [6-9], extended super-
gravity theories possess not only topological but also propagating degrees of
freedom. It is therefore more difficult to solve the constraint equations and to
construct observables (in the sense of Dirac) for both the classical and the
quantum theories . The Wilson loops with or without insertions of dreibein fields,

* Although this construction has so far only been carried out for d = I 1 supergravity, there is little
doubt that other theories of this type admit similar reformulations.
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which constitute the basic observables for pure gravity in three dimensions [7,81,
cease to be observables in the presence of matter fields, because the latter act as
sources for gravity, and the gravitational curvature thus no longer vanishes on the
physical subspace of phase space. As there seems to be no simple modification of
the Wilson loop which remedies this defect (this would amount to constructing a
curvature-free connection out of the gravitational connection and the matter
fields), it is worthwhile to look for other candidates.
One of the main motivations to study extended supergravities in this context

derives from the presence of extra noncompact rigid symmetries in these theories
[10] . The occurrence of such rigid symmetries is actually not limited to supersym-
metric theories, but a generic phenomenon in Kaluza-Klein theories [11] and due
to the fact that the scalar sector "remembers" its geometrical origin from a
higher-dimensional gravity or supergravity theory. The simplest example is pro-
vided by the dimensional reduction of pure Einstein gravity in four dimensions to
three dimensions. After an appropriate duality transformation of the Kaluza-Klein
vector field, one obtains an SL(2, R)/SO(2) or SL(2, R)/SO(1,1) nonlinear 0-model
coupled to gravity [11, 12] . The two degrees of freedom of the coset space are
naturally related to the two helicity states of the graviton . In the general case, the
coset degrees of freedom of the three-dimensional theory are just the bosonic
"transverse" degrees of freedom of some (superggravity theory in higher dimen-
sions, to which the three-dimensional theory is related by dimensional reduction .
The existence of an extra rigid symmetry implies the existence of a conserved

current . The associated conserved charges are then given by the integral of the
zeroth component of this current over a spacelike hypersurface . As will be shown
below, these charges are physical observables in the sense of Dirac . By this we
generally mean any functional of the basic fields which weakly commutes with the
constraints and does not vanish on the physical subspace . If further observables
beyond the conserved charges exist (none are known at this time), even more
observables can be constructed by taking successive brackets with these charges .
All observables thus belong to representations of the non-compact symmetry
group . The corresponding statement for the quantum theory is that the solutions
of the Wheeler-DeWitt equation fall into representations of the rigid symmetry
group . The observables found here replace (or complement?) the topological
observables (Wilson loops) of pure gravity or N = 1 supergravity in three dimen-
sions .
There is a long history of attempts to quantize gravity in the canonical frame-

work ([13-151 ; more recent developments are reviewed in ref. [16]) . Recently, an
important advance was made by Ashtekar [2], who identified a set of new variables
in the phase space of canonical gravity, in terms of which the constraints-
unmanageably nonlinear in the metric formalism - become polynomial . This work
has opened new avenues towards a possible "pre-geometric" formulation of
quantum gravity. In _fact, formal solutions of the quantum constraints have been
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found [171 . To be sure, there still remain several important unsolved problems in
this approach; apart from the difficulties in interpreting the solutions of ref. [17],
the construction of a positive-definite scalar product on the physical Hilbert space
of wave-functionals, which is a crucial ingredient in any quantum theory, has not
been accomplished so far for the four-dimensional theory . (This problem is
relevant to the question of whether the representations of the rigid symmetry to
which the observables belong are unitary and hence infinite-dimensional .) On the
other hand, a suitable scalar product can be constructed for three-dimensional
pure gravity [8]. This is one of the reasons why the study of three-dimensional
gravity in this formalism has proved to be a useful exercise . This theory is not only
easier to investigate, but in some respects provides a more natural setting for this
formulation ; for instance, there is no need for a reality constraint unlike in four
dimensions (for a clear discussion of this point, see ref . [9]) . The program has also
been applied to simple supergravity in four dimensions [18] and to matter-coupled
theories with Klein-Gordon, Dirac and Yang-Mills fields [19] .

In this paper, I will restrict myself to the maximally extended N = 16 theory in
three dimensions [20], first because it is the most symmetric, and secondly, because
the corresponding results for other theories are completely analogous . Maximal
symmetry is expected to play an important role in the elimination or softening of
singularities in the quantum algebra of constraints . Moreover, the nonlinear
structure of the scalar sector typical for theories originating from higher dimen-
sions has not been considered in either [19], nor in the more conventional metric
formulation of canonical supergravity [21] . Sect . 2 of this paper contains a brief
summary of N = 16 supergravity . In sects . 3 and 4, a canonical formulation of this
theory will be given . In particular, a set of canonical variables will be identified
which renders all constraints as well as the charges associated with the rigid
symmetries polynomial, thereby extending the results of ref. [191*. As will be
explained in sect . 5, the phase-space variables needed here ûre intimately related
to certain geometrical quantities that appear in the SO(1, 2) x S006)-invariant
formulation of d = 11 supergravity [4] (this construction was based on earlier work
[3], where an SO(1, 3) x SU(8)-invariant version of d = 11 supergravity was exhib-
ited) . There is considerable evidence, that, at least for extended supergravities, the
framework proposed in refs . [3,41 is the natural arena for a generalization of
Ashtekar's formulation to higher dimensions . Sect . 6 is devoted to a discussion of
some important open problems, in particular concerning the question of how to
solve the quantum constraints in this theory . It is emphasized that this may require
yet a further reduction to d < 3 space-time dimensions. The d = 2 theory will be
dealt with elsewhere .

* For simple supergravity in four dimensions, such a set was already found in ref. [18]. however, the
elegance of the approach was somewhat compromised by the nonpolynorniality of the reality
condition there .
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conventions and notation used in this paper coincide to a large extent with

those of refs . [1,201 . The metric has signature (+ - - ); y-matrices are purely
imaginary and obey {ya, yb} = 2 dab. Curved indices in three dimensions will be
denoted by ,i,v.... = 0, 1, 2 while the letters i, j. . . . = 1, 2 will be used for spatial

indices; flat (Lorentz) indices are denoted by a, b, . . . = 0, 1, 2. To make the
distinction completely clear in cases of doubt, I will occasionally put a dot on the
index to indicate that it is curved, e.g. in yt~ = Pa®y`p. E,°®' and E~`9p are understood
to be tensor densities, whereas the corresponding symbols with flat indices (i.e.
Eabe) are always Lorentz tensors ; also E l i ---d ®' and E ", _ et, ;i . In sect . 5, indices
i)2, lt, . . . = 3, . . ., 10 will be used to label the internal dimensions of d = 11 super-
gravity compactified on T' down to three dimensions .

In contrast to the conventions used in ref. [1], I will here follow refs . [7-9] and
use the dual (and first-order) spin connection

2. N = 16 supergravity and its symmetries

Observe that Aa and its canonical conjugate constitute the analogue of Ashtekar's
variables in three dimensions . The use of Aa as a canonical variable instead of the
usual (second-order) spin connection greatly simplifies some of the calculations
below. The fact that all three-dimensional supergravities admit this kind of
reformulation was already noticed in ref. [22] .

The N= 16 theory was constructed in ref. [20] . As already mentioned in sect . 1,
a dual formulation will be used, which is straightforward to derive from the results
given in ref. [20] . We will therefore just quote the relevant formulas below,
referring the reader to ref. [20] for further details . The physical fields of the
three-dimensional N= 16 theory constitute an irreducible N = 16 supermultiplet
with 128 bosons and 128 fermions transforming as inequivalent fundamental spinor

Ag --- - ~Eabc(Opbe . (1 .1)

The gravitationally covariant derivative !2-m

(a
~. + áW,"abyab)E (1 .2)

is consequently replaced by

0A + -IiyQ Aa~)E . (1 .3)

The corresponding field strength reads

FN.ra = - 2EabcRILL,bc =a LA va _
avAga + EabcApAV (1 .4)
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representations of S006). In addition, the theory contains a drei
gravitino fields

	

.1, which do not correspond to physical degrees of
fermion fields are Majorana spinors, i.e . X =X~

	

. The actual
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theory is greatly facilitated by exploiting the rigid non-compact E.-invariance
the theory (see the appendix for our Es-conventions).
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generators of

	

. are
split into 120 generators X-= -Xrl and 128 generators yA in accordance with
the decomposition 248 -+120 ®128 of Es under its S006) subgroup, were the
indices 1, J, . . . = 1,-, 16 and A,B.... = 1, . . . ,128 (or

	

,

	

, . . . = l, . . . 128) la-
bel the vector representation and the fundamental spinor (or conjugate spinor)
representation of SO(16), respectively. The rigid Es-invariance of the theory

	

n
be linearly realized in the usual manner by introducing a local S000-invariance.
Consequently, the scalars 7,-(x) are properly described as elements of the

	

t
space E& +g),/SO(16), and the "composite" SO(16) gauge field Q,,'J(x) is obtained
from the Es Lie algebra decomposition

'Z'- la ;QIJXI, +
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A= 4E

	

V0

	

',p.+ zE

	

+/1p,-, p +

	

Vg

	

P~ P~,

	

;tVX Y ( D,~X )

-i~AYi`Yv p.j:4ÀP
A
+sV(XX)2 -

	

V(XYarI,X)Z

- V(XY
.,r{JX(~P7px_41A -

~PY_Oip) + XX~PYRYp41á) .

It is invariant under the local supersymmetry variations

ÓV° = iElY°*P,

	

Swtf =DwE
{ - lYvEjXYp.a" FIJX,

SXA - 2 l Y pf IPN, rAf1

	

7_

	

1 06 7 - EIXArAAYA

where PA denotes the supercovariant extension of PA

P~ - PA- AAwgX_

	

Á

and the derivative Dp is SO(1, 2) x SO(16) covariant:

a) JE 1+Q1-1,EJDAel	(t9;L + 2

	

1A

	

1A

n ft e

(2 .2)

(2.3)

2.4

Dp,X A = (de + WYaA~)X
A
+ ~rÁBQp. XB"

	

(2.5)
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The invariance of J" under local supersymmetry is most conveniently verified in
"1 .5 order formalism" [23], where the variation of the field A' can be ignored if its
equation of motion is substituted into the variation of Y. Lagrangian (2.2) is, of
course, also invariant under general coordinate transformations in three dimen-
sions, the local Lorentz group S®(1, 2) = SL(2, R) and S®(16) gauge transforma-
tions.
The equations of motion of the physical fields read

V-IDM(V(piiA - ~,
IYgY`,XArAÀ))

	

LV_

	

le gi,P
(
~~.c9'vFABpB + 81XYIIrIJXrABPB

(2.6)

for the scalars, and

- iy1'Dt,X A = W'y l` I'P,~rAA - f(XX)X A + 4(XYj`rIJX)ráBYt,XB

	

(2.7)

for the spinor degrees of freedom. The Rarita-Schwinger equation is

where the supercovariant curl is given by

E~vPD,~

	

I
- ?Y`

,
Y~`XAP~AIÁÀn

E l' ~.PDi , 4~F1 - E~vPDv4 ~
+

	

~)

	

(2 .9)

The dual field A",, can be expressed in terms of the other fields by solving its
equation of motion

E

	

D~,v,,

	

- 4 E

	

j
, Y li,, - 4 V a XX

.> t` = 7 (( f bL A - ~j~~r~~r ` 'X APÁ~ )YA + (V- 1 E g vF' ifJ1~1~1~ +

(2 .8)

(2 .10)

It has already been emphasized that the distinguishing feature of three-dimen-
sional (super)gravities, which originate from some higher-dimensional (super)grav-
ity theory, is the presence of extra rigid symmetries and associated conserved
currents . For N = 16 supergravity, this current is [ 1

VXY~`r ljx)X IJ ) ,7-- I .

To verify that this current is indeed conserved, i .e . d,,,(V.7A) = 0, one has to make
use of eq . (2.1) and the equations of motion (2.6)-(2.9) . Note that the expression
for the conserved current contains no quartic or higher-order terms in the
fermions. This is to be contrasted with the expressions for the hamiltonian



constraint and the supersymmetry generators which will be presented below . The
absence of higher-order fermonc terms in the E8current is, of course, in accord
with one's expectation that the noncompact symmetry acts linearly on the fermions .
The associated Es-charges

are conserved if the fields satisfy their respective equations of motion and vanish at
spatial infinity or satisfy periodic boundary conditions . Occasionally, the E.indices
will be written out explicitly,

where

	

Greek indices

	

a,,8. . . . = l, . . . , 248 collectively denote

	

the

	

Es	indices
(A, M),...in the fundamental representation. Below, we will consider the algebra
generated by the constraints and C. However, the (on-shell) invariance of these
charges can also be checked directly . Inserting the supersymmetry variations given
above and making use of the equations of motion once more, it is not difficult to
show that

where
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C = fV/7° d2x

	

(2.12)

-Lr lJxlJ + cAYA
aP - 2 z

	

a(3

	

a/3 (2 .13)

a( V,7A) = aj v// "A) ,

	

(2 .l4)

= I/'- ' ( E 1ygvX A TÁÁYA + 2V- IEIlvP-PEJX IJ ) 7.-_'

3. Canonical formalism

(2.15)

Therefore, the E.-charges are supersymmeric (i.e . 8(f- = 0) under the same condi-
tions that ensure their conservation .

Let us now proceed to the hamiltonian formulation of the theory . The dual
formulation presented in the preceding section is far more convenient for this
purpose than the more conventional treatment of canonical supergravity in
second-order formalism [21] . Especially the brackets involving the gravitational
phase-space variables are considerably simplified . It has already been emphasized
in sect . 1 that matter-coupled theories present new features . In extended super-
gravities, the matter sectors are highly nonlinear owing to their geometrical origin
and severely constrained by the symmetries. The canonical formulation of the
matter sector requires the proper treatment of nonlinear coset space 0-models
coupled to gravity, a topic which has not been extensively discussed in the
literature so far .
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At this point, it is appropriate to introduce some further notation which will
allow us to make the decoupling of the Lagrange multiplier field Vó from all
canonical expressions completely explicit . In contrast to ref. [1], no special gauge
will be chosen for the dreibein . This has the advantage that we will be able to
realize the full local Lorentz group in phase space [24] . The spatial part of the
metric is

hij =-- Via Vj.

(Unlike in ref. [1], I do not switch to a positive-definite metric here ; this accounts
for some sign differences between the formulas here and in ref . [1]) . The inverse
metric will be denoted by h'i and is related to the inverse of the full space-time
metric by

which satisfies

9 oi9 bi
V=g'i -

	

9 ()()

	

'

	

(3 .2)

To clarify whether an index has been raised with h'i or g'i, I will either write out
the contractions explicitly, or else put a hat on the tensor under consideration . For
instance,

Va
9 cii9 Oi

h`iV� = Vá -

	

Va .
900

The determinant h = det h ;i is related to the full metric determinant by

h = V2900 .

	

(3.4)

To have a complete basis of vector fields, it is furthermore necessary to define a
timelike vector field na [24], viz .

n a = V"I e~

	

(3 .5)

nana = 1,

	

n"V
a = 0 .

	

(3.6)

Alternatively, na can be defined through these properties . Thus, despite appear-
ances, na does not depend on V()' but only on V". Comparison of eys . (3.4) and
(3.5) immediately leads to

w() = 1

	

ü

	

f' J` =

	

h naa 2EahcE 1V.

	

,

(3.3)

(3 .7)
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ij

	

a

	

b

	

c = 1

	

ij

	

a Vb ^ c
2EabcE n l V

	

2EabcE n V V

Note that neither F nor the vector na are polynomial functions of Via; only the
combination appearing in eq. (3.7) is . The gauge employed in ref. [1] corresponds
to n a = (1, 0, 0) . I will also write -/, --_ n ,,Y a .

It is a well-known feature of gauge theories that their invariance under local
symmetries is reflected in the existence of first-class constraints [13] . These are also
the canonical generators of infinitesimal gauge transformations in phase space.
More explicitly, one obtains a constraint for every field whose time derivative is
absent from Y and whose conjugate momentum thus vanishes . In the lagrangian,
these fields appear as Lagrange multipliers . In the case at hand, they are V6', Aó,
qi~ and Q Y, which are associated with local translations, local Lorentz rotations,
local supersymmetry and local SO(16)-transformations, respectively . Consistency
then requires that all of these field components drop out of the expressions for the
canonical generators, since otherwise the conjugate momenta could not be consis-
tently put equal to zero .

Varying Y with respect to Va) yields the "Poincare generators"

The generators of infinitesimal coordinate transformations are obtained from
these after contraction with the dreibein

(3.8)

(3 .9)

(3 .10)

The explicit expressions for them are somewhat complicated (although straightfor-
ward to derive from eq. (1 .2)) and will be given only after the identification of the
proper phase-space variables . In order to eliminate the dependence on the
Lagrange multiplier VO, a slightly different decomposition of :~fa must be em-

ployed [15,24], viz .

It is a well-known feature of canonical gravity that timelike and spacelike con-

straints play a different role . For 1, = i, we get the generators of spatial diffeomor-

phisms. Requiring them to vanish is analogous to Gauss' law in the canonical

formulation of gauge theories and simply restricts the space of configurations .

These are also the constraints which are "easy" to solve. The timelike constraint,

on the other hand, generates time translations and therefore contains dynamical
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information-, its quantum version, the heeler-
"Sc r6 i ger equation" of quantum gravity .

e generator of local supersymmetry transformations can be read off directly
from eq. (2.S)

Again, its expression in terms of the proper phase-space variables is deferred until
sect . 4 . The generator of the Lorentz transformations reads

L

	

=

	

_ ;E àjDi Va

	

~I

	

d+ _1

	

0-

t11

	

I

	

~ YQ j

	

4

	

a íYíi

e itt equation, is the

(3 .12)

(3 .13)

There is a further constraint associated with the invariance of Y under local
S®(16)-transformations . We could derive it simply by varying Y with respect toQ61J in a first-order formulation, where the gauge fields Q~j are treated as
independent fields, whose expression in terms of the physical fields is determined
from their equations of motion. Although this would be the analogue of the
first-order formulation which we have employed for the gravitational sector, we
prefer to follow a different path here by invoking the second-order formalism for
the scalar sector, see below. In accordance with the general theory, we interpret
the vanishing of the constraints as weak equalities [13]

~A(x) = ®,

	

, f,1(x) = 0,

	

Ljx) ~ 0,

	

01J(x) = 0 .

	

(3.l4)

In the quantum theory, the constraints become operator constraints on the
physical states .

Before evaluating the canonical algebra of the constraints, we must now identify
the proper phase-space variables and compute their canonical brackets . Due to the
presence of second-class constraints, some of the basic Poisson brackets must be
modified [13] . Let us first consider the fermionic brackets . These are given by

{ id(x)~

	

J ( y)} = eij& 1Jô(2)(x~ y)

	

(3.15)

{XA(x)~îB(y)} = i(Vg OO )
-l,yO,3 Ae&(2)(x, y) ~

	

(3.l6)

where spinor indices have been suppressed and the variables x, y parametrize the
spacelike hypersurface . Eq. (3 .16) can be alternatively written in terms of the
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i
{XA(x),XB(Y)} =

	

h
y_LSABS(2)(x,Y),

(Aa(x), Ab(Y)} =

F Va = -2Eabcnbnci ,

JAa(x)~Ijb(y)1 -
Sb&1&(2)(x,Y)

Aa( x), nb(Y)} =

	

2
W

(Sb - nbnc ) EacdVd8(2)( x, Y)

This is consistent with the orthogonality condition in eq. (3.6) . Furthermore,

- (gôô)-1EijVaÔVbÔiXS(2)(x, Y)

1

h
Eabcvbiy

l ycíi A S(2)(x , Y) ,

whereas (Aa, qijl = 0. The nonvanishing bracket between Aa and

(3 .17)

which reduces to the corresponding result of ref. [1] with the choice na = (1,0,0) .
To write out the brackets for the gravitational fields, define

S&
_ ';Eij V

	

(3.18)
SaóA°

This variable is directly related to the variables discussed at the beginning of this
section . For example,

(3 .19)

from which it immediately follows that 41Iaillá = hh i', so 1Iá can be thought of as
the square root of the densitized inverse of the spatial metric (3.1). The canonical
brackets are now given by

(3.20)

and, of course, {IIá, Hb) = 0. The field Aa also has nonvanishing brackets with the
timelike vector na introduced above, which can be determined from eqs . (3.7) and
(3.20). Although this relation will not be needed in the remainder, it is given here
for completeness :

(3 .21)

= - EijnanbXXS(2)( x~ Y),

	

(3 .22)

{Aa(x)~XA(Y)} _ -EabcjJc(Vg00)_ly oYbXAS(2)(x , Y)

(3.23)

XA above
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which will be useful Him. In ref. [II the brackets involving the spinors X 4
to simplify somewhat after the redefinition X A --), h'/4x A. Unfortu-
ing the factor h114 into X' here does not eliminate the x-depen-

t-hand side of eq. (3.17) because y , still depends on x through
ars only in the gauge n" = (1, 0, 0)) . Moreover, the
ede to vanish in this fashion; rather,

use the right-hand side vanishes when contracted with V,,,, there is no
sistency with the corresponding result of ref. [I] .

scalar sector is somewhat more complicated, and requires some further
ion . To derive the canonically conjugate moments, we temporarily parameter-
in terms of the 12 physical scalars ~p' and 120 additional fields cp - , which

are gauge degrees of freedom, i.e .

7'(x) = e.xp(g A( X )yA + Lq IJ( X ) X") .

	

(3 .26)2

his parametrization Oil no longer be needed in the analysis of the canonical
straint algebra below. It is furthermore useful to define E. matrices M =
13(
T
_A

-YA by

he in-verse matrices are then defined by

C'

1J'C(

1J,c(

111/4x .4( y)j	l a.

	

1/4

	

A)&2JX~ y) .2
yj (h X

Supr

1 ) C, KL

A(y))

ABYB +

	

(M- )A . KLxKL,

j)IJ,B
YB + S(M - 1)

IJ.KLxKL .

	

(3.27)

1 CB ~MA,KL(M-1)KL.B=SAB
)

	

+ -i

j)CB
+ 1 MIJ, KL(M- 1) KL,B =

0,2

(3.24)

(325)

IJ,PQ

	

Q,KL SIj
(M-, ) P

	

KI_	(328)
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where the notation cr,, y, . . . for the

	

,, indices AJIJI. . . . has already bee
introduced before, and ",O'y denote the E. structure constants. The mome
canonically conjugate to cp' and V'J will be denoted by 17' and 171J, respectively.
Using the above definitions, we obtain

A -

	

S_2~

sa®(PA (

	

- )AB(p6B -	a
K
y®y~`XBTBs

+ ;( _I)A,KL(-j,VXy®TKL%-E'ji~dK
L),D 1

S ~(

	

!J, B
Sa®cp

Ij

	

?á )

+ ? (M_ i)
IJ . KL (_ i lV- ®TKL

	

Eff-K

	

L)X

	

X - ` p - (3.30)

Making use of eq. (3.28), we can invert these relations to get

PA = V(pOA _
V-

,,I y°Y tLX Ar,~À) = 2M ABIIB

	

MA.KLHKL .

	

(3 .31)

These phase-space variables are much more convenient than the canonical mo-
menta II A because their Poisson brackets turn out to be rather simple . In the
following section, it will be shown that the 15A and the variables discussed below
are entirely sufficient to express all canonical quantities of interest .

Furthermore, we define

<k'-' = 2MlJ, BIIB + MIJ, KLIIKL + QiVi,yOrIJX $ Elj~jl4íJ .

{(PA(x)~JIB(y» = $AB8(?)(X, y)

(3.2

(3 .32)

Inspection shows that 0!J = 0 on account of eqs. (3.28) and (3.30) . In accordance
with the remarks above, the vanishing of 0" should be interpreted as a weak
equality. This constraint is, of course, just a consequence of the invariance of the
theory under local S000-transformations, which allows us to gauge away the
scalar fields cplJ. The constraints 0" are therefore the canonical generators of
SO(16) gauge transformations.
From the basic Poisson bracket

(3 .33)
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and the relations given above one derives

The advantage of using P' as phase-space variables rather than P°A, is that their
brackets with the fermionic fields vanish :

{È' (x ), X .4(y) } _ {P A (X),

	

,á(Y)} = 0, (3 .36)

a property which does not hold for P6A. From eq. (3.31) for PA and (3.32), one
deduces

JPA(X) ".fi B(1')) =T~á( -OIJ +
~iVXy

6T IJX +E`i~;la~JJ)5(2)(X,Y) " (3 .37)

The fermionic bilinears on the right-hand side will be essential for the closure of
the constraint and charge algebras later on. The defining relation (2.1) for P;A and

J in conjunction with eqs. (3.34) and (3.35) leads to

{PA(X),
p;B( Y)} = 2D;AB&(2) ( X, Y) = (MABai + 1Qi JrAIJ )S(2)( X~ Y) ~ (3 .38)

{15
A(x)~Qi J(Y)} = PABPi

Bs(2
)
(X , Y) "

	

(3.39)

The canonical generators O 'J of S®(16) gauge transformations obey

J0 IJ (X)~O KL (Y)1 = -4a[L[IOJIKI(X)S(2)(x,Y)
"

	

(3 .40)

From the above brackets, it is straightforward to verify that they do generate
S®(16)-transformations; for instance

JOIJ(X)~7-(Y»
= -(Z" XIJ )S(2)(X~Y)

{olj(x),XA(Y)} - 2rÀBXB
é5
(2)(X~Y)

e algebra of constraints and charges

(3 .41)

To summarize, the quantities whose brackets have been listed above will be our
basic phase-space variables from now on. This also means that the explicit
parametrization (3.26) used in their derivation can now be discarded .

Having identified the proper phase-space variables, one can now express the
constraints in terms of them and, by means of the canonical brackets computed

(15 '(x), ~7 -( y ) __ _,( ~ -
yA)S(2)(x, Y) ~ (3 .34)

-'(x), 2
--'(y» = +2(yA2, -- 1)3(2)(X,Y) " (3 .35)
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above, determine their algebra . After some rearrangement, the generators of
space-dependent supersymmetry transformations become

I -

	

ij

	

I

	

1

	

À

	

I

	

A

	

i

	

a

	

À

	

I

	

A

	

1

	

a~eRJ

	

ib-

	

c

	

IJ
(" =E Di tJrj - 2X rAÀp

	

- 1~aii X rA i

	

iEabcY ~i

	

XY

	

X

	

(4.1)

The generators of Lorentz-transformations now read

L
_
D

	

i _ 1E`j

	

14Wa
®
X-a -

	

i ffa

	

4,Gil7a
~j +

	

X'

. + ;I

	

I_1QIJolj+AaLi

	

2~r

	

i a'

(4.2)

The derivation of the generators

	

is somewhat more cumbersome . After some
calculation, one finds

-lI"i
F'ija +E~k PilDj+lrk

	

z15

	

1A + 21VXAY°DixA_

	

l "

	

(4.3

Observe that the qiDgr-term actually cancels in this expression* . From this term it
is also evident that .~i does not just generate spatial diffeomorphisms . The explicit
calculation reveals that, in addition to a local supersymmetry transformation with
parameter generates local SO(16) and local Lorentz transformations
with parameters '-!

,
~~ iQlf and ~A°, respectively. It is therefore sometimes con.Te-

nient to define another generator ,I i l by subtracting the other constraints present
in (4.3). Explicitly,

(4 .4)

It is evident that these constraints are polynomial functions of the canonical
variables introduced in the foregoing section . Although the nondegeneracy of the
metric was implicitly used at intermediate steps in the calculation, one can at this
point abandon this requirement and let ff.' vary freely, in complete analogy with
the conclusions of [7-9,191 .
To derive the explicit form of the Hamiltonian constraint is more tedious . After

some algebra, one obtains

1 " -À i

	

.4 1

	

00 1 A

	

iÓ A 2~~ - 4E aócwáVhFijc _ 21 VX YDiy - 4(Vg ) (P - Vg Pi )

+ I
Vg `jpiApjA -

?
~p

iAXAYj "Y`0jlrAfi

	

2_

	

( g0Ó) -1(1jA - Vg0ipiA)XÀyjy 0~lrAÀ

- ,'-l i(g °°) - 1 XXEi ilY~ 1 + 1 VXY`r IJX+IriY~ ~ - zV(g °° ) - 1 g°`XyjrIJX~iIY°oi
i

	

()0)_ 1

	

ij- Ó

	

IJ - I Ó

	

J
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2- 1

	

a

	

IJ

	

2

	

4 .5)+ 4 V( g

	

g XY r X~i Y ~Gj + KV(xX)

	

y6V(XY r X)

Notice that the variables A a,) , qi6l and Qó
J do drop out of these expressions, as is

*The corresponding term has not been correctly given in eq. (26) of ref. [1 ) .



required by consistency . Use of the canonical variables 15 ' is essential here,
because they completely absorb the unwanted gravitino components 4r . On theó

other hand, the Lagrange multiplier field V(", is not yet decoupled in the above
form. In order to eliminate it, we must use eq. (3.11) in the form

Some further calculations show that, indeed, the hamiltonian acquires a nicer form
in this way.

E ahc h V,IItT j,. - ';1 h tie,x A y"DjX '4

	

T(11-)P AP`a + ! h hijPiAPjA
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(XX) - yv~( .~Y~1X .

(4 .6)

(4 .7)

At this point, it is still not obvious that this expression can be rendered polynomial .
This requires an additional multiplication by the factor C . Using the various
relations given already, one arrives at the final result

_ E"hcD"i
''b'

F,jc. + ihhijEj IIáXY"DiX

	

4PApA + ihhijPiAPjA

- IDix"
Qy

" `~i'pA r,9Á - ;hhijX`4i'liIPjATÁÀ
+ 21E"hc~ hl~ cJ-A " r'PjArAf1x Y '

+ , lthij0i'y"OjxY"rIJX - IIáIIh i'Y" 'xy hr'Jx

- ; lEuhc
Ek/ 1,h I1cE`Joi'y"oj'XX + Kh( XX) 2

	

96_

	

h(X,yal" IJX)2

	

4.8

which is manifestly polynomial (remember that hh'j = 41Iatllá is polynomial) .
Again, there is no longer any need for nondegeneracy of the metric at this point .

Finally, the expression for the Es-charge rf' in terms of the new canonical
variables reads

A

	

ij,-~` I

	

J

	

1
i

	

uhc

	

i

	

j -

	

IJ

	

~ ,

	

1~d2x ~, ..(F ^ Y

	

+ (E 4'i ql

	

- ~ E

	

E ij 7r"7rhXyc.ll X))~
._

	

.

	

(4.9)

Again, use of the variable 15A leads to a simplification .
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As a useful check on these brackets, one can verify that these constraints
generate their respective gauge transformations with time-independent (but, of
course, space-dependent) parameters . For the SO(16)-generators, this was already
shown in eq. (3.41). It should be kept in mind, however, that these transformations
are in general obtained only modulo the constraints. For instance, spatial diffeo-
morphisms are generated by

k~P(X) = {f d2Yei--<5rj,(Y),~P(X)
}

1

	

(4.10)

where cp stands for any of the fields . As an example, let us consider the variation of
the dreibein 1;a ; the above formula yields

f d2Y

	

j. íj~, Va ~ = aiejVa + ejajlia + Eij j . La

which coincides with the usual result only on the subspace La(X) = 0. Another
example is

f d2Y

	

j.

	

j
i
~ PA~ = aj(~

JiA
)

	

2rAB JPjB_

	

OIJ' (4 .12)

Likewise, the supersymmetry transformations with time-independent parameter
E 'W can be obtained from

SE ~P(X) = ~f d2YE '(Y)yt(Y),~P(X) (4.13)

There is a subtlety, however, when this formula is applied to P A , because the
formula for 515A contains a time derivative and hence cannot be correctly
reproduced without use of the equations of motion. I have also verified for some
examples that, again modulo the constraints, the equations of motion are gener-

ated by the bracket with the hamiltonian constraint.
Given the canonical brackets and the explicit expressions for the constraints

derived above, it is now possible to determine the algebra of local and rigid

symmetries . It should be noted that, although the constraints are polynomial, the

brackets involving Aa and X A contain inverse factors ofr which seem to vitiate

the polynomiality of the structure functions . We can remedy this defect by taking

the weighting functions to be appropriate densities as will be exemplified below.

The commutator of two Lorentz generators is entirely straightforward to compute;



0

we get

r the generators of spatial diffeomorphisms the calculation is equally straightfor-
ward, provided one exploits the fact that they generate the respective transforma-
tions on the fields, and collects

all
the extra terms proportional to the constraints if

there are any such contributions . In this way one obtains

This trick may also be used to determine the commutator of -//,' with the
remaining constraints. The commutator between two SO(16)-transformations was
already given in eq. (3.40).
The brackets involving the supersymmetry and the hamiltonian constraints are

considerably more involved than in the matter-free case due to the numerous
higher-order fermionic terms. For the evaluation of the corresponding brackets,
extensive use must be made of the Fierz identities listed in the appendix of ref .
[20] . 1 have completely determined the commutator of two local supersymmetry
generators, which is the most important, and performed some partial checks for
the hamiltonian constraint (which, to lowest order, give just the expected results) .

course, a full check of the closure of the algebra would also require the
complete evaluation of the commutator between two suitably weighted hamilto-
nian constraints, but I hope that the results presented here are more than
sufficient to convince the reader that a complete check would produce neither
inconsistencies nor new insights .
The basic formula, which is obtained after a tedious calculation, reads

f d2x l',

{f d2x g, . � ', ƒ d2 '

	

2

If d'x wjL, f d2y w2~ Li,) = fd2X (_Eabc,,
la(02b)Lc .

	

(4.14)
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d2x(~20,4' - ~j~?j~'f
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+ 1~i ~ipApBI~IJ
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(4.15)
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otite that the various other transformations known to arise in the commutator of
two local supersymmetries [23] such as another local supersymmetry transforma-
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we see that
factor h is missing . This is not a serious problem as we can multiply the
supers

	

metry parameters in (4.16) y

	

(thereby changing their weights under
diffeomo

	

isms). This procedure produces an extra contribution pr
in the above bracket as

	

does not commute

	

it

	

.

	

®. It is not difficult to see
that the extra term is also polynomial* .

Next we turn to the brackets containing 4%

	

t us first check the algebra of the
Es-charges C.,, . Using the completeness relations (A.3), one finds

ïcolas / Srr

	

rari y .1

*Because

	

f1 {A°, h } _ 261 E°hwi1hVc i is polynomial .

{ á~, C. yâ} = 120(S~,,& <r_&Y _ 5j3yC«s) + f d2x( 2r -yA2, __ 1)a
( Z

IJ . .IJ/__
)

	

` j

The E8-algebra in its usual form is recovered after contraction with the E.-genera-
tors . As expected, the charges generate the Es Lie algebra on the physical
subspace where 0 IJ = 0. The brackets between C and the rentz and S
generators simply vanish :

{OIJ(
x)~
C} =

(La(
r)'C ) =0 .

	

(4.18)

These relations express the invariance of C under local SO(16) and local

	

rentz
transformations. Much more interesting is the bracket between

	

and (, .

'(x), C,) = -2 7,--X®J7 ._')JJ(x) + ;(rIJ-KL
)AA(~ yA7__1)X A .4KL( X) .

(4 .19)

Observe that the inclusion of the higher-order fermionic terms which were not
taken into account in ref. [1], does not alter the result obtained there . e same is
true for the commutator with the diffeomorphism constraint:

{

	

x),C'}
- ?j,ÁBPrA( -,1,8~.__1) ,~IJ(x) .

	

(4.20)

In evaluating the bracket with the hamiltonian constraint it is advantageous to
make use of the fact that the fermionic bilinears in C generate SO(16)-rotations
on the fermions . Since the higher-order fermionic terms in eqs. (4.5), (4.7) and
(4.8) are manifestly SO(16) invariant, they do not contribute to the result . Due to
eq. (3.24), the bracket between A° and C likewise gives no contribution .

	

e
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result is

h

	

l ( x),

	

- k'-PA - l?fá~,lJya;k ArA~i)jaéL7
-
YBT

-_ 1 , ~x~

	

(4.21)

The structure functions appearing in eqs. (4.19)-(4.21) depend in a very simple
way on the variables 15A. P;.q , `7 ~Y~7 -' and 7 W"71 -1 . Altogether, these results
prove that, on the constraint surface ~f,~(x) = La(x) = 0"(x) =VI(X ) = 0, the
charges r indeed commute with all local symmetries and therefore constitute
physical observables in the sense of Dirac.
Commutators similar to eq. (4.19) between local supersymmetry transformations

and rigid symmetries have already been evaluated in ref. [25] . The connection with
these results is easily established by expanding `7, - in terms of the scalar fields in
the "unitary" gauge cpl' = 0, cf. eq. (3.26) . The nonvanishing result of this compu-
tation was interpreted as evidence for the existence of a spectrum-generating
supergroup, with an infinite tower of new supercharges constructed out of Y and
products of the scalar fields . The question here is whether one should regard
combinations of field-dependent "structure constants" and constraints such as the
right-hand side of (a.19) û; symmetry generators in their own right. However, it is
obvious that an arbitrary number of such "symmetries" can be generated by taking
further commutators. Furthermore, these are all proportional to the constraints
and thus carry no additional information .

5 . New canonical variables in d >

	

dimensions`'

The introduction of new variables in the canonical formulation of gravity was
mainly motivated by the fact that in this way the nonlinear hamiltonian constraint
could be rendered polynomial [2] . In the preceding sections, a similar simplifica-
tion was achieved for N = 16 supergravity . In the light of the results of ref. [19],
this is, of course, not a totally unexpected result . Still, it is noteworthy that the
simplifications also occur for the higher-order fermionic terms and the highly
nonlinear scalar sector, which have not been considered so far in this context. In
the scalar sector, it was necessary for this purpose to replace the 128 scalars and
their canonically conjugate momenta by the variables P A, P;" and Q;' . For the
Es-charges, one needs in addition the combinations 7 - Y ,`2--- ' and 7'X`7" . I
will now argue that it is really the hidden geometrical structure of the higher-
dimensional theory (here d = 11 supergravity), which is at the root of the compara-
tive simplicity of the formulas for the constraints and charges. In particular, the
fields 7 - Y1 7- ', 7 -X"7 --1 , P;A and Qi' should be viewed as the remnants of a
suitable "vielbein" and connection of the higher-dimensional ancestor of this
theory, d= 11 supergravity . It is here that contact is made with refs . [3, 4], where
alternative formulations of d = 11 supergravity with enlarged tangent space sym-
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metries were proposed .

	

essential ingredient in that construction was the fusion
of gravitational and matter degrees of freedom into new tensors covariant under
the enlarged symmetry, while the dependence on all eleven coordinates was
maintained . This indicates that, although by simple counting arguments, an ana-
logue of Ashtekar's variables for pure gravity in dimensions d > 4 is unlikely to
exist, this may no longer be so if suitable matter degrees of freedom are added. Of
course, these extra degrees of freedom would have to conspire with the gravita-
tional degrees of freedom in a rather peculiar way. In this section, some evidence
is presented that such a conspiracy does take place if the extra matter degrees of
freedom are those required by local supersymmetry . Since the arguments are
somewhat preliminary, I will be rather brief. The full canonical treatment of the
higher-dimensional theory would require knowledge of the invariant actions, from
which the results of refs . [3,41 can be deduced. Up to now, however, only the
fermionic part of the SO(1, 3) x SUM-invariant action has been worked out in
ref. [3] .
The strongest argument in favor of these ideas is the following. In ref. [3,41 it

was demonstrated that the supersymmetry variations of d = l l supergravity can be
cast into a form, which is covariant with respect to the enlarged tangent space
symmetry, with the help of the "new variables" alluded to above . Significantly, the
variations turn out to be polynomial in terms of these variables [3,41 . Because the
commutator of two local supersymmetry transformations gives rise to the fermionic
equations of motion, from which, in turn, the bosonic equations of motion can be
deduced, it follows that all equations are polynomial (this claim has been partially
verified by explicit calculation for the SO(1, 3) x SU(8)-invariant version, cf. sect . 7
of ref. [3]) . Therefore, the action, from which these equations follow, must likewise
be polynomial . This indicates that the canonical treatment will lead to polynomial
constraints .
For the SO(1, 2) x SO(16)-invariant version of ref. [4], the reformulation was

accomplished by means of "generalized vicibein" (e;, e;,) with upper world
indices m, n, . . . = 3, . . ., 10 referring to the "internal" or compactified dimensions,
and an Es-valued connection p~ , Q~ in eleven dimensions, which are linked to
the phase-space variables introduced in sect . 3 (1 will ignore the fermions in the
remainder of this section). These are the basic objects incorporating the physical
bosonic degrees of freedom. They replace those fields of the original version [5]
which become scalars in the dimensional reduction to three dimensions, namely
the "internal" components 9Ei,n , ginn and A mn fi, A11�p of the metric and the
three-index tensor, respectively (remember that, inspite of this index split, the new
quantities still depend on eleven coordinates). The vielbein (eÄ, e in) is related to
the inverse metric in the internal space through

where ® --- det gmn .

e. e~ + !e"' en = 16,á-2A

It is the analogue of the formula hh'i = 417°`Aá which played



nt role m sect. ® Thus, the metric and its inverse are regarded as

quantities, whereas the viel in is considered fundamental. It is, of course,

essential here that neither the metric nor its inverse ever appear in the formulas of

refs, [3, 4] . The similarity with the results of ref. [2] is rather striking .

he generalized vielbein is subject to a number of constraints. The following

ones, which are algebraic, were not given in ref. [4]

-~ 4 ~~I C~~~ ~ 0,

hey are easy to prove in the s

	

ciat gauge adopted in r+~f. [4] Csee eq. (20)), and

hence generally valid by virtue of S

	

16

	

variance . The vielbein components

satisfy a generalization of the vielbein

	

stulate of general relativity, which takes
the form
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although the index ~ has been assumed to refer to two spatial dimensions until
nl~lv, the above relations are, in fact, valid in eleven dimensions (I have taken the

t~= to more the to s with a,~: ~ in eq. (25) of ref. [4], since these vanish in

the dimensional reduction to be considered below) . Obviously, these relations are
analogous to the conditions e.~pressing the covariant constancy of the soldering

fo ~ in ref. [;] .
To establish the connection with the results of the foregoing sections, we must

now perfo

	

the dimensional reduction, dropping the dependence on the "inter
nal"

	

rdinates (this is sometimes referred to as torus reduction, being the
si plesi kind of I~al a-Klein compactification). This is straightforward for P;A
and

	

~ which can be directly identified with the corresponding fields here. To
eti-press the vielbein com

	

name e~' and eo~; through ~ ~ Y`~ ~ "-'

	

and ~ ..XIJ~ __ ,

is, however, slightly more tricky . To this end we pick eight generators t "' of the
Cart

	

subalgebra of E~ which are orthonormal with respect to the Cartan-Filling
metric. Then all the above relations are satisfied with the identification
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~~~( e~~IJ - ~~~IJ ) = 0.
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IJ - ~~

hei us first check the generalized vielbein postulate ; it is a consequence of

(5 .2)

e(
~ -XIJ~ ._, ) _ ~

;l-,,~éha(
~ . YB~ __, ) .

	

(5 .5)

To prove the algebraic relations (5.2), one substitutes (5 .4) and makes use of the
completeness relations (~.3) ; this leads for instance to

~~ .a

	

~

	

1~[I J]x -

	

,

It is here that we must assume the generators t "' to span the Cartan subalgebra of
E~. since otherwise the right-hand side of (5.6) would fail to vanish. Incidentally,
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these formulas furnish an explicit expression for the metric ansatz in terms of the
128 scalars which follows simply by substitution of (5.4) into (5.1). e formula
(5.4) makes the role of the vielbein quite explicit : just as 71 converts (local) SO(16)
indices into (rigid) Es indices, the fields (e;, e;J ) convert SO( 16) tangent space
indices into (internal) world indices ; for this reason, it would also be appropriate to
call them "soldering forms" with respect to the enlarged tangent space group.
To go beyond these remarks and actually demonstrate the usefulness of the
new variables" in a canonical treatment of d = 11 supergravity or other higher

dimensional theories will require a lot more work, but I hope that the arguments
presented above are sufficient to convince the reader that it would be a worthwhile
endeavor.

6. Discussion

One of the important open problems concerns the quantization of the theory.
Treating all fields as operators, the phase-space constraints (3.14) must now be
replaced by operator constraints on the physical states W. By analogy with ordinary
supersymmetric quantum field theories, we expect that the high degree of symme-
try of extended supergravities will alleviate quantum ordering problems . For
instance, a glance at (4.1) and the canonical brackets (now commutators or
anticommutators) shows that there are no such ordering problems for .~ ~. As all
other operators appear in the anticommutator of two supersymmetry generators,
we can simply define the ordering of the other operators through the way in which
they appear in eq. (4.16) - assuming the absence of anomalies on the right-hand
side of eq. (4.16). The equations with dynamical content are the Wheeler-DeWitt
equation .

	

, (x)W = 0 and its "square-root"

.- i(x)''P=0 .

	

(6.1)

Any solution of this constraint will automatically satisfy all of the other constraints
by (4.16) . At least formally, one can generate new solutions from one particular
solution through the action of C, because e and _;1' commute on-shell by eq.
(4.19). Of course, we must here assume that the order of the terms on the
right-hand side of (4 .19) can be maintained in the quantum theory; otherwise there
will be extra anomalous contributions which invalidate this argument. With this
assumption, the solutions of (6.1) clearly belong to multiplets of the rigid symmetry
group. It is interesting to speculate about the cosmological interpretation of the
associated conserved quantum numbers.

In principle, it should be possible to represent the condition in eq. (6.1) as a
functional differential equation, which is polynomial in the fundamental operators.
However, in trying to replace the canonical brackets of sect . 3 by appropriate
operator commutation or anticommutation relations, one encounters some techni-
cal obstacles, which I have not been able to overcome so far. These complications

are entirely due to the matter sector. For instance, it is obvious that, in the gauge
na =(1,0,0), eq. (3.17) can be easily converted into an operator relation by
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redefining the spinors according to X A ---> h t/4X
À *. If, on the other hand, n° does

depend nontrivially on the dreibein Va, it is not clear how to proceed. Further
problems are caused by the ,.~ term on the right-hand side of eq. (3.22), which
apparently cannot be removed by a redefinition of A i .

In order to make progress at this point it may be necessary to study the
reduction of (6.1) to two space-time dimensions, where the hidden rigid symme-
tries become infinite dimensional [12,26,27] . The associated conserved current,
which has been found in ref. [1], now gives rise to infinitely many charges and thus
to infinitely many observables . We can therefore apply an infinite set of operators
to an arbitrarily chosen solution 4 of eq. (6.1) in order to generate new solutions .
This suggests that quantum-extended supergravities are completely integrable in
two dimensions [1] . Note that this notion of integrability is very different from the
one prevalent in investigations of stationary axisymmetric solutions of Einstein's
equations, where one studies the classical equations of motion [26] . However, in
the presence of Grassmann-valued fermions, it does not make much sense to talk
about classical solutions (at least in the author's opinion) . It is much more
meaningful to address this question in the quantum-mechanical context outlined
above .

It is also interesting to note that the construction of the conserved charges for
the d = 2 theory relies on the existence of a linear system (or Lax pair) for d = 2
supergravity [27] . This linear system furnishes a curvature-free connection involv-
ing both gravity and matter fields which has no analogue for d > 2 (and would be
necessary there for the survival of the Wilson loop as an observable). It thus
appears that t'ne topological observables of pure gravity and the more conventional
observables considered in this paper are actually related in the two-dimensional
reduction . It has also been conjectured that the reduction to one dimension will
reveal the existence of hyperbolic symmetries, and in particular an E 10-symmetry
for maximally extended supergravity [121 . If this is true, the classification of
observables in quantum (super)gravity may be linked to the construction of
representations of hyperbolic algebras .

A considerable part of this work was done during a stay at KEK. I would like to
thank the KEK Theory Group and especially K. Higashijima for their hospitality .

Es CONVENTIONS

Appendix A

The E,, Lie algebra has 128 symmetric generators YA and antisymmetrie
generators X1J in its fundamental 248 dimensional representation . We collectively

* Because of the Majorana condition on n A the manifest S006)-covariance must, however, be
sacrificed .



denote the indices (A, IJ) by Greek letters a, 13, . . . . The generators in the
fundamental 248 dimensional representation are normalized according to

Tr(YAYB ) = 60SAB ,

	

Tr( XIJXKL) = - 1208KL .

	

(A.1)

The generators X'J are therefore compact, while the generators YA are noncom-
pact . The E. commutation relations are

XIJ , XKL] = SJKXIL + SILXJK - SIKXJL - SJLXIK,

[
YA

,
YB ] - 4rABXIJ

	

XIJ, ~,A ] _ -ZTÁBY B

	

(A.2

We have the following completeness relations
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bó~'«pYs + 120`«j3`yó - S«ySßs,

e- (FABYAlgYs - 4Xp'XysK) = 2(8«yXßó + Sßa X,',-'Y ),

1 J-IJ (yB XIJ + XIJ VB

	

(&aYyA - 8j3~5y,~4
JO -5

	

1
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