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Abstract. Non.flat Friedmann-Lemaitre models solving the horizon problem in which, 
prior to and during inflation, cumat~re,  cosmological constant and radiation are taken into 
account, are constructed Tor present density parameter values in the range 0.360,s 1.5. 
The presentation is based on an exact solution 10 the Lemaitre equation containing the 
three abave.mentioned contributions. Then the influence of matter different from radiation 
is discussed. We also Sive an example For what happens when the expansion is anisotropic. 

1. Introduction 

The large-scale structure of the universe is successfully represented by a Robertson- 
Walker ( RW) spacetime filled with matter and radiation obeying Einstein’s field 
equation. Such models, being based on the a priori assumptions of spatial homogeneity 
and isotropy, cannot explain these two fundamental properties which are well supported 
particularly by the observed isotropy of the 3 K background radiation. Even if one 
assumes homogeneity and isotropy of spacetime, an explanation of the corresponding 
properties of marter and radialion in terms of transport processes fails because the 
comoving radius ud of the particle horizon at the time of decoupling Id, the ‘primeval 
particle horizon’, is much smaller than the comoving radius U ,  of that part of the 
universe which became visible at decoupling, the ‘visual horizon’. 

Elementary particle theories assume the existence of scalar fields in the very early 
phases of the universe. These scalar fields can simulate a cosmological constant [ 11. 
If these scalar fields decay long before decoupling, the horizon problem can be solved, 
as first pointed out by Guth [?I. The solution of the horizon problem and related 
problems make inflationary cosmology attractive. 

It has been claimed that inflation yields a very small spatial curvature. In  fact most 
calculations in inflationary cosmology have been done with a flat R W  metric. Also it 
has been predicted that this vanishing spatial curvature can be used to test inflation 
[3, 41. Ellis has shown, however, with a simple model that it is possible to solve the 
horizon problem i n  cosmological models with an inflationary phase and to get a 
non-negligible curvature today. I n  these models the present value of the density 
parameter n= ~p , , , , / 3H’  does not have to equal 1 to high accuracy, either. Below we 
present an improved model supporting the essential conclusions of Ellis. Our model 
takes into account the effects of radiation and curvature at all times. Moreover, we 
avoid the unphysical discontinuity of source terms at the onset of inflation used by 
Ellis for computational simplicity. In contrast to Ellis’, our model yields only a lower 
bound for the expansion during the inflationary phase. I f  used as a background model 
for fluctuations of the scalar field, it can therefore be adjusted even if the fluctuation 
calculations lead to larger lower bounds for the amount of inflationary expansion. 
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We also consider deviations from the idealizations of our two-phase model. These 
deviations can significantly modify the predictions of an inflationary model. I t  would 
be very important to know whether inflation works in general, inhomogeneous models 
of the universe. Recent numerical studies by Goldwirth and Piran indicate that 'a 
region of several horizon sizes must be homogeneous for inflation to begin' [5]. 

The merit of the idea of inflation, its explanatory and predictive power, thus requires 
further scrutiny. 

2. Ellis' model 

In this section we briefly review the model of Ellis [6] for comparison with the two-phase 
model to be treated in section 3. We put c = I and K = S T G ,  G denoting Newton's 
constant. -. 

I ne evoiution of a Friedmann-iemartre universe with metric 

ds'= -dt'+ R2(l)(d412+Si(~)(de'+sin2 8 d+')) 

sh(t)= 4 k = O  [ sin 4 k = l  

sinh $ k = - l  

is divided into the three phases indicated in figure I. 
An assumption underlying this as well as the two-phase model i s  that the influence 

of a scalar field c$ can be approximated by a cosmological 'constant' which decays 
instantaneously to zero at some instant tr. This is a very strong restriction on the form 

today 

srandard phase: 
no cosmological constant .\, the Lemaitre equation for the scale function R 
contains radiation (energy density pJ, cold milter and the curv$ture lk = * 1 
or 0): 

f R\' K& KO., k 
\- R I  "T'--- 3 R' 

decay of ,\ ,end of inflation 

inJorionary phose: 
the Lemaitrc equation contains .\ only: 

I 

onset of inflation 

preinflorionar? p l m t :  
only radiation and curvature are taken into account in the Lemaitre equation: 
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of the potential of the scalar field q5 (for a discussion of this point in the new inflationary 
scenario in a flat RW model, see [7]) and is furthermore based on the assumption that 
the coupling between scalar field and radiation can be neglected in the slow-rolling 
period which depends on the form of the coupling (see [l] for a 'good' coupling and 
appendix 2 for a 'bad' coupling). 

Another, fictitious, discontinuity in k at the onset of inflation 1; was introduced 
by Ellis only to simplify the calculations. It does not represent a phase transition, but 
it doe: a E e a  the choice of parameters of the mede!. 

Since R and R have to be continuous throughout (see appendix l ) ,  the following 
equations have to hold ( k / R i  has been neglected; it  is very small in comparison with 
k / R f ) :  

k 
K p r ; - 3 - = K p t O t ~ = I ~ .  (1 )  R ;  

The 'radii' of the primevai and visual horizons are given by 

where fd is the time of decoupling when R o / R d = 1 0 3 .  (The roman indices m and r 
refer to cold matter and radiation, the indices i, f, d and 0 stand for 'at t,', 'at I ; ,  'at 
td' and 'at 1;. respectively). 

The requirement that the horizon problem be resolved leads to a relation between 
llj and R , / R ,  for given R o / R f ,  Om,, and fl,. The allowed values of n, are restricted 
to a small range and therefore the duration of the inflationary phase cannot vary 
significantly. Ellis obtained in the, in view of observations, most interesting, low-density 
c a s e l l < l :  

u , > ~ O u ,  e - $ I n l l , + h 2 > u V .  
The amount of inflation ( R , / R , )  has to obey 

R R,  
Rr RI 

27 -log 2 + l ~ g  - = 2 5  - log[O.48( 1 +a,)] 

Since in a hyperbolic model l + C l , ~  [1,2[ (actually a,<< 1, see [ 6 ] )  we have 

One expects a larger inflation (larger R J R J  to solve the horizon problem too, and 
therefore to give a possible model. For a too large inflation (small R,), equation ( I )  
cannot be fulfilled since K P ~ , + ( ~ / R ~ ) ~ ( ~ / R ~ ) > , ~ = K P , " , , .  This problem does not 
arise in the two-phase model, which lacks the discontinuity at f,. 

3. The two-phase model 

3.1. The general model 
Lemait rek equation 
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for an  interactionless mixture of radiation and  dust can be  solved explicitly in terms 
of elementary functions if either pm = 0 o r  A = 0. We therefore improve Ellis' model 
by taking fwo phases only, separated by the 'true' phase transition at I,. where .2 jumps 
from its positive primordial value to its present value, assumed to vanish. In the 'early' 
phase I, p," =O; in the 'late' phase 11, ,I =O.  Again R and R are to be continuous 
throughout, with R discontinuous only at f I  (see appendix 1). Thus, we consider the 
model illustrated in figure 2. 

P Hubrier and J Ehlrrs 

todq 

srundanl phase 111): 
no cosmological consfant .A. [he Lrmaitre equation contains radiation, cold matter 
and the normalized curvature: 

decay of . A ,  end of inflation 

injlorionorj phare ( I ) :  
cosmological constant. radiation and curvature are raken into account in the 
Lemaitre equation: 

I ~~~~ ~~~~ ~ ~ ~ 

Figure 2. The two-phase model. 

Because of the junc:ion conditio-, tkc exe:gy densi!ies in phase ! and !! a:e Got 
independent. We have: 

P r r i i f p , , i i = ~ , , , + ( . ~ l ~ )  

~p,ll.llstandsforthelimitofp,for f + f r i n  phaseI/II).Thuswehaveonlythefreedom 
to distribute the energy between the energy of the 'false vacuum' p i : =  .Z/K and the 
energy of the radiation p , , ,  described by the parameter U: 

P\=:w(P,rII+P,"I~II) O < w < l .  (3) 
This parameter w also measures the degree of dominance of vacuum energy over 
radiation energy which begins shortly after R, where p , = p r ( R l ) ,  and ends at R,. with 
the decay of the cosmological constant: 

P )  J- R,,\' 
p.8.1 1 - w  \ R B I  

Note the difference between our definition of the duration of inflation and the 
usual one in terms of the slow-rolling of the scalar field. In a more detailed description 
of a scalar field our whole phase I would correspond to slow-rolling. Nevertheless we 
d o  not have exponential expansion all the time; exponential expansion starts shortly 
after the instant when p ,  = pr - 3k/KR-'(R, as defined above is convenient for computa- 
tions). Before 1, it  does not matter how we approximate the contribution of the scalar 
field to the evolution equation, which is dominated by radiation and curmture. 
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Choosing w suitably allows one  to solve the horizon problem. 
As we want to construct an inflationary model for realistic values of observable 

quantities we write the Lemaitre equation (2) for phase 11 in terms of the parameters 
Ora, a,,, no. R,, and k :  

R'R'= - k R ' + f l m 0 H ~ R ~ R  +Cl,,,H,',Ri. (4) 
These parameters are constrained by the equations 

the second of which is a convention, and by 

For phase I the Lemaftre equation (2) is 
R 2 R 2 =  w<R,'R'- k R ' + ( l  - w ) f R i .  

The symbol 5 stands for 

f is related to the total energy density p,ogr at the beginning of phase I I  by 

~p~~~ = 3 R i2f. 
A lower bound for R, , /Rr  arises from the assumption that the baryons have been 
created in the CP-violating decay of the X particles after inflation; an upper bound 
derives from the energy density at which one  expects to observe quantum gravity 
effects. Its order-of-magnitude value R,JR,-=10" (T=10 '4GeV,  see [ 2 ,  SI) i s  quite 
uncertain because i t  is based on heuristic arguments only since there is no  accepted, 
let alone confirmed, grand unified theory. We shall refer to the dependence of the 
two-phase models on this uncertainty later. 

To construct a particular model we start with &,,and fl,,, (always taken as 0.0004); 
these values determine H,,R, ,  and k. Thus i t  is possible to calculate the (dimensionless) 
radius of the visual horizon. The  primeval particle horizon U', (bounded below by 
U,:= I:; ( l / R , (  I)) dr )  is larger than U, provided w is sufficiently close to I .  To determine 

case is the next task. 
+ L A  .,"A +,. ',".,...i"- ,.,lrn,h.. ,hn., "..- =imi I , , -  I,. ,kn ,."PC i n  ,hm eo,  
&,IC ' ,ULIIIJD,"IL " ( I I U C I  Pl lY L Y  CA'Z l l l l l lC  W l l C L L l C l  ,"CJ " I C  > L I I I I I Y I  L Y  L L l C  Y I I L >  111 L 2 . C  I . Y L  

3.2. Computarion of rhe w-ranges which solve rhe horizon problem 

The solutions of  (4) are  well known the parametrized form ( R / R , , ) ( T )  with T given 
by .=I(', ( l / R ( t ' ) )  df' (see, for example, [ 9 ] ) .  The inequality 
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which expresses the horizon problem of the standard model, implies that the visual 
horizon of the two-phase model is approximated by .,,=I$ ( l /R l , ( r j j  dr. 

To solve ( 5 )  we introduce Z = ( R / R , ) '  and i:= 2 a  R; ' r  and get 

P Hiibner and J Ehlers 

(dl Z'' - - - - - - - - - 

This looks like (4) with k = - I  after the substitution R(r1-r R [ r J  The general solution 
has the form a(cosh ? - e ) +  b sinh In positively curved unii'erses there can be a big 
bounce. This is not possible for solutions of (4) where one always has a big bang. The 
constants a, b and care  determined by the differential equation, the continuity of R(r) 
and d ( t )  at r ,  and the choice of the parameter w. 

I f  k = O  or k = -1. d Z / d i  is always greater than 0 and therefore these models start 
with a big bang. 

,l.l... - - ~  
1115 SV1"LI"IIS d,C 

'* 
~ ~- 

k = O  

k = -1. 
RI( i) = 

In  the spherical case, k = 1, five possibilities arise. We only give the solutions. In the 
subsequent discussion we do not pay any attention to this case, for in case (v )  with 
the largest amount of inflation there is a bounce, and therefore no horizon problem 
arises. All models which are compatible with the observed age of the universe are 
allowed (i.e. R , s 1 . 5  for , i o = O ,  see [lo]). 

The classification criteria for these cases are the existence and positions relative to 
R,. of the solutions of the equation (dZ/dij'=O. These criteria decide whether there 
is a bounce or not. See also the qualitative drawings of the solutions in figure 3. 

I t  
Pieinflation 

I t  

Inflation 
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(i) O Y w ~ f ( 1 - e )  (+(1/2wt)>+7-) ( Z , , >  are two distinct sol- 
utions and R ; < Z , , 2 ,  no bounce) 

(ii) w = f ( l - e )  ( J ( l / Z w f ) = J ( l - w ) / w )  ( Z , = Z 2  and R : < Z , , ? ,  no 
bounce) 

exist. no bounce) 
1 --w ’ 1 2  

? - l ) + ( ~ )  sinh 7]”’. 

(iv) w = f ( l + m )  (+(1 /2w5)=J( l -w) /0)  ( Z , = Z ,  and R : > Z , , 2 r  no 
bounce) 

(?( R,) 0, there is a bounce at ?J -m). 
(v) w > i ( l + w )  ( = 3 ( 1 / 2 ~ 5 ) > J ( l - w ) / w )  (Z,,’ are two distinct solutions 

and R : > Z , . 2 ,  there is a bounce at i = O .  For (1-0)J .O this bounce occurs at R>>I,) 

? + l )  

It is not possible to give an explicit elementary expression for 

U]:= 
‘(begin) R I ( ~ )  

since ut is an elliptic function. But for realistic values of CL,, it is possible to find 
useful lower bounds (see (6) below). 

Numerical results for some a,,,,) are 
n,,, = 0.3 0.6 0.9996 (f l , ,  = I J 
( I - w J r  
l o g ( R , l R , ) a  25.6 25.5 25.3 

5 . 6 ~  10-103 7.7 x I O P ~  ,o.”” 

Therefore no significant modification is necessary to solve the horizon problem in  
non-flat Friedmann universes as compared with flat ones. 

But in  the data we started from there was one with a large uncertainty, the parameter 
R,JR,.. What happens to the model when we choose a different value? One gets the 
(at first sight) surprising answer: the value of the scale function at f ,  does not have to 
vary for solving the horizon problem when R,,lR,. is in the range R,JRr= lO”‘*. For 
C l <  1 and a high inflation rate (i> w(1-  w ) g ’ )  we get from a(cosh I - 1) + b sinh I <  
i ( a + b ) ( e ‘ - l ) :  

For the range of R, /R , .  values considered, 1 0 ” x S ( ~  10” and (1 -U )<<  1, we can 
set tan-’[. . .]= w / Z .  Therefore the lower limit stays constant i f  (1 - U )  --(-’- R;‘, 
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and thus R,-Rr(I  -w)”4=constant.  Variation of R,/R, leads to a variation of pro,r 
and so to a variation of .,\. This causes a different expansion rate and compensates the 
change in the amount of inflation. 

This fact implies that the model is essentially unaffected by a quantum gravity 
phase of whatever kind. I t  is generally believed that such a theory is necessary for a 
typical variation scale of the metric comparable with the Planck length I P .  In  a 
(fi  < ~ ) - R w  universe the scale of variation of the metric is roughly R. So we cannot 
say anything about the contribution of the quantum era to u d .  But this does not change 
much in  the two-phase model, since for R < R, the scale function R behaves like that 
of a pure radiation model (the influence of .< can be neglected). Further, for the upper 
bound of the allowed values of (1  - w )  we obtain RI = lohi,, and, because of the horizon 
problem. 
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r R . .  . 
The quantum-era contribution to 11, is not significant and the horizon problem is solved 
in any kind of quantum gravity theory. 

I f  one does not want to restrict (1 - w )  by the above consideration such that R, >>I,, 
one can make U ,  infinite because u , ( w )  diverges for w T  1. 

Another important point is the relation between fi, and the value a,, of R at a 
time th at which we choose initial values (flatness problem). The definition of 

and equation ( 5 )  yield 

-~~ . ~ ~ ~ .  ~ . - : ~ > ~ ~ ~  i n e  local minimum in  phase i is 
.- . .. .. . . . .. . . 

~~ 

~ ~~ 

2J--5 ’ ;: 
= 2 v T i = i x g -  n- 

for R = R, .  For RJO.  R quickly tends to 1. In the model for which fin,,=0.3 and 
(1 -w)ismaximalthedensityparameterfi(R,)is0.46.Forsmaller(l-w),~,decreases 
very fast. 

The relation between Cl,, and fi, depends strongly on w. We do not th ink  that i t  is 
possible to determine R,,/R,. (or 6 )  and ,1 sufficiently accurately to make any statement 
about fi,,. For nearly all fi,, in IO, 11 with Rh < R,(( 1 -w) , , , , , )  it is possible to solve the 
horizon problem and to get any observed fl,, by a proper choice of (1 - w ) ,  

For the qualitative behaviour of CUR) see also figure 4. 

~~ ~~~ 

~~ 

- 
5s 

.___-’ 
Figure 4. Plots o f $ l I R I  for dilfrrrni sets of condi- 

(I-UJ~,,~,~. The broken curve i s  for 11,,,,,;0.3 and 
( I  - W ! C (  I -“I,*.,\, 

[ions. The soiid curve is ior Cia>,,= 0.3 ana i i - w i  = 
4 

+-+.- 

R’ R 
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If we  fix the amount of inflation (Rr/R,) we can use (7)  and the corresponding 
equation for phase 11, 

to determine the relation between a probability measure for ll on an initial value 
surface characterized by Rh and the probability measure for Cl,. 

4. Deviations from the idealization of the two-phase model 

For deviations from the two-phase model it is in general not possible to solve the 
evolution equations, but nevertheless it is often possible to compare the horizons of 
two models without knowing the solutions to the evolution equations. 

zZ=ji, ri(t)dl and u = \ , : ' k d t  

Let the horizons of two models be determined through 
p 1  

with strictly increasing functions R and d which could mean,for example, two maximal 
expansion rates in an anisotropic model. Then U and 6 are the minimal extensions of 
the horizons. Changing integration variables we find 

If R( 6) = R( t J  and d(  7) = R(  t'), we can estimate ii i n  terms of U if we can estimate 
the expression *. An important example consists of two models with R W  metrics. Then 
R and d are the scale functions and the evolution equations are Lemaitre equations: 

R = f ( R )  d = g ( d ) .  

Then the ratio * is simply 

4.1. A general form of malter in phase I 

We allow in phase I arbitrary perfect fluids with O < p S ! , p .  
= 0 yields 

o s  = ( I ) <  1. 
1 

P - F  
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We compare such a model with a two-phase model ( 
density ,61.11=pI.II and the same Hubble constant at tr. 

Let us choose & in such a way that the horizon problem is solved very well. 
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) with the same total energy 

The  solution of thc horizon problem for the two-phase model yields a value [ 1 - 3 ) .  

The term * in equation (8) is 

( ~ / 3 ) 6 R ~ + ( A / 3 ) R ' - k  
( K / 3)  pR + ( "i/ 3)  R'2'L k . 

Using the mean value theorem we conclude that there is a number c in the interval 
IO, I[ such that U = cli. Choosing a large enough i, it should be possible to solve the 
horizon problem for the  'twiddled' model under consideration. A proof has to take 
into account that c is a function of 3, but we feel that it is not worthwhile to provide 
such a proof. 

4.2, The Bianclii fype 1 0 s  an example of an anisotropic model 

For a Bianchi type 1 model one  can choose coordinates in such a way [ I l l  that 

- 1  

YYi:! 

S ( f ) ,  Y(1) and Z ( f )  are deter in$d through the differential system 

x XY 'XZ Y X Y  YZ z xz YZ 

7 .  2 6 2 ;  ,.z p x y  l'i z x2 y2 
;i + ! ( p  - p )  = -+ c+ - = -+ -+ -= -+ - + - 

XY xz P.2 
S Y  xz YZ 

p +  ;i =-+-+- (first integral) 

With the substitution [I21 

X ( I ) =  R ( t )  e""' Y ( f ) = R ( r ) e a " '  

Z ( r ) = R ( r ) e " "  C t + P + y = O  

the system acquires the form 

_- 1 = ( e ,  -c?)R -.' p - -3(ln R ( r ) ) .  
P + P  

c I  and e2 are constants which are determined by the initial values. The comoving 
coordinates should be chosen in such a way that 

l im(a ,p ,y)=O.  
, * I  
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In the analysis of equation (9) something very surprising appears. Suppose we have 
a phase where h dominates (9). Then p is 'inflated away'. The same happens with the 
anisotropy term a':= (3c:+c: jR- ' .  We reach a Rw-like phase and can surely solve the 
horizon problem. But there remains no anisotropy, except one created in the decay of 
the fluctuating scalar field, which should not have the discrete symmetry of a Bianchi- 
type model [ 1 3 ] .  Thus discrete symmetries in the angular dependence of the microwave 
background radiation would disprove inflation. 

Since the other Bianchi types differ only by different couplings of the scale functions 
X ,  Y, Z governing the anisotropic expansion, the effect should be similar. 

So if we live in a Bianchi model other than the R W  case, inflation is hardly possible. 
In any case, inflation would have to explain an anisotropy in the background 

radiation by the decay of the scalar field. Survival of primordial fluctuations is not 
possible. 

5. Conclusion 

In this work we have given a model for inflation in a non-flat R W  universe with radiation 
at all times. The requirement 'solution of the horizon problem' yields an upper limit 
for the ratio of radiation energy to radiation energy plus false vacuum energy (cosmo- 
logical constant), denoted (1-U) ,  equation ( 3 ) .  This limit is equivalent to a lower 
bound f o r  the duration of the inflationary period, which starts when the cosmological 
constant begins to dominate the radiation energy. Also we have seen that the density 
parameter 0 can have values clearly different from 0 and 1. 

Since every model contains simplifications we have discussed in section 4 the 
influence of some deviations from the two-phase model. 

One referee pointed out that the significant lower bound for the amount of inflation 
may be due to the fact that the observed fluctuations in the microwave background, 
related to the quantum fluctuations of the scalar field, are extremely small [7]. In the 
'worked example' of this paper for the potential V =  V , - P + 3 + h + 4  the authors have 
found that A has to be smaller than a certain value depending on the microwave 
background fluctuations and that V,, and p depend on  A only. This can be translated 
into a condition on V,, which is roughly A / K  in our model. Our . 4 / ~  fulfills that 
condition, but we do not know to what extent one may apply that constraint, which 
is based on fluctuation calculations on a de-Sitter background metric (see references 
in [7]), to different backgrounds since curvature and radiation as well as the cosmologi- 
cal constant influence the evolution. Furthermore the model yielding the fluctuation 
spectrum used in [7] has weak points (see [14]). 

Whether properties of fluctuations restrict-or possibly even disprove-our model 
can be decided only by investigating such fluctuations, a task which can be tackled 
now based on the background model. 
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Appendix 1. General junction conditions a t  spacelike hypersurfaces 

Let Z be  a hypersurface given byf (x")  = O .  Let us write 

[ A ] : =  lim A -lim A = A, -A.. 

P Hiibner and I Eklers 

I 1U  Il(1 

for the jump discontinuity of any quantity which is continuous at each side of Z. 
Because Einstein's field equation requires the Ricci tensor Rclh to be well defined, 

we need a t  least piecewise continuous Christoffel symbols, and  therefore a continuous 
metric gal, f,[guh] = 0). Otherwise, Rob would contain products of S-like distributions 
which are not well defined. 

The  field equation then yields an  energy-momentum-tensor Tuh of the form 

with Fu1, piecewise continuous. 
Papapetrou and  Hamoi [ 1 5 ]  have shown that SUh is 'tangential' to Z, i.e. that 

SohNY = O  

where N "  =g""Ohf is normal to 2. In the case where 2 is spacelike (phase transition 
in cosmology) we can introduce observers with 4-velocity N".  These observers would 
measure a surface energy density 

so,, = s , ~ N " N "  = o 
on 2.  The dominant energy condition (So,,> lSa,,l) then yields 

which implies, according to the calculations of [15], that the extrinsic curvatures of 2 
with respect to both of its sides, must be equal to each other. 

In K W  models the continuity of the metric and the extrinsic curvature of the 
time-dices are equivalent to the constancy of the curvature index and  the continuity 
of R ( f )  and R ( / ) .  The argument given here both strengthens and simplifies previous 
arguments given by Ellis [16]. 

Appendix 2. Two examples of 'bad' coupling 

In this chapter we will give two examples of how a 'strange' coupling between a scalar 
field and  radiation can prevent the development of an  inflationary phase. We do not 
claim to present a physically realistic model, we only want to stress that coupling may 
be important. 

Let us start with a Klein-Gordon field with the Lagrangian 

2= -$V'$O,,&)-  V ( 6 )  

r ~ ~ = ~ , , ~ ~ , ~ - ! g , , , ( ~ " ~ ~ , . & + + v ~ ( ~ ) ) .  

and corresponding energy-momentum tensor 

Since we restrict the further calculations to a R W  model whose comoving observers 
have 4-velocity U", we may assume spatial homogeneity and get 

r$!> = (P+  + pel? )Uc8Uh + pegtd, 
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with 

p * = : p +  V(@) Pd - t & -  V(+). 

For i$I'<< 12V(+)/ (slow-rolling) we have p =  -p and therefore the energy-momentum 
tensor looks like a cosmological constant A multiplied by the metric g',,,. Adding 
radiation ( p  =:p, energy-momentum tensor Ti,,) to this model yields 

k 
3 H ? =  x($2+ 2V( 4)) + ~ p , - 3 -  

2 R' 

as evolution equations. To uniquely determine the solutions R ( t ) ,  +(I) and p,(/) we 
need to specify the coupling between pr and 4. Albrecht er a/  [ l ]  have shown by 
numerical calculations that a coupling 

ir,,V,TPh = constant x $"+"'d = -u,FbT$ 

gives the desired cosmological-constant-like behaviour of Tih.  But this is a property 
of this special kind of coupling. Counterexamples for a 'good'behaviour are as follows. 

(i)  The loss in  the energy density of 6 is the source for Vt,T;': 

Equation (10) then reduces to 

with the only solution $=O.  4 can only change if there is a discontinuity in the 
evolution ofthe universe, for example a sudden decay ofthe scalar field. The difficulties 
(see [17]) arising then have led to the search for new models (new inflation, chaotic 
inflation). 

(i i)  The change in the potential V of the scalar field is the source for VuTY": 

R dV . d V  p + 4 p  -=--=-@- 
' ' R  df d+ 

Equation (10) then reduces to 

0 
R $6 + 3 $ 2  - = 
R 

with the solutions $ = O  and 6- l / R Z .  The first is the same as ( i ) ,  and the second 
does not match with new or chaotic inflation. In these pictures there should be a small 
change in  4 for small R. 

Thus we conclude that the type of coupling between radiation and a Klein-Gordon 
field may be an essential factor for an  inflationary phase to occur. I t  may essentially 
influence the duration of the slow-rolling phase (e-folds of inflation). 
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