PHYSICAL REVIEW D

VOLUME 43, NUMBER 10

Small-scale structure on a cosmic-string network

B. Allen* and R. R. Caldwell'

Department of Physics, University of Wisconsin at Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201

(Received 9 July 1990; revised manuscript received 14 March 1991)

We construct an analytic model of the accumulation of small-scale structure on a cosmic-string
network in an expanding universe. The structure is composed of kinks which form when the string
segments cross and intercommute, and then decay from stretching and gravitational radiation back
reaction. We calculate the linear density of kinks, K(z), for a general power-law expansion
a(t)=(t/ty)?; after a period of rapid initial growth, the linear density approaches scaling
K (#)x<t~!. We also examine the transition from the radiation- to matter-dominated eras; after the
transition between eras, K (¢) drops before settling once more into scaling. Because of the slow de-
cay of kinks, we find that the kink density is many orders of magnitude larger than one might ex-
pect. The predictions of our model are in good quantitative agreement with the kink density ob-
served in the numerical simulations. Our model may explain the observed lack of scaling behavior
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in the small-scale structure and in the formation of loops observed in numerical simulations.

I. INTRODUCTION

In this paper, we consider the formation of kinks on a
network of cosmic strings in a spatially flat, power-law
expanding, Friedmann-Robertson-Walker universe. The
potential importance of these kinks (alternately described
as small-scale structure) has only been recognized in the
past two years. This is because the formation of this
structure was not revealed in the original numerical
simulation of the evolution of a cosmic-string network!
or in subsequent work by the same group.>? However, an-
alytic modeling of the string network®* revealed certain
apparent inconsistencies within the original simulations,
and led to the development of a more accurate numerical
simulation>® which revealed, for the first time, the
significant role played by kinks. Subsequent work by two
different groups has confirmed that the kinks and accom-
panying small-scale structure are indeed formed,”® and
the kinks have recently been studied in a series of high-
resolution simulations,” ! which confirm that they are of
a physical, not numerical, origin. The existence of these
kinks is still under dispute, however, with at least one
group claiming that they may be of numerical ori-
gin. > 11— 14

This paper is a more detailed and complete version of a
shorter paper,'® in which we attempt to resolve some of
the uncertainties surrounding the existence of the kinky
structure by carrying out a calculation of the linear densi-
ty of kinks on the cosmic-string network. Our analytic
model gives a simple description of the source and evolu-
tion of this small-scale structure. The results of our cal-
culations show that that kinky structure is expected to
build up rapidly on the cosmic-string network, and ap-
pear to closely describe the effects observed in two of the
three existing numerical simulations.’ 1

The existence of the kinky, small-scale structure has
important consequences for the way in which cosmic
strings might form galaxies and other cosmological struc-
tures. The important role played by kinks in galaxy for-
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mation'® comes about because they may prevent the for-
mation of large stable loops. The way in which the ap-
pearance of the small-scale structure has changed the pic-
ture of cosmological structure formation is nicely sum-
marized in Ref. 17. Some of the physical effects associat-
ed with kinks in flat space have also been examined in
Refs. 18 and 19. The reader should note that our own pa-
per does not attempt to deal with any of these larger
questions, concerning the importance of kinks in the for-
mation of cosmological structure, but is simply intended
to show that the buildup of kinky structure on a cosmic-
string network is predictable and inevitable.

A kink is a discontinuity in the derivative of the
tangent vector along the string, which is created by the
intercommutation (i.e., crossing and rejoining) of two
string segments. The source of the discontinuity can be
seen more clearly by examining the equations of motion
of the string (see Appendix A). The string trajectory® is
a function of the form x=1[a(c —7)+b(o +7)], where a
and b represent right- and left-moving modes of the
string. The string itself is continuous; a and b are con-
tinuous in the rest frame of the string. The derivatives of
a and b with respect to the spatial (o) and temporal (7)
parameters of the string, however, might not be. When
string segments cross, the rejoined ends will have new in-
stantaneous derivatives. These discontinuities will mani-
fest themselves as right- and left-moving kinks traveling
at the characteristic propagation velocity v =c (a simple
analogy can be made to a piano wire struck by a hammer
at a single point, from which two waves emanate along
the wire). Figure 1 shows a spacetime diagram of the in-
tercommutation of two cosmic-string segments. The
kinks lie on the forward light cone of the event. Inside
the light cone the segments have intercommuted, while
outside, the string is undisturbed.

Only two processes, intercommutation and decay,
change the number of kinks on a cosmic-string segment.
The initial string network is formed with no kinks; during
the subsequent evolution of the string network, four
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FIG. 1. Space-time diagram showing the formation of four
kinks. In (a), two string segments intercommute. The forward
light cone of the crossing is shown. In (b), the string segments
are shown at a later time. The four kinks formed by the string
intercommutation propagate at the speed of light, i.e., on the
light cone. Exterior to the light cone, the string segments are
unaffected by the intercommutation.

kinks are created by every intercommutation, each seg-
ment acquiring two. A loop is formed when a segment
crosses itself and intercommutes, removing that segment
from the long string. The loop then carries away the
kinks distributed along that segment. The long string
may also lose kinks to decay. Two sources of decay are
stretching due to the expansion of the universe, and loss
of energy to gravitational waves.

The goal of this paper is to count the number of kinks
per unit length, K (¢), on the cosmic-string network by
calculating the rate at which kinks are added and re-
moved. In Sec. IT we state the assumptions of our model,
and calculate the rate equations for the formation of
loops and hence for the formation and removal of kinks.
In Sec. III we calculate the linear kink density for a gen-
eral power-law expanding universe in the absence of kink
decay. In Sec. IV we examine the sources of kink decay
and calculate expressions for the kink lifetimes. In Sec. V
we calculate the linear kink density in a general power-
law expanding universe, taking into account the effects of
kink decay. In Sec. VI we apply the results of the preced-
ing sections to calculate the linear kink density afier a
transition between different power-law expansion eras.
This is used in Sec. VII, where the linear kink density is
calculated as the universe evolves through the physically
interesting radiation and matter eras. Section VIII con-
cludes this paper. Several appendixes follow, which con-
tain technical details.

Throughout this paper we use units with the speed of
light ¢ =1.
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II. MODEL SCENARIO

In order to estimate the number of kinks on the infinite
string network, we adopt the “one-scale” model of
cosmic-string evolution.?’ In this model, a single correla-
tion length characterizes the network, and hence the pro-
duction of loops and kinks. This model has a number of
shortcomings, but is a useful and simple way to under-
stand the different processes that take place.

For simplicity, we assume that the space-time is homo-

geneous, isotropic, and spatially flat, with the metric
ds?=—dt*+a(t)dx>+dy*+dz?) . 2.1)

We also assume that the scale factor is a power-law func-
tion of time:

a(t)=(t/ty), (2.2)
with p <1. The horizon radius at time ¢ is
t
()= “Nedt'=t/(1—p) . 2.
(=a( [ 'a”'") /(1=p) (2.3)

We define a “loop” to be a closed segment of string small-
er than the horizon, and an “infinite” or “long” string to
be a segment whose length is greater than the horizon
length I(z) (of course, it is not really infinite). We will
count the production of kinks on the infinite string net-
work within a fixed comoving cube x,y,z€[0,L] of
comoving volume L3. Equivalently, one may identify the
opposite faces of the cube to make a three-torus of
comoving volume L3. At time 7, the physical three-
volume of this spatial section (torus) is given by

V(t)=a3t)L? . (2.4)

Appendix B deals with various aspects of this method of
counting; one may count kinks in any volume, however, a
fixed comoving volume is simplest.

In the one-scale model, a single correlation length
characterizes all the properties of the cosmic-string net-
work. This correlation length is proportional to the hor-
izon radius; that is, the properties of the network scale
with the horizon. For a string with mass per unit length
u, the energy density p, of the infinite string network is
proportional to ul (t)/13(¢):

P =Aut %, (2.5)

The constant A is related to the number of string seg-
ments passing through one horizon volume, and may also
depend on dimensionless parameters such as p. The ener-
gy density implies that

L (0)=V(t)p,/1u (2.6)

is the total length of infinite string in the fixed comoving
volume.

The one-scale model also has implications for the loops
of cosmic string. On the average, the size of a loop L,
at its time of formation ¢,,,, is proportional to the hor-
izon length at that instant. In this paper, we make the
simplifying assumption that loops are only formed with
this “average” size. Hence,

Ligop =l 1g0p - 2.7)
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This equation defines the dimensionless constant a.

In Appendix A, we show that the evolution of the ener-
gy density in infinite strings completely determines the
evolution of the energy density of loops. Thus, since the
one-scale model determines the energy density in infinite
strings (2.5), one can also determine the rate at which
loops are formed. Let Ny, (¢) denote the total number of
loops in the fixed comoving volume L3 formed by inter-
commutation between the time that the string network is
formed and time z. (Some of those loops may no longer
be present at time ¢ since gravitational wave emission
leads to their decay, but this is irrelevant to the present
argument; see Appendix E.) The results of Appendix A
then imply that the rate at which the loops form in the
fixed comoving volume L is given by

leoop —
dt

This equation defines the time-independent, dimension-
less parameter B. In Appendix A it is shown that the pa-
rameters A, B, a, and p are related.

The general features of a cosmic-string network in an
expanding universe are fairly well understood. As the
universe expands, the strings move about, interacting
when they cross. These interactions (called intercommu-
tations) were discussed in the Introduction. The different
types of intercommutations can be most easily described
if we distinguish between the loops [strings shorter than
1(#)] and the infinite strings (everything else). Intercom-
mutations between loops and loops, and between loops
and the infinite string, are infrequent and will be neglect-
ed.>*%10 The remaining intercommutations between
infinite strings produce either zero or one loop.

The intercommutations, and their accompanying loop
formation, produce kinks as discussed in the Introduc-
tion. For the long-string intercommutations that pro-
duce zero loops, four kinks are added to the long-string
network. In the other case, where one loop is cut off the
long-string network, two kinks are added to the network
and two kinks are added to the newly formed loop. Thus,
the relative rates of the zero- and one-loop processes
govern the average number of kinks created on the long-
string network for each loop formed. We therefore define

C to be the average number of kinks created on the long-
string network for each loop formed:

Bt 4V (1) . (2.8)

C=(No. of kinks on long string/intercommutation)

X (No. of intercommutations/loop formed) . (2.9)

This number is greater than or equal to two.

The kinks produced in this way do not all remain on
the long strings. Two processes will reduce their number.
First, each newly formed loop carries off the kinks distri-
buted along the segment which it removes from the long-
string network. Second, the kinks slowly decay because
of effects discussed in more detail in Sec. IV.

III. CALCULATION OF
LINEAR KINK DENSITY WITHOUT KINK DECAY

The number of kinks per unit length on the infinite
string network, the linear kink density K (¢), can now be
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calculated. First, the rates of kink creation and removal,
which are directly related to the rate of loop formation as
discussed in the preceding section, will be determined. In
this section, we assume that kinks do not decay, i.e., that
they survive indefinitely. It will be seen that there is no
mechanism available by which the kink density may de-
crease.

The rate of kink creation is directly proportional to the
rate of loop formation. Since the constant C is defined to
be the average number of kinks produced on the infinite
string network for each loop formed, one finds

dn created __ C leoop

dt dt

Here n.,.q(2) denotes the number of kinks added to the
infinite string network in the fixed comoving volume L3,
between the time that the string network was formed,
and the time ¢.

We now turn to the process of kink removal, assuming
in this section that kinks live forever (they do not decay).
Thus, the only mechanism for the loss of kinks from the
infinite string network is for a newly formed loop to carry
away the kinks which lie on the segment of string re-
moved from the infinite string network. We have as-
sumed in the one-scale model that each loop formed has a
length at¢.ion Which is a constant fraction of the hor-
izon size. We have also assumed that the kinks are distri-
buted uniformly on the infinite string network. If K (¢)
denotes the number of kinks per unit (physical) length on
the infinite strings, then each loop formed carries away
atK (t) kinks. Thus

leoop

an K(1)
—=atK(t)— —
dt dt
gives the number of kinks removed per unit time from
the infinite string network in the fixed comoving volume
L3, at time 1.

Having now determined the rates of kink creation and
removal, one can integrate to determine the total number
of kinks. We assume that the string network is formed
with no kinks at time ¢,. The linear density of kinks is

K(t):(ncreated—nremoved)/Loo ’ (3.3)
where L (2) is the total length of infinite string in the
fixed comoving volume. By differentiating L ., (¢)K(t)
and using Egs. (3.1) and (3.2), one obtains a differential
equation for K (1):

d _ leoop

7 [L,(O)K(1)]=[C —atK(1)] e (3.4)
Substituting in the functional forms of L () and V (¢),
the differential equation for the kink density becomes

(3.1)

removed

(3.2)

d 32 B 3,-3|C
— K(t)]=—1t? ——aK ()] . 3.5
dt[t ()] 1 ;@ (1) (3.5)
The general solution to this equation is
K(t)= B¢ i+qt‘2_3"_“3/’“ , (3.6)
alp—3reB ||’
P 4
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where ¢ is a constant of integration (we assume that the
parameters satisfy 3—3p —aB/A70). The constant of
integration is determined by the boundary condition that
there are initially no kinks on the infinite string network,
K (t;)=0. Thus,

K= |2 |1
aB
A [3—3p 1
(3—3p—aB/A4)
X L —1| fort>z,. (3.7)

Ly

There are two different cases, depending on the sign of
the quantity 3—3p —aB/A. The first of these cases is
uninteresting, while the second, which we will show in
Sec. VII to be the realistic case, provides the entire
motivation for this paper.

The uninteresting case, when (3—3p —aB/A)<0,
physically corresponds to a high expansion rate, or the
production of very large loops which remove many kinks.
In this case, the small-scale kink structure on the long-
string network is described by the one-scale model. By
this we mean that the typical distance between kinks on
the long-string network grows proportional to the hor-
izon length /(¢). In other words, at late times, after an
initial “transient” period, K (¢) is dominated by the ¢ ~!
term in (3.7), and K (¢) <t "'/ !(¢). In this uninterest-
ing case, an observer would see a constant (time-
independent) number of kinks of order BC/ A4 on each
long string passing across the horizon. This type of be-
havior, i.e., finding an order one kink on each long string
passing through a horizon, is what one might naively ex-
pect from the one-scale model. Later, upon examining
the constraints due to ‘“‘energy conservation” for the
string network (Sec. VII and Appendix A) we will see
that the quantity 3—3p —aB /A4 will be negative only if
p > 1. Such rapidly expanding universes are of no cosmo-
logical interest; the relevant values are p =1 and p = 2.

Our great interest in the case (3—3p —aB/A)>0 is
due to the fact that in this case the number of kinks per
unit length on the infinite strings is not proportional to
the inverse of the horizon length, i.e., K (¢) does not scale
(see Fig. 2). This means that an ‘“‘enlarged snapshot™ of
the infinite string network would not be identical to a
later ““snapshot.” Consequently, the small-scale structure
on the infinite string network is not characterized by the
horizon length. In particular the kink density K(?)
grows more rapidly than it would for a scaling solution,
since a segment of infinite string passing across a given
viewer’s horizon carries a number of kinks which grows
as [(DK (¢) = (¢t /t;)* "% ~*B/4In other words, the non-
scaling behavior of the kink density in the case
(3—3p —aB/ A)>0 comes about because the string net-
work does not ‘““forget” its initial conditions, since at late
times K (#) depends upon ;. One might consider this
type of behavior to be an “internal contradiction” in the
one-scale model, since ¢, now provides a second length
scale, which characterizes the kinks.

This nonscaling disease also afflicts the newly formed
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FIG. 2. This graph shows the number of kinks per unit
length on the long-string network as a function of time, neglect-
ing the effects of kink decay. The kink density (solid line) does
not fall off proportional to ¢ ~! (dotted line). Hence the number
of kinks per unit length is not proportional to the inverse of the
horizon length.

loops, in the case (3—3p —aB /A)>0. When these loops
are formed at time #,,,,, the string segment which is re-
moved from the infinite string network carries away
LoopK (f150p)+2 kinks. Hence the kink density on the
loop at the time it is formed is approximately K (7,4, ).

We have seen that the kink density grows monotonical-
ly; there is no mechanism available by which it may de-
crease. This point, which was stressed by Bennett and
Bouchet,'® is quite rigorous. If the kink density just be-
fore a loop is cut off the infinite string is K, then just after
the loop is cut off it will be larger: K +2/L . Thus, if
one assumes that no loops are cut off the infinite strings,
one underestimates the kink density. In this case, one
finds that (d/dt)L K «<t~3/%2 has no decreasing solu-
tions K (¢). One concludes, as did Bennett and Bouchet,
that for a scaling solution to exist, there must be some de-
cay mechanism which removes kinks rapidly from the
infinite string network.

IV. DECAY OF KINKS

Kinks do not survive forever on the cosmic-string net-
work; rather, they decay due to stretching by the expan-
sion of the universe, and due to the energy loss in the
form of gravitational waves. In the next section, we will
show that these effects will change the time evolution of
the kink density. In this section we will examine two
mechanisms by which kinks decay, first summarizing the
effects, and then obtaining an expression for the lifetime
of a kink. More detailed discussions of the “stretching”
mechanism may be found in Refs. 9 and 10, and of the
gravitational mechanism in Ref. 21. The radiation of
gravitational waves by “kinky loops” has also been exam-
ined in Refs. 18 and 19.

One can easily obtain an equation to describe the
stretch and decay of kinks due to the expansion of the
universe.”'® At a kink, the tangent vector to the string,
x’', is discontinuous. The '=3d/dc¢ indicates a derivative
with respect to the spatial parameter o along the string,
as explained in Appendix A. To characterize the size of
the kink, consider the right-moving vector
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p=x'/etv, 4.1)

which also is discontinuous at the kink. The amplitude
of the kink is given by

k=(p,—p_), 4.2)

where p, and p_ are the tangent vectors on either side of

the kink. Taking the time derivative of k, the equations

of motion (see Appendix A) yield a differential equation

for the evolution of the kink size (k = |k|):
K_qowy—1.
a

X (4.3)

Here (v?) is the mean-square velocity of the string net-
work, averaged over space and time. The solution to the
differential equation shows that the kinks decay as a
power law:

(v2)—1
a(z) |?
k()= Kkyirn m]
irt!
¢ QO -1)p
= Kpirth P 4.4)
birth

In this formula, the kink is formed with initial size k.
at time ;..

We are interested only in large kinks; thus, we define
the time of death to be the time necessary for the
kink to decay below 1/e of its original size,
K (tgeam) =k (ty;qy ) /€. In this simple model, the kinks
“disappear” at time ?4.,,, given by

L death = oirtn€® » (4.5)
where
Sstretch:—l/(2<vz>_l)p (4.6)

is the decay parameter for stretching.

The other mechanism for energy loss and decay is via
gravitational radiation. The rapid variations in the
stress-energy tensor T#Y of the cosmic string near the
kink produce gravitational waves, and the resulting loss
of energy causes the kinks to slowly decay. It has been
shown?! that the lifetime of a kink in this case will be
(yGu) 'y, where y=~50 is a numerical con-
stant.!®1%21.22 Equation (4.5) still applies (see note added
in proof), so

8grav="In(yGp) 4.7)

for the gravitational back reaction.

While both mechanisms contribute to the decay of
kinks, the one with the largest rate (smallest 8) will dom-
inate. Note that §,,,, (gravitational back reaction) is in-
dependent of the power p of the scale factor, unlike 8

(stretching).

stretch

V. CALCULATION OF LINEAR
KINK DENSITY WITH KINK DECAY

The results of the preceding section now allow us to in-
corporate the effects of kink decay into the calculation of
the linear kink density. The only difference in our tech-
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nique is that we will now have to introduce a new vari-
able to “keep track” of the time of kink formation.

Our first task is to express the rates of kink formation
and removal as functions both of the current time ¢, and
of the time t#,;, at which the kinks in question were
formed. The power-law behavior of the decay formula
(4.4) suggests the use of logarithmic time coordinates.
We define u =In(t/t;) and s=In(ty;,/t;) where t,
denotes the time of formation of the string network. Let
n (u,s)ds denote the total number of kinks on the infinite
string present at (logarithmic) time ¥ which were formed
between (logarithmic) times s and s +ds in our fixed
comoving volume L3. Figure 3 shows the region of the
u —s plane over which n(u,s) is defined. Since s is always
less than u, we confine our attention to the region above
the diagonal line ¥ =s. Along this line, the rate of kink
formation at time u [from Eq. (3.1)] per logarithmic time
interval is

dNoop Atyirtn
dt t =ty dS

=BCL 3t}p —~3t0—3pe(3p —3)s .

n(s,s)=C

(5.1)
The rate of kink loss to loops [from Eq. (3.2)] is given by

in(u 5)= —atwn(u’S) ooy A —ﬁn(u s)
ou L, dt du A e

(5.2)

for 0<s <u. The idea here is that the kinks formed at
time s are uniformly distributed over the long strings.
Hence, the number removed from the infinite strings in a
time interval du is the product of the kink density
n(u,s)/L ,, of those kinks times the amount of string re-
moved to form loops. The intermediate term is included
to show how this is derived from Eq. (3.2). In this middle
equation the time ¢ is a function of u; the variable s enters
only through n (u,s). Equation (5.1) serves as a boundary
condition for this partial differential equation, which in
turn determines the function n (u,s) above the diagonal
line # =s (shown in Fig. 3).

A

S

FIG. 3. The region of the u,s plane over which n(u,s) is
defined. This function is the number of kinks present at time u
which were formed between times s and s +ds. In the hatched
region, n(u,s) is zero. The boundary condition (5.1) defines
n(u,s) along the diagonal line. The differential equation (5.2)
then determines n (u,s) above the diagonal line.
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We may now proceed to calculate the number of kinks
on the long-string network at logarithmic time u. One
may integrate Eq. (5.2) to obtain an explicit closed formu-
la for n (u,s) in the upper half-quadrant 0 <s < u:

n(u’s):n(s’s)e(aB/A)(s—u)

=BCL3t;p“3ta3pe‘(aB/A)ue(3p*3+aB/A]s . (5.3)

The total number of surviving kinks present at current
time u within the fixed comoving volume L3 is found next
by integrating n(u,s) over (logarithmic) time s. Two
cases must be considered. In the first case, u is small
enough so that no kinks have yet decayed. In the second
case, all kinks formed before time u — & will have already
decayed. The total number of kinks within the comoving
volume L3 can therefore be counted by the integral

n(u)=fu

max(0,u —8)

Since the first kinks are formed at time #;, and decay at
time tfes, the lower limit on the integral is the larger of O
and u —In(e®). Dividing the total number of kinks by
the length of infinite string one can now find the linear
density of kinks, K (¢2)=n(u)/L ,(t).

The kink density behaves differently at early and late
times (see Fig. 4). Before the kinks formed at time ¢,
have had a chance to decay, the kink density obtained
from integrating Eq. (5.4) is

n(u,s)ds . (5.4)

K(t)= B¢ %
aB
A|3—3p———
P4
¢ (3—3p—aB/A4)
X | |— —1| fort,<t<te’.

(5.5)

This displays the same pathological, nonscaling, early
time behavior as seen in Eq. (3.7) where the effects of
kink decay were neglected; the number of kinks visible on
a long string passing through the horizon grows rapidly.
The crucial effects of kink decay only appear at times ¢
later than tfes. Now, the only kinks present are those
formed after time te ~%. One obtains from Eq. (5.4)

BC l(e(3—3p—aB/A)6_1)
aB t
3—3p— 2=
A

K(1)=
A

for t,e®<t . (5.6)

The kink density K (¢) is now proportional to ¢t ! (scal-
ing). By comparing expression (5.6) with Eq. (3.7), one
can see that at late times, the effects of kink decay re-
move the pathological, nonscaling behavior described at
the end of Sec. III, and the kink density begins to scale.
Although the pathological, nonscaling behavior of the
kink density has disappeared due to the effects of kink de-
cay, the string network still reflects the earlier period of
rapid initial growth in the density of kinks. The surprise
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FIG. 4. The linear density of kinks K (#) is shown as a func-
tion of time. The density rises rapidly after the time ¢, when the
string network forms. The density reaches scaling K (z) <t ™!
after the first kinks start to decay at time tfe’s. At late times,
the number of kinks on a string segment stretching across the
horizon is much larger than one might naively expect. Compar-
ing this figure with Fig. 2 shows that the effects of kink decay
have restored the scaling behavior of K ().

is that the scaling kink density is much larger than one
would naively suspect. After scaling had begun, one
might have expected the linear density of kinks to be of
order 1/t, where ¢ is the current time. In physical terms,
each long segment passing through a horizon would be
expected to have of order one kink visible. This naive ex-
pectation is not correct. Equation (5.6) shows that the
linear kink density K(z) is of order 1/ty;,,, where
toinn =t "% is the time of formation of kinks which de-
cay at the current time ¢. In physical terms, this means
that the number of kinks visible within the horizon
volume on a segment of long string is the large number
e373p—aB/4)3 (We will examine realistic values of the
various parameters in Sec. VII.)

One may summarize this section as follows. The
effects of kink decay have restored the scaling behavior of
the kink density. However, that density is much larger
than one might naively expect.

VI. TRANSITION TO A NEW EXPANSION ERA

A realistic cosmological model of the universe features
a transition from a radiation- to matter-dominated era.
In this section we will examine the evolution of the kink
density on a cosmic-string network after a transition to a
new expansion era. The time of this transition will be
denoted by ¢.,. The kink density during the period after
the transition will be seen to parallel the behavior of K (t)
found in Sec. V; K (¢) will once again undergo a period of
rapid change before settling into scaling.

The model of the cosmic-string network and the mech-
anisms for kink decay described in Secs. IT and IV will be
used before the transition time f.,. Consequently, at
times earlier than ¢, the results obtained in Sec. V still
apply.

After the transition time, our model of the cosmic-
string network and the mechanisms for kink decay will
retain the same form as was developed in Secs. IT and 1V;

eq’
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additional dimensionless parameters, however, are now
necessary to describe the space-time and the string net-
work. In the remainder of this paper, these additional
parameters will carry a prime. Thus, the cosmological
scale factor is now given by

PR
l— for t <t , (6.1a)
Lo
a(t)= P p'
teq t
— for to, <t . (6.1b)
tO teq
After the scale factor changes its form at time Legs the

horizon length is no longer proportional to ¢ [although it
asymptotically approaches ¢/(1—p’) as t/t.,q—.] To
simplify our calculation, we approximate the scaling solu-
tion by assuming that the physical properties scale as the
appropriate power of ¢, just as before, with the appropri-
ate primed parameters (A’, B, a’, and &'). This is a
good approximation. The nontrivial changes necessary
to evaluate the kink density after the transition time ¢4
involve the solution of the differential equation (5.2) un-
der new boundary conditions, and new limits of integra-
tion in Eq. (5.4).

This scale factor is continuous at time 7., but its
derivative is not continuous; the expansion rate d/a
changes abruptly at time ¢ =t.,. A realistic scale factor
would evolve continuously as the universe cooled, and in-
clude effects such as the annihilation of relativistic parti-
cle species, and the details of the transition from radia-
tion to matter domination. We have examined these
effects in more detail; they only change the kink density
during the time period f.4 <t <e§lteq. During that
period, the kink density is increased, but always by less
than a factor of 2. Our choice of scale factor is therefore
a reasonable approximation to a more realistic one, and
greatly simplifies the details of the calculation.

We first calculate the function n (u,s)ds, the number of
kinks present on the long-string network at time », which
were formed between times s and s +ds. Because the
universe is passing through two different eras of expan-
sion, one must distinguish between the different possible
ranges of u and s. The three regions of interest, shown in
Fig. 5, will be labeled 1, 2, and 3 in the following discus-
sion. Region 1 corresponds to kinks created and ob-
served before the transition, at times s <u <Ueq, where
Ueq=In(z.,/t;). Region 2 corresponds to kinks created
before the transition but observed after the transition,
i.e., s <u.q <u. Region 3 corresponds to kinks created
and observed after the transition, at times u., <s <u. To
determine n(u,s), we will follow the same procedure as
used in Sec. V. Along the diagonal line u =s the rate of
kink formation at time s is given by

n(s,s)=BCL3tf3p_3t0_3pe(3"_3)5, 5 <ugq (6.2a)
:BIC:LBI}P'—3125—3p'to—3pe(3p'—3)s, ueq<s .
(6.2b)

The differential equation describing the removal of kinks
is
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FIG. 5. The u,s plane can be broken up into different re-
gions, here labeled 1, 2, and 3. The dividing lines at u., mark
the transition between radiation- and matter-dominated expan-
sion eras. Below the diagonal line, #n (u,s) vanishes. Along the
diagonal line, n(s,s) is determined by Eq. (6.2a) for s <u., and
by (6.2b) for u., <s. The differential equations determining
n (u,s) above the diagonal line are (6.3a) in region 1 and (6.3b) in
regions 2 and 3.

—%n(u,s)
3 s for region 1 (u <u.), 6.3
—n(u,s)= Y -oa
du — & ws)

for regions 2 and 3 (u, <u) .

(6.3b)

Note that since the dimensionless parameters of the
string network change after the transition, our
differential equation also changes. Because the charac-
teristics of the differential equation are vertical lines
s =const, the boundary condition on the part of the diag-
onal line for which s <u., determines the solution in re-
gions 1 and 2. In region 1, the solution (5.3) is valid.
Along the horizontal line u =u_, that solution provides a
boundary condition for region 2. If n (ueq,s) were con-
tinuous in the u direction, i.e.,

lim[n(u.,—

e—0

e,s)—n(ueq-l-e,s)]:O s

the kink density in our model would not behave in a
physically reasonable way. This is because, in our model,
the length of infinite string changes abruptly: just before
the transition from radiation to matter domination it is
lim, oL, (tq—€)= AV (1)t ;% and just afterwards, it
is lim, oL, (t;q+€)=A"V(tey)t > Since 4> A’ the
length decreases abruptly. Realistically the cosmic string
network would shed the excess length within a few ex-
pansion times after ¢y, without significantly changing the
kink density. Hence, our boundary condition is

Hm[K (1= €)= K(1eq+€)]=0..

This means that the total number of kinks just after the
transition must be modified by the ratio 4’/ A (which is
less than 1). Hence we set n(u,+e€s)=(4"/
An(ue,—e€,s);
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in(u
A

_A4 3,3p—3,—3
= BCL"t? ~°t; P
A f 0

n(u.q+0,5)= 0,s)

Cq——

—(aB/A)u —
Xe eqe(3p 3+aB/A)s . (6.4)

In region 2, the differential equation (6.3b) is satisfied,

with the boundary condition coming from (6.4). The
solution is
A4’ 3,3p—3,—3
n(u,s)ZTBCL L T
Xe(aIBI/A’iaB/A)ueqe(3p*3+aB/A)S
Xe "B /A0 for region 2 . (6.5)

In region 3, the function n (u,s) is completely determined
by the boundary condition (6.2b) together with the
differential equation (6.3b). These give the number of
kinks n (u,s):

n(u,s)=B'C'L3t} 30~ %' ;%
X e3P =3ta B/ ANse —(@'B/ AU for region 3 .
(6.6)

We will now show that the kink density after the transi-
tion to the new expansion era can be found completely in
terms of n (u,s) in regions 2 and 3.

In order to calculate the kink density, we must deter-
mine the times of formation u ;. () of kinks that die at
time u =In(z/t;). These determine the limits of the in-
tegral which counts the total number of surviving kinks:

K(t)=n(u)/L (1)

u

—7 —1
L (t)fmax(ubmh(u)’o)n(u,s)ds fort,<t, (6.7

where u ;. (1) denotes the logarithmic time of formation
of a kink decaying at the time u.

There are two distinct ranges of u to be considered in
order to calculate an expression for wu;,,(u) after the
transition. The first range is for early times
Ueq <uU <u,+8'. The second range is for late times
Ueq T8 <u. The reason that two cases arise is that the
rate of kink decay changes after the transition. Region 2
kinks (formed before ., and surviving after f.5) will

J

3—3p'—a'B'/A'
K (1)= BC %[%]
aB eq
A[3—3p——
Py
) 3—=3p'—a'B'/ A’
e R
i3, B e
A" |33 =

B. ALLEN AND R. R. CALDWELL

43

have longer (or shorter) lifetimes than region 1 kinks, due
to the change in the rate of kink decay. To see this, con-
sider a kink formed at time ty;,. At time 7., the size of
the kink will have diminished to the fraction
(teq /toieen) 7% Of its original amplitude. From the time
teq until the time of kink death, the amplitude will'have
further diminished by the fraction (4., /teq)_l/ ¥ By
definition, the time of death occurs when the kink size
falls below e ! of its original amplitude. Thus the time
of birth can be expressed in terms of the time of death:

5/8' 8/8' P

eq

Iy

hirth

Ly

t death

ty

i

leq

—d (6.8)

We need an expression that tells us the “time of birth” of
a kink which ‘“dies” at time u. Letting u 4., =u, and
taking the logarithm of the above expression, one obtains
the linear relation for the first range

Upiren (U)=—8+ud/8"+u,(1—56/8")

for uegg <u<u,+8 . (6.9

The second range pertains to kinks created and observed
after the transition. Thus, in region 3, we obtain

Upiren (W) =u —8&" for u,+8& <u . (6.10)

These last two formulas, (6.9) and (6.10), are the desired
expressions for uy; ., (u).

From this point on, we will assume that tfe8<teq.
This means that the transition at time ?., between the
different eras of expansion takes place after the kink den-
sity has begun to scale in the first expansion era. In phys-
ical terms, this assumption means that kinks formed at
the same time t; as the string network forms, have de-
cayed by the time of the transition. Hence, the lower lim-
it in integral (6.7) is positive for u., <u. This assumption
will be seen to be valid in Sec. VII, where a realistic
cosmological model is considered.

We may now calculate the kink density on the long-
string network. At early times u < ueq+8’, as discussed

- in the preceding paragraph, the integral (6.7) counts

Teq

kinks formed between times uy;, and u., in region 2,
and kinks formed between times u., and u in region 3.
The integral thus consists of two terms, which may be
easily evaluated. One obtains the kink density

(3=3p—aB/A)S_ 1

]—(3—3p~a13/,4)<5/8')
e

for to <t <tee® . (6.11)

[At time ¢, Eq. (6.11) agrees with Eq. (5.6).] At late times, the integral (6.7) only counts kinks formed after time Legs 1€,
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n (u,s) lies entirely in region 3. We thus obtain the same kink density as in Eq. (5.6), with all parameters primed:
K(t)= B'C 5 %(e“_h"_“'y/’”&——l) for teqe5'<t . (6.12)
A" |3-3p' -2 =

At the boundary time teqesl, the kink densities given by
the two equations (6.11) and (6.12) agree with one anoth-
er.

The behavior of the kink density well after the transi-
tion between expansion eras [Eq. (6.12)] is very similar to
the behavior before the transition [Eq. (5.6)], since the
kink density reaches scaling in both cases. However,
there is a “period of adjustment” [Eq. (6.11)] during
which the kink density does not scale. In Fig. 6, we show
how the scaling solution from before the transition [Eq.
(5.6)] relaxes through the *“period of adjustment” into the
scaling solution after the transition (6.12).

In the next section we will examine the specific case in
which the universe passes from a radiation- to a matter-
dominated expansion era. In order to apply the results
obtained in the present section, we will obtain values for
the various parameters. We will then examine the kink
density in greater detail.

VII. RADIATION AND MATTER ERAS

We are most interested in the behavior of kinks on a
cosmic-string network in a universe which undergoes a
transition between a radiation- (p =1) and a matter-

Cosmological kink density
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FIG. 6. The linear kink density K (z) is shown as a function
of time for the most realistic known values of the parameters
describing the evolution of cosmic-string network in an expand-
ing universe. The string network begins to evolve freely at time
~107% sec, and evolves in a radiation-dominated universe until
the universe becomes matter dominated at time =~ 10'? sec. Be-
fore this transition, the dominant decay mechanism for the
kinks is through emission of gravitational radiation. After the
transition, the dominant mechanism changes. This accounts for
the rapid drop in zK (z), which is the number of kinks visible on
a horizon-length segment of long string. Before the transition
one has tK(t)=~10° and after the transition one has
tK (1)=5X10%

[

dominated (p'=2) era. All the necessary expressions
describing the behavior of the kink density have been de-
rived in Secs. V and VI. It now remains to find values for
the dimensionless parameters and examine the evolution
of the kink density. Note that throughout this section,
unprimed symbols parametrize the radiation-dominated
era, and primed symbols parametrize the matter-
dominated era.

At the present time, the only way to determine some of
the dimensionless parameters is through the use of nu-
merical simulations of a cosmic-string network in an ex-
panding universe. Recent high-resolution simulations by
Bennett and Bouchet®!° have examined some of these pa-
rameters, as has related work by Allen and Shellard® and
Albrecht and Turok.? Because Bennett and Bouchet pro-
vide the most complete set of numerical values, we will
make use of their results in the remainder of this section.
Appendix D gives the conversions between the dimen-
sionless parameters of Bennett and Bouchet and the di-
mensionless parameters used in this paper.

The dimensionless parameters 4 and A’ determine the
energy density of the long-string network. Physically, 4
and A’ represent the number of segments in one horizon
cell. The numerical simulations®!® suggest that realistic
values for these parameters are 4 =13 in the radiation
era, and A'=3 in the matter era, as found in Appendix
D.

The parameters which describe the rate of loop forma-
tion, B and B’ can be found through energy conservation.
In Appendix A, we obtain the relation

aB/A=2[1—p(1+{v?))] (7.1)

between the dimensionless parameters A4, B, a, and p.
(The primed version of this relation is equally true.) This
important expression provides information about the di-
mensionless ratio of parameters aB/ A. These parame-
ters determine the rates of growth and decay of kinks and
the kink density, and are now expressed in terms of the
well-determined parameters p and {(v?). This relation-
ship is satisfied if and only if the energy density in the
infinite string network scales; it expresses the constraints
imposed by ‘“‘energy conservation” in that case. Thus,
the time-dependent behavior of K (¢) depends only on p,
(v?), and 8. In the radiation-dominated era, the mean-
square velocity is {v2) ,giation~0.43,%'¢ which gives

aB/A=~0.57 . (7.2a)

In the matter-dominated era the mean-square velocity is
(02) narter=0.37,% 1€ 50 that
a'B'/A'=0.17 . (7.2b)

It should be emphasized that (v?)7#1 (in flat space



3182

{v?)=1), or else B’ would be zero.

We will take C, the number of kinks added to the
long-string network per loop created, to be 2 in all eras.
(None of the published results of the numerical simula-
tions provide a value for this parameter.) The choice of C
has no great effect, since it only changes the magnitude of
the kink density, and not the overall behavior. In fact,
since the allowed range of C is 2 < C, our choice under-
states the magnitude of the kink density.

Numerical simulation®!'® determines the values of the
dimensionless parameters a and a’. The work of Bennett
and Bouchet!? indicates that the size of newly formed
loops is described by a distribution of values. These
values of o and a’ are peaked around a narrow range of
values, as the one-scale model assumes. In the radiation-
dominated era, the fraction of the horizon length which
determines the size of newly formed loops lies in the
range 0.002 <a <0.01. In the matter-dominated era, this
fraction lies in the range 0.005 <a’<0.05. The uncer-
tainty in the values of a and a’ does not affect the time-
dependent behavior of the kink density, but only affects
its overall magnitude. As a result, we will use the larger
values for a and @’ in the ranges above, which will under-
state the magnitude of the kink density.

We can evaluate Egs. (4.6) and (4.7) in the radiation-
and matter-dominated eras in order to find values for the
kink decay coefficients:

Ogiretch = 14 radiation era , (7.3a)
Siretch =6 matter era , (7.3b)
8grav =842y~ 10 both eras . (7.3¢)

The smallest values of 6 will result in the most rapid de-
cay of kinks. Therefore, in the radiation era the gravita-
tional back reaction will regulate the decay loss of kinks,
and in the matter era, the stretching of kinks due to the
expansion of the universe will dominate the decay pro-
cess.

Values for the parameters can now be substituted into
the expressions for the evolution of the kink density, de-
rived in Egs. (5.5), (5.6), (6.11), and (6.12). From the time
of formation of the string network until the time at which
first kinks decay, the kink density is

120 093

L1
t

L

K (1)

for 1, <1 <2.2X10%, <t . (7.4)

From the time the first formed kinks have begun to de-
cay, until the end of the radiation-dominated era, the
kink density scales as

1.3 108
t

K(t)= for 2.2X10%, <t <t,, . (7.5)

The typical time of formation of a grand-unified-theory-
(GUT)-scale cosmic-string network is ty
~107? sec. (More precisely, this is the time at which
dynamical friction with the cosmological fluid becomes
negligible, and the string network begins to move free-
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ly.!7) The transition from radiation to matter domination
takes place at time #,,~10'? sec. Thus, the assumption
made in Sec. VI, that the transition ., takes place after
the kink density begins to scale, is well justified.

The ““period of adjustment” described in Sec. VI occurs
after the transition from the radiation- to matter-
dominated era. Here, K (¢) counts kinks formed in the
radiation era which decay in the matter era, as well as
kinks formed in the matter era which have not yet de-

cayed:
; —1.55
— —1
teq

for t., <t <400z, .
eq eq

0.83

1.1x10*

K(t)zp—ol d

t

Leq

0.83
t Leq

Notice that Egs. (7.4) and (7.6) explicitly “remember their
boundary conditions” with ¢, and t., terms, giving rise to
the pathological, nonscaling behavior. At time ~400z,,
all the radiation era kinks have been destroyed; afterward
there will be no trace of the preceding periods, save the
unusually high linear density of kinks on the string net-
work. The kink density reaches scaling for the remainder
of the matter era:

(7.6)

3
~ 222U .7

K(t)= for 400t <t .

Since t,, for our Universe is about 10'? sec, and the
present value of ¢ is about 10'7 sec, we are currently in
the regime described by Eq. (7.7).

We may now examine the functions log,,K vs log;t, as
plotted in Fig. 6. The important features are the dramat-
ic increase in K () before the first kinks begin to decay,
and the short period of adjustment before scaling begins.
We see that after scaling begins in the radiation-
dominated era, there will be ~10° kinks per horizon
sized segments. After scaling sets in during the matter-
dominated era, there will be a more modest = 10> kinks
per horizon sized segment. These values are much larger
than the naive expectation that one should find on the or-
der of one kink per horizon sized segment.

VIII. CONCLUSION

In this paper, we presented a simple analytic method
for computing the linear density of kinks on a cosmic-
string network in the “one-scale” model. The specific
case of the evolution of the kink density during a
radiation-dominated era, followed by a matter-dominated
era was examined. We found that the kink density
displays a pathological, nonscaling behavior before kinks
begin to decay at the beginning of the radiation era and
immediately after the transition to the matter era. As a
result, the number of kinks present on the long-string
network at late times after the kink density has begun to
scale is very large.
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In two of the existing numerical simulations,®™ ! it is
clear that small-scale structure is being formed; the
growth of the kink density as seen in the analytic model
presented in this paper may suggest the reason why.
(Different explanations for this structure formation have
also been given, for example, in Refs. 1214, 23, and 24.)
In fact, the simulations do not run nearly long enough to
reach the scaling behavior in the kink density, since a
typical simulation runs for ¢, <t <25t,. We see in Eq.
(7.5) that scaling does not begin until ~2.2X10% in the
radiation-dominated era, and from (7.7) not until
~400t,, in the matter-dominated era. Thus, the kink
density is predicted to rise rapidly for the duration of the
simulation.

The large kink density provides an extremely small
length scale K ~!(¢) on the string network. Bennett and
Bouchet!® have noted that, at the end of their simula-
tions, the mean separation between kinks expressed as a
fraction of the horizon length is =~0.001. This value
agrees very well with the distance between kinks predict-
ed by Eq. (7.4) at time 25¢,: 1(¢)/K (1)=~8X107% In re-
cent work, Bennett and Bouchet have given qualitative
arguments predicting that small-scale structure in the
form of kinks would be expected to build up on the long-
string network. The results of our analytic calculations
show that their reasoning is correct.

The buildup of kinks puts into question the validity of
the one-scale model, since the one-scale model assumes
that all structure is described by a single length scale,
proportional to the horizon length. In our model, the
distance between kinks is still proportional to the horizon
length, but its very small magnitude is surprising. One
might wonder if this reflects an inconsistency in the one-
scale model. For example, one might expect that the rate
of loop formation would increase in regions of high kink
density. The work of Bennett and Bouchet does address
this question, and they state that the enhancement of
loop production by the formation of small-scale structure
does not appear to be the dominant process in their simu-
lation. Thus, in spite of the apparent shortcomings, the
assumptions of the one-scale model appear to be justified.

One can speculate about two possible effects to which
the large number of kinks present on the long-string net-
work might lead. First, the loops cut off the long string
may be smaller than naively expected, because the kinky
structure increases the probability of self-intersection and
of loop formation. Second, the loops cut off the infinite
string will have the same high kink density, which may
lead to further fragmentation. These types of effects
would increase the number of small loops formed, and
weaken the existing bounds on Gu that come from timing
measurements of the millisecond pulsar.>”2735 The
effects of kinky strings on galaxy formation are discussed
in Refs. 7, 9, 10, 16, and 17. The kinky strings may also
have effects on the appearance of the cosmic-microwave-
background radiation.*®

Note added in proof. Since completion of this paper, it
has been shown>® that the rate of kink decay due to gravi-
tational radiation is proportional to yGuK(t). This
modifies our results slightly.>® Some additional work on
the two-scale model has also recently appeared.*®#!
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APPENDIX

This section serves to explore in greater detail several
points crucial to this work. In Appendix A, we will dis-
cuss the equations of motion and evolution of the energy
density of the long-string network in order to derive an
expression for the rate of loop formation. Appendix B
will examine a naive view of kink formation. Appendix C
will discuss an apparent paradox in the rapid growth of
the number of kinks present on the long-string network
before kinks begin to decay. Appendix D will give the
conversion between the dimensionless parameters used in
this paper, and the parameters used by Bennett and
Bouchet®!© to describe the results of their numerical
simulations. Finally, Appendix E will calculate the ener-
gy density in loops, using expressions developed in Ap-
pendix A.

A. Energy density of long-string network

The kinematics of a cosmic-string network will be
developed in this section in order to find an expression
for the rate of formation of loops. Similar calculations
may be found in the work of Kibble.’” We begin by
finding the equations of motion of the cosmic-string net-
work.??® In a conformally flat space, with metric
ds?=a*(r)(—dm+dx?+dy*+dz?), the Nambu action is

S=—pu [V —¢Pdodr

— 2

2 172

4ax dodr

dr

dax
do

dx dx
dr do

(A1)

(o is a spatial parameter describing position along the
cosmic string), where p is the mass per unit length and
|S /u| is the area of the world sheet swept out by the
string. We now impose the standard gauge conditions
dx/dr-dx/do=0 and (dx/d7)’+(dx/do)*=1, and ex-
tremize the action. We find that the position of the cos-
mic string is described by a function x(7,0) which obeys
the equation of motion

2

d’x  ,ldadx | _|dx||_1.d |1dx
dr? adrdr dr edo |edo
(A2)
Here
2
e= |4x / _ |49x
do dr

is the ““coordinate length per unit ¢ of the string (modu-
lo Lorentz contraction). From the gauge conditions, (A2)
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implies that € obeys the evolution equation

2
dx

de 1 da
_——_2___
€ dr

A3
dr adr (A3)

Equation (A3) will be used to calculate an expression
describing the evolution of the energy density of the
string network.

We can now use the equations of motion of the cosmic
string to derive an expression for the evolution of the en-
ergy density of the string network. The energy of all the
cosmic strings present at time ¢, including both the loops
and the infinite string, is given by

E=a¥0 [d’x T",=pa(v) [edo , (A4)
where T is the stress-energy tensor of the cosmic string,
and the three-space integral is taken over the constant
comoving volume L. [Note that we are once again using
a comoving time coordinate ¢ rather than conformal time
coordinate 7. They are related by dt =a(7)dr.] The spa-
tial parameter along the string, o, can be broken up into
consecutive ranges, of the form o€[0,0,) and
0€[og0;) and so on. As o varies in each of these
ranges, the point x (o,¢) moves along either an infinite
string or a loop. Thus the integral appearing in Eq. (A4)
can be broken into the sum of two terms, E=E,,, +E ,
with E,,,, denoting the total energy of all the loops
within the comoving volume L3, and E_ denoting the
same quantity for infinite strings:

Eppy=pa(t)[ edo and E,, =,ua(t)fw6d0 .

loop

(AS)

In each of the above two integrals, the range of the spa-
tial parameter o being integrated over corresponds to the
ranges forming loops and infinite strings, respectively.
Taking the time derivative of the total energy in cosmic
string, one obtains

E=pa() [edo+pav) [edo . (A6)
Here, the integrals include all of the ranges of o, belong-
ing both to loops and to infinite string.

Now, making use of the equation of motion (A3), one
arrives at an expression for the evolution of the energy of
the cosmic-string network:

E, +E,oop=%Ew<1~2<u%,o >>+%151(,0‘,(1—2@,200p ).
(A7)

Here, the time-averaged velocity squared of the string
segments are denoted (v2)=a2(x?), with the subscripts
indicating infinite string and loops, respectively. This
equation is very similar to one obtained by Kibble in 1985
(equation 19 of Ref. 37). Because (by definition) the loops
are smaller than the horizon length, they behave as
though they are in flat space, and hence (vlzoop Y =1
Since the energy density p is defined by
E =pV(t)=pa’(t)L*, one can use (A7) to obtain an equa-
tion relating the energy density of loops to the energy
density in infinite string:
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ploop+3%PIoop=—pw_Z%Pm(l‘*'(Ui ). (A8)
If the production of loops via intercommutation of the
infinite strings were suddenly prevented, the left-hand
side would vanish. The total energy in loops would then
be conserved, since 0=(d /dt)(a 3P100p)- Thus, in the real-
istic case where the long strings are intercommuting to
produce loops, the rate at which the total energy in loops
is changing is related in a simple way to the rate at which
new loops are forming.

The rate of loop formation per comoving volume can
now be calculated. In time interval dt, the total change
in the energy of loops is dE,q,, =pat dNy,,,, since each
loop formed is assumed to have length at at the time of

formation. Hence, the rate at which new loops are
formed is
leoop _ 1 dE]oop

dt pat  dt (A9)

Making use of Eq. (A8), the rate of new loop formation is
related to the infinite string energy density by

di'loop L13L3 . a
dt = aut ploop+3aploop
3r3 3
a’L . a 2
=— +25p (1+ :
aut Pe ap°°( <U°°>)]

(A10)

Since the energy density in the infinite string network
[Eq. (2.5)] is assumed to scale p, = Aut 2, the rate of
new loop production in the comoving volume L? is given
by

leoop - 2A

<«a _ 2 —4
o - [1—p(1+<{v2 Nt 4V (1) . (A11)

This important result is used in Egs. (2.8) and (7.1), and
in Appendix E.

B. Naive view of kink formation

We want to stress the consistent use of the various
volumes (i.e., comoving, physical, fixed) mentioned in this
paper. To illustrate the pitfalls of an inconsistent choice,
we will carry out an incorrect ‘“calculation,” done from
the point of view of an observer whose knowledge and in-
terest are confined to a single horizon volume. As a cau-
tionary note, the reader should beware that “equations”
(B1)—(B3) are incorrect. The error in the calculation and
the missing terms in the equations will then be explained.
The dimensionless parameters 4, B, C, and a represent
the same quantities as in the rest of this paper.

An observer whose knowledge is restricted to a single
horizon volume will see, for each loop produced, atK ()
kinks carried away and C added to the reservoir of
AtK (t) kinks on the infinite string visible within the hor-
izon volume. The naive temptation is to write down the
incorrect expressions for kink creation
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dn created leoop 13( t)
=C
dt dt V(1) B1)
and removal
dn removed __ leoop 13( t)
dt =atK (t) @ Vo (B2)

by using the fraction of loops, counted within the comov-
ing volume L3, which are observed within the horizon
volume 73(¢). These rates lead to the incorrect differential
equation

d B

i [AtK (8)] ;
[which is different than Eq. (3.4)]. The problem here is
that the number of kinks within the horizon can increase
or decrease even if no string crossings occur. The reason
is that, as the horizon increases in size, more infinite
string enters within, carrying kinks. The correct equa-
tion reads

[C—atK(1)] (B3)

d _ £ _ dnentering
dz[AtK(t)] ; [C atK(t)]+——-—---dt . (B4)
The additional term in the equation is
dn entering __ V( t)
it =43 V(t)t K(t), (BS)

which is the rate at which kinks on the infinite string net-
work enter the horizon. Equation (B5) can be easily de-
rived by comparing Eq. (B4) with Eq. (3.4), since the
correct solution is already known.

The reason why the counting of kinks is easier within a
fixed comoving volume is that on the average, no kinks
enter or leave this volume along the long strings. This is
because the infinite string network is fixed with respect to
comoving coordinates on large scales—the expansion of
the universe drags the infinite string network, which is
conformally stretched. It is easy to see how the incorrect
counting argument that led to “‘equation” (B3) can be
corrected. One must replace /3(¢) by V(¢) in Egs. (Bl)
and (B2), and count the number of kinks within a comov-
ing volume, L  (#)K (), rather than the number of kinks
within a horizon volume, AtK (t). The correct differential
equation describing the evolution of the kink density is
now

d

Z[LwK(t)]ZV(t)Bt_"'[C—atK(t)] ,

which is the same as Eq. (3.4).

(B6)

C. A paradox resolved

An apparent paradox arises when one considers the
rate at which kinks are added to and removed from the
long-string network. If the kink density is high, each
loop formed adds two kinks to the long-string network,
but removes many more kinks. Thus, it might seem that
the kink density cannot increase without bound, as it
does in Eq. (3.7).

The paradox is easily resolved. It is true that the num-
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ber of kinks at late times is actually decreasing. The
length of infinite string, however, is decreasing faster.
Thus, the kink density, which is the ratio of the number
of kinks divided by the length of the infinite string, actu-
ally increases with time. The physical picture is a simple
one—the shrinkage in the length of the infinite string
“distills” or “concentrates” the kinks along the string.

D. Dimensionless parameters

The numerical work of Bennett and Bouchet®!® uses
different dimensionless parameters than those used in this
paper. We feel that it is useful to see the conversion be-
tween the notation of this paper (AC) and Bennett and
Bouchet (BB). For the radiation and matter eras, we will
give the AC parameters A and aB, and their BB
equivalents.

The energy density of the long-string network is given
by

po=uLgd(t), (D1)
where Lgg(t) is a fraction of the horizon length;

Lyg(t)/vgg=1Iac(?) . (D2)
Thus, comparing (D1) with (2.5), we see that

A pc=(4y%p) 7! radiation era , (D3)

A'\c=(97%5)” ! matter era . (D4)

In the radiation era, BB give yg5=0.14 and y3=0.18 in
the matter era. The parameter A4,c has the numerical
value

(D5)
(D6)

A pc=13 radiation era ,
A'\c=3 matter era .

The rate of change of the energy density is given by

%pBB =CppuLpg (1) . (D7)

This is equal to Eq. (2.8) times auV ~(¢). Thus, we see
that

(aB)pc= % radiation era , (DY)
87" |ss
’ ’ pa— C
(a'B')pc= 3 matter era . (D9)
27y’ |gB

Bennett and Bouchet give numerical values Cgg =0.16 in
the radiation era, and Cgg=0.09 in the matter era.
Thus, the combination of dimensionless parameters

aB ~0.57 radiation era , (D10)
4 fac

i ~0.17 matter era . (D11)
A" |ac

These are the numerical values used in Egs. (7.2a) and
(7.2b). This permits our analytic model of kink formation
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to be compared with the numerical simulations of Ben-
nett and Bouchet.>!°

E. Energy density of loops

The energy density in loops will be calculated, using
expressions developed in Appendix A. While the solution
is  straightforward, it is not trivial because
Elcops—i-E »70; the total energy in loops and infinite
strings is not constant in time. We will see that at early
times, when loops are first chopped off the long strings,
the energy density in loops grows relative to the energy
density in infinite strings. However, the loops will not
come to dominate the universe. After enough time has
passed for the loops to evaporate and disappear via the
emission of gravitational radiation, one finds
Ploops/ P ~const. This behavior of the loop energy densi-
ty is analogous to the behavior of the linear kink density.
At early times, both grow, and at late times, both scale.

The energy in loops created by intercommutations of
the infinite string network can be easily calculated by
summing the energies of all loops present. Since the size
of a loop formed at time #;, is atty,;y, at any later time ¢
the size of the loop will be
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L (8, tyiren )= Al pipen — ¥ Gt — Lyieny)

Loirth <! <lgean - (E1)

This formula holds until the loop disappears completely
at time

a
L death = H——yGy Poirth = Loirtn /B -

Here, B=1/(1+a/yGu) is a parameter less than one.
Thus, the energy density in loops may be written as the
integral

_ 1 t leoop
ploDPS— V(t) fmax(lf,BI)IuL(t’tbirth) dtbirth dtbirth .

(E2)

Use of the lower limit ¢, during the period ¢, <t <t,/fB
takes into account the accumulation of loops, none of
which have yet completely evaporated. In the case of
general power-law expansion, the energy density in loops
is

2
ploopszszaG (1—p(1+(vzw))]t_2f(t), (E3)

where for p52 /3, the function f () is given by

_ 2—3p 3—-3p

B! t 1 t "
= | = —-1|— — t,<t<t , Eda)
>—3p y 1 =3 y or Iy /B (Eda

f)=
/3311—3 Bvl 1
— + for t,/B<t . (E4b)

Gp—3)03p—2) 2—3p T3-3p | Tris/B

One sees that the loops accummulate until time tp/B, at
which time loops begin to disappear. Afterwards, the
loop energy density is proportional to the energy density
in infinite strings: pj,o,5/P ~const. This behavior is
very similar to that of the linear kink density, which
grows rapidly at early times, and scales at late times.

In the exceptional case of matter-dominated expansion,
p =2/3, the function f(t) is

1=t Lin | L || fore,<i<t,/B, (Eao
f= o1

1——+—=In |— for t,/B<t . E4d

[ B B B] 17 e

The energy density in loops displays the same sort of be-
havior as in Egs. (E4a) and (E4b). At early times, pjoqps
grows relative to p,,. At late times, it is a constant multi-
ple of the energy density in infinite strings.

The interesting case is to examine the loop density in a
model universe which undergoes a transition from a
radiation- to a matter-dominated era. After the transi-
tion, the primed parameters describing the cosmic string
network in the matter-dominated era apply. We define a

f

parameter B'=1/(1+a’/yGpu) to describe the decay rate
of loops in the matter era. Just after the transition at
time ., there is a period of adjustment t., <t <t., /B’
during which loops formed in the radiation era evapo-
rate. After the period of adjustment, py,, returns to
scaling.

Now, we will evaluate Eqs. (E4b) and (E4d) for the en-
ergy density of loops late in the radiation- and matter-
dominated eras. Plugging in the same values for the di-
mensionless parameters as used in Sec. VII, we find

(E5a)
(E5b)

Ploops _ 9.7 for 2001, <t <t., ,
p. 1.0 for 1000z, <t .

In the radiation-dominated era, loops comprise =90% of
the total energy density in cosmic strings. In the matter-
dominated era, loops comprise =50% of the total energy
density in cosmic strings. It may be of interest to exam-
ine the evolution of the kink density on these loops, and
how the presence of kinks may effect the evolution of the
loops.
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