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1. Introduction 

The study of exact solutions of Einstein's field equations in general relativity 
has a long history (for a comprehensive account of the subject, see [1]. A fea- 
ture common to all such solutions is their independence of certain coordinates, 
or, in more technical terms, the existence of one or more Killing vectors. This 
independence is, first of all, important from a practical point of view because 
one would like to simplify the structure of the equations so as to make them 
amenable to explicit solution. In a more general perspective, the omission of 
two of the coordinates can be regarded as a special case of the Kaluza Klein 
program [2]. To study the solutions with two Killing vectors in a systematic 
fashion, one considers a Kaluza Klein type reduction of Einstein's theory to 
two dimensions, where the gravitational degrees of freedom are split into a 
"matter  sector" describing the two physical helicity degrees of freedom and 
the remaining unphysical (non-propagating) degrees of freedom, in particular 
the conformed factor. The complications inherent in Einstein's theory are best 
illustrated by the long time it took to realize that the existence of exact so- 
lutions in this reduction is not just a fortuitous and accidental property of 
the theory, but intimately related to the existence of hidden symmetries and 
of certain infinitesimal transformations, which connect different solutions and 
which can be used to construct new solutions from old ones [3]. An important 
breakthrough occurred in 1970, when Geroch was able to demonstrate that  
this set of transformations is, in fact, infinite-dimensional [4] (the correspond- 
ing group is nowadays referred to as the "Geroch group"). This was the first 
indication that Einstein's theory is actually integrable after the reduction to 
two dimensions. The idea was further developed and elaborated by the gen- 
eral relativists in the years following this discovery, with special emphasis on 
the search for "solution-generating procedures" [1,5-10]. This program has met 
with considerable success, especially with regard to the so-called stationary ax- 
isymmetric solutions possessing one space-like and one time-like Killing vector. 
The integrability of Einstein's equations was explicitly demonstrated with the 
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construction of a linear system (or Lax pair) for the gravitational field equa- 
tions by Belinskii and Sakharov [7] and Maison [8]. Thus, it became possible 
to apply techniques such as the inverse scattering method from the theory of 
integrable systems to Einstein's theory. There are, however, important differ- 
ences between Einstein's theory and ordinary integrable systems: for instance, 
solutions of the gravitational field equations define their own domain of valid- 
ity, whereas the space-time supporting the solution is a priori given for flat 
space integrable systems. This peculiar feature is reflected in the z-dependence 
of the spectral parameter entering the linear system [7,8,10]. Solutions de- 
scribing colliding gravitational plane waves with two space-like Killing vectors 
have come into focus only much more recently [11], and the application of the 
solution-generating methods described above to this type of solutions is still in 
its infancy [12,13]. 

Quite independently of these developments, particle physicists had become 
interested in Kaluza Klein theories and higher dimensional supergravities in 
the late seventies in their attempts to formulate a unified theory of the funda- 
mental interactions (see e.g. [14]). One of the most remarkable developments 
in this context was the discovery of "hidden symmetries" in dimensionally re- 
duced supergravities, culminating in the discovery of a hidden ET invariance 
in the maximally extended N = 8 supergravity theory [15]. Apparently, B. 
Julia was the first to realize the connection between these developments and 
the work of the general relativists [16]. He emphasized the importance of group 
theoretical concepts for the investigation of the structural properties of dimen- 
sionally reduced gravity and supergravity theories and was led to conjecture 
that the emergence of infinite-dimensional symmetries in the reduction to two 
dimensions is a generic phenomenon. He was further able to show quite explic- 
itly that the Geroch group in infinitesimal form is nothing but the affine Kac 
Moody algebra A~ 1) and to demonstrate the presence of a central term, which 
had gone unnoticed by the general relativists, and which acts as a shift opera- 
tor on the conformal factor [17]. The underlying group theoretic structure and 
the connection with the a-models encountered in particle physics were further 
elucidated by Breitenlohner and Maison [10,18]. They discovered a beautiful 
cocycle formula explicitly solving the equation of motion for the conformal fac- 
tor. Through this work it has become clear that one can think of the space of 
solutions as some kind of infinite-dimensional coset space, which is analogous 
to the finite-dimensional coset spaces of gauge-equivalent field configurations 
in ordinary ~r-models. It is, of course, crucial here that many concepts can be 
generalized from the finite-dimensional models to the infinite-dimensionai case. 

As for the purely bosonic models, these developments have been amply 
documented, and I will therefore try to avoid reduplication of the existing lit- 
erature in these lectures by concentrating on those aspects which have not 
been given so much attention until now, and by shifting the emphasis from the 
systematics of solution-generating procedures to the discussion of group theo- 
retical aspects and the search for yet bigger symmetries. This point of view is 
of more concern to the particle physicist and string theorist (and was already 
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adopted in [16]). Nonetheless, I will also describe some concrete applications 
of the solution-generating procedures in section 3.4, where a special colliding 
plane wave solution of the Ferrari-Ibanez type [12] is reconstructed via the mon- 
odromy matrix. Special attention will be given to the fermionie models in these 
lectures. Although many results from the bosonic theory carry over to super- 
gravity (such as the existence of a linear system yielding the supergravitational 
field equations [19,20]), there remain some puzzling questions which will be dis- 
cussed at the end of these lectures. There is some evidence (to be presented in 
section 4.3) that  there is more to the addition of fermions than just the popular 
recipe of turning every item into a super-item. For instance, the bosonic sector 
of the maximally extended N = 16 theory in three dimensions [21] is described 
by an Es/SO(16) coset space non-linear a-model, the two-dimensional reduc- 
tion of which possesses a non-linearly realized E9 symmetry independently of 
whether there are fermionic degrees of freedom or not. Contrary to one's naive 
expectations, the symmetry of the fully supersymmetric theory cannot be some 
ordinary supergroup, as Es has no supergroup extension [22]! Nonetheless, the 
symmetry must be enlarged in some way as there appears to be "no room" 
for the fermionic solutions in the bosonic coset spaces. The possibility that  the 
required extension leads to hyperbolic algebras [23], which was already raised 
in [24], is discussed in section 4.3. 

The search for more symmetries in the context of low dimensional super- 
gravities could also provide some much needed hints for the formulation of a 
proper theory of quantum gravity, which is likely to be as much a problem in 
finding the correct underlying symmetry as in finding the correct conceptual 
framework. Let me briefly explain why it is that  the study of d = 2 or even 
d = 1 reductions should afford any insight into this difficult problem. One rea- 
son for this expectation is what I would llke to refer to (somewhat loosely) as 
the "string magic", by which an essentially trivial two-dimensional field the- 
ory is converted into a complicated higher-dimensional theory that  contains 
(super)gravity as a tiny subsector. This is accomplished by re-interpreting the 
physical states of the theory on the two-dimensional world sheet as the one- 
particle states of a quantum field theory in a higher-dimensional target space. 
This basic idea has been realized so far only in the context of conformally in- 
variant theories, but has not been tried for the kind of theories we are about to 
discuss. Let us suppose that this is actually possible. Then, the Geroch group, 
which previously acted upon the space of solutions of a classical field equation, 
becomes a symmetry on the Hilbert space of physical quantum states defined 
through the imposition of the canonical constraints. Re-interpreting this space 
as a space of one-particle states of a higher-dimensional theory, one realizes 
that  the quantum analog of the Geroch group now acts as a spectrum generat- 
ing symmetry: it transforms the physical states into one another and possibly 
generates all of them from some groundstate (if it acts transitively). This spec- 
t rum generating algebra is reminiscent of an analogous spectrum generating 
algebra in string theory, which consists of the physical vertex operators [25] (a 
vertex operator is called physical if it weakly commutes with the Virasoro con- 
straints). These similarities will be further illuminated in section 2.3. The point 
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I would like to emphasize here is that the Geroch group has been converted 
from an abstract group acting on some equally abstract space of solutions into 
a "space-time symmetry" in this fashion. Since this symmetry constitutes a 
huge extension of the ordinary space-time symmetries, it may well be related 
to the elusive fundamental symmetry that string theorists have been searching 
for in vain until now. 

There are also some interesting geometrical aspects which will be discussed 
in chapter 4. In the formulation of d = 2 (super)gravity as an integrable system 
described in chapter 3, the basic object of interest is a matrix ~ depending not 
only on the space-time coordinates but also on a so-called spectral parameter 
t. This matrix appears in the linear system (cf. section 3.3), and contains all 
the information about the equations of motion, including the fermionic ones in 
the case of supergravity. It may be viewed as an infinite-dimensional general- 
ization of the vielbein in gravity. This analogy is suggested by the fact that the 
symmetry groups acting on this "cx~-bein" are in one-to-one correspondence 
with the groups acting on the ordinary vielbein: there is an infinite group G °° 
(the Geroch group) acting rigidly on )2 from the left and another H °° acting as 
a gauge group from the right. These groups contain the transverse subgroups 
of the corresponding finite-dimensional groups, namely S L ( D  - 2, JR) and the 
transverse Lorentz group S O ( D  - 2). (This is the reason why I referred to the 
quantum Geroch group as a "space-time symmetry" above). The construction 
of even bigger symmetry groups involving "boost generators" will most prob- 
ably require the further reduction to one dimension and the introduction of 
fermions. 

Since the reduction to one dimension may be of interest in its own right, 
some pertinent results concerning maximal supergravity in one dimension are 
collected in the appendix. A novel feature is the proposal to perform the re- 
duction with respect to one of the light-cone coordinates x + or x - ,  rather than 
x ° or x 1. The potentially most important reason in favor of such a chiral (or 
"unidexterous") reduction is the possibility that it may give rise to a new kind 
of dual model, as I will briefly explain at the end of the appendix. 

2. P r e l i m i n a r i e s  

This chapter summarizes some well-known results about the hidden symme- 
tries of Einstein's theory in three space-time dimensions. As this subject has 
already been extensively dealt with in the literature [1], the presentation will 
be cursory and mainly serve to set up the notation. The results for N = 2 
supergravity in three dimensions are also given, because this is the simplest su- 
persymmetric model, where the emergence of infinite-dimensional symmetries 
in the reduction to two dimensions can be studied. The main reason for the 
emphasis on three-dimensional Lagrangians here is that, in contradistinction to 
other approaches, I will always take the three-dimensional non-linear a model 
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as the point of departure, thus bypassing the labor of explicitly working out 
the Kaluza Klein reduction from higher dimensions. Some salient features of 
the canonical treatment of hidden symmetries, which has been largely ignored 
in the relativists' literature, will be briefly discussed in section 2.3. (For further 
details concerning canonical gravity the reader is advised to consult the stan- 
dard references and Isham's lectures in this volume). The relevance of hidden 
symmetries for the construction of non-trivial observables in canonical gravity 
is pointed out. 

2.1 T h e  R e d u c t i o n  of  Einste in 's  Theory  to d -- 3 

The simplest example of a hidden symmetry is obtained when one reduces Ein- 
stein's theory from d = 4 to d -- 3. After the reduction and a duality redefinition 
of the Kaluza Klein vector field, the theory possesses a hidden SL(2, IR) sym- 
metry, the two physical gravitational degrees of freedom being parametrized by 
the SL(2, IR)/SO(2) coset space. This fact is, of course, implicit in the earlier 
works on the subject. The presentation here follows [16,17]; the general case 
(e.g. Maxwell-Einstein) is discussed in [26], where further references can be 
found. The dimensional reduction simply amounts to dropping the dependence 
on the fourth coordinate for all fields ¢, viz. 

, ( 2 . 1 . 1 )  

This applies in particular for the vierbein, for which, in addition, we make 
partial use of the local SO(l, 3) invariance invariance to fix a triangular gauge, 
viz. 

A1/2 ) (2.1.2) 

where the indices on the left hand side refer to four dimensions, while m, .... 
O, I, 2 and a, .... O, I, 2 on the right hand side refer to three dimensions, and the 
extra factors of A have been inserted for convenience. Writing out Einstein's 
action in terms of 

F i n n  = OrnBn  - c~nS  m (2.1.3) 

we obtain 
E=-¼ER(E) 

= -  + ( 2 . 1 . 4 )  

_ 

The part involving e a describes pure gravity in three dimensions and contains 
no propagating degrees of freedom, whereas the physical degrees of freedom (the 
two helicity states of the graviton) reside in the remainder of the Lagrangian. 
In the equations of motion, one can perform a duality redefinition 

A 2 F ~ .  ---- em.p~'B (2.1.5) 
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The integrability of this equation is guaranteed (on-shell) by Maxwell's equation 
for the vector field Bin. The resulting equations of motion can be equivalently 
obtained from the a-model Lagrangian 

£ = -¼ea(3)(e)  + ~eg"*"A -2 (OmBO, B + O,,AcgnA) (2.1.6) 

or, in terms of the complex field Z - B + iA, 

1 _ m .  O , . z o . 2  
= -¼eR 3 (e) + (2.1.7) 

(The superscript (3) will henceforth be dropped.) Note that the field Z is related 
to the so-ca/led Ernst potential E via Z = iE (see section 3.2). It is easy to 
check invariance of (2.1.7) under the SL(2, JR) transformations 

=cZ+--'---d ; C SL(2,]R) (2.1.8) 

This is the simplest example of a non-linearly realized symmetry acting on the 
space of physical field configurations. In the following section, (2.1.7) will be 
shown to be just a special case of the more general construction. 

A more sophisticated example is the reduction of N = 1 supergravity [27,28] 
from four to three dimensions. The gravitational sector is, of course, exactly as 
above, but we now have in addition a four component Majorana vector spinor 
eM (the gravitino), which upon reduction to three dimensions splits into two 
gravitinos ¢/m and two mat ter  fermions X I. The extra internal index I = 1, 2 
is necessary because spinors in three dimensions have only two components, 
so every four-dimensional spinor gives rise to two three-dimensional spinors 
transforming irreducibly under the Lorentz group SO(l,  2). In complete anal- 
ogy with the dreibein in pure gravity the three-dimensional vector spinors ¢ I  m 
carry no longer any propagating degrees of freedom, while the two physical 
degrees of freedom (the helicity ~ states of the gravitino) reside in the "matter  
fermions" X 1. To work out the reduction with all the necessary field redefini- 
tions is a bit more laborious than in pure gravity (readers interested in the 
details are invited to have a look at [15,29] where a more complicated example 
is treated). It is also unnecessary here, for in the following section I will explain 
the general formalism which will allow us to formulate the models directly in 
three dimensions by exploiting their symmetry structures. 

2.2 Coset Space ~-Models and Supergravity 

It can now be shown that the structure of which we just had a first glimpse is 
actually generic in Kaluza-Klein (super)gravity: there are always hidden sym- 
metries which extend the manifest symmetries obtained in the naive dimen- 
sional reduction [15,16,26]. One invariably obtains a non-linear a-model of the 
non-compact type based on a coset space G/H with H as the maximally com- 
pact subgroup. Of course, the coset space one ends up with depends on which 
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theory one starts with, but once the eoset has been identified (for instance by 
simply counting the scalar degrees of freedom), the model is unalterably fixed. 
This fact can be exploited by taking the three-dimensional Lagrangian as one's 
point of departure in analyzing the reduction to two dimensions rather than 
starting from the higher-dimensional theory. In this section, I will first sum- 
marize the general formalism for the bosonic a-models, which was invented 
by particle physicists long ago [30] (see also [31] for a more recent treatment) 
and then present N = 2 supergravity in three dimensions, which is the locally 
supersymmetric extension of (2.1.6). The limitation to the N = 2 theory is 
mainly for pedagogical reasons, as this is the simplest supersymmetrie model 
to be studied in the present context. However, the notational conventions are 
such that the comparison with the results described in the appendix is quite 
straightforward. 

To formulate the bosonic a-models in a general way [31], consider a maxi- 
mally symmetric space G/H with the associated Lie algebra decomposition 

G = H ~ K (2.2.1) 

For the sake of simplicity, we will only consider the case of interest here, where 
G is non-compact and H is its maximally compact subgroup. The maximal 
symmetry of the coset space is reflected in the Lie algebra relations 

[ H , H ] c H  [H, K I c K  [K, K I c H  (2.2.2) 

This decomposition is invariant under the symmetric space automorphism 

r (H)  = H r (K)  = - K  (2.2.3) 

which can alternatively be formulated in terms of Lie group elements g directly 
through 

r(g) = ~! -1 (gT)-IT1 (2.2.4) 

where the matrix T/depends on the group G (e.g.)7 = 1 for G = SL(n, IR)). 
As already pointed out, our principal example will be the SL(2, Ft)/SO(2) 

coset space. In this case, there are the three generators 

Clearly, 

y l =  ( 0  - 

( r l )  2 = ( r 2 )  = - T r  ( r 3 )  = 2 (2.2.8) 

so y1 and y2 are the non-compact generators, while ya  generates the SO(2) 
subgroup. I will label the eoset generators with capital letters A, B, . . . .  1, 2. 

The scalar fields Y(z) of the associated non-linear a model are now taken 
to be elements of the group G for all x. To reduce the number of physical 
degrees of freedom to the desired number, one requires invariance under the 
transformations 

V(z) ~ Y'(x) = g-lY(x)h(z) (2.2.7) 
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so the local H invariance can be used to remove the unwanted degrees of free- 
dom. For instance, we can pick a "unitary" gauge such that  

1)(x) = exp ~0(x) ~0(x) E K (2.2.8) 

which shows that  there are precisely dim K physical degrees of freedom. If one 
acts on this matrix with an arbitrary element g E G, the "unitarity" of the 
gauge will be lost in general, so a compensating H transformation h(x; g, V) is 
necessary to restore the gauge. In this way, the symmetry becomes non-linearly 
realized on the physical fields ~0(x) [30]. Note that  if no special gauge is chosen, 
there are two symmetries acting on V, namely the rigid group G and the local 
group H. Consequently, one can think of the matrix V as some kind of vielbein, 
with G and H replacing the groups GL(D,  llt) and SO( l ,  D - 1), respectively. 
This analogy will be encountered again in these lectures. 

The next step is, of course, the construction of a Lagrangian with the re- 
quired symmetries. To this aim, consider the Lie-algebra-valued expression 

~)--lOm~) = Qm -~- Pm Qm E H ,  Pm E K (2.2.9) 

or, equivalently, 
V - 1 D m V  - V -1 (OmV -- VQm) = P m  (2.2.10) 

which defines the H covariant derivative Din. It is straightforward to verify 
that  Qm transforms indeed as a gauge field with respect to the local group H,  
and that  P "  = h - l p , , h .  The formula (2.2.7) implies the integrability relations 

OmQ. - O.Qm + [Qm, Q.] = -[Pro, P.] 
(2.2.11) 

D m P .  - D . P m  = 0  

The Lagrangian is given by 

£ '  = +¼eg""Tr  ProP, = ~1 cg--m"'A'AI- m i- ,  (2.2.12) 

where the gravitational fields have been included again. The  field equations 
read 

Dm ( v ~ g " " P . )  = 0 (2.2.13) 

To see that  this formulation leads to the same equations as the Einstein 
Lagrangian of the previous section, take G = SL(2,  JR) with the matrix V in 
the triangular gauge 

]) = ( AI0/2 Bz~-I/2"~ (2.2.14) A-l/2 ) 

Decomposing the expression 

V_lOm)2 = ( ½ A-loOraA A - l O m B  
_½n_ a n) (2.2.15) 

into its components along K and H,  we obtain 

-- = ½n- 0mB, O,, = ½z -10mB (2.2.16) 
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Substituting (2.2.15) into (2.2.12), we immediately recover the "matter  part" 
of (2.1.6). 

Let us now turn to N = 2 supergravity. Since the derivation of the results 
below is standard, I will omit details and only quote the final results, referring 
t h e  reader to [28] for more information on supergravity technology. In addition 
to the dreibein e m a and the scalar fields A and B introduced in (2.2.14), the N = 
2 theory contains two "matter  fermions" X I and two gravitinos ¢ /  (I ,  J, . . . .  
1, 2). In the present formulation, these fields are inert under the action of the 
rigid group G, but do transform under SO(2). There is only one consistent 
choice of SO(2) charge assignments. For an SO(2) rotation 

h = ( cosa  s i n .  ~ (2.2.17) 
- s i n a  c o s a ]  

we must have 
eL + ie£ - ,  + iP£) 

X' + ix  2 ~ e~i°' (X 1 + ix  2) (2.2.18) 

eL + icL (eL + icL) 
This is in accord with our expectation that  the "hidden" SO(2) is just the 
helicity (or transverse) subgroup of the Lorentz group in four dimensions, with 
P1 m ± iP~  and X 1 ± iX 2 corresponding to the physical states of helicity ±2 
and 4-3, respectively (the supersymmetry transformation parameter  e I trans- 
forms like ¢ I  ). More general helicity groups are obtained for higher extended 
theories; for instance, in the maximally extended N = 16 theory, we have 
H = SO(16), which contains the hehcity group SO(9) of D = 11 supergrav- 
ity as a subgroup. Given the charge assignments (2.2.18), we can immediately 
deduce the form of the fully covariant derivatives acting on the spinors 

( D m x ) '  = (Or. + lOJmab~ab) X I "q- "~QmelJx J 
1 . ab'~ e I  1 ~  I J  J (Dine) ~ = (Or,, + Z~mab'r ) + ~U,,,e 

(2.2.19) 

which shows how the scalars and the spinors couple via the composite gauge 
field Qm determined from (2.2.9). 

At this point, we could, of course, easily switch to a slightly more economi- 
cal complex notation, but I prefer not to do so in order to keep the notational 
uniformity with the N = 16 results to be discussed in the appendix. Thus we 
continue to use real fields in the remainder of this subsection, using indices 
I , J ,  . . . .  1,2 and A , B ,  . . . .  1,2 for the "spinorial" and "vectorial" repre- 
sentations of SO(2), respectively. The full Lagrangian of N = 2 supergravity 
is 1 

Readers may wonder why there are explicit quartic spinorial terms in this Lagrangian and 
the transformation rules below, whereas there are no such terms in the usual first (or 1.5) 
order formalution of d = 4 ,N = 1 supergravity [27]. The reason for their appearance here 
is that we are using 1.5 order formalism o n l y  for the three-dimensional spin connection, 
whereas second order formalism is used for the SO(2) part of the connection, and that 
one of the components of the vierbein has been dualized. 
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1 _mnp_~l r'~ _t.I 1 __mnr~ArJA  £ = - ¼eRCe) + ~e w,.u.cvp + ~ey -'-mr. - ~e2IT"(DmX) z- 
. , ,  _ ,  , 

- -  e t t J X ~[ ~[ W m t ' n  q" "~ e 

.~_ l e~ l ,TpX J - I  mnp J 

(2.2.20) 
with the "Clebsch Gordan coefficients" tlAj = ~ ( y A ) I j  (see (2.2.5)). It is 
invariant under the local supersymmetry variations 

= 

6d21 = D m  eI + ½7he J ~I TranXJ 

~X I = i,'[m ~J P m  t t j  

V - l  gV = tAj~IxJ 

where pA denotes the supercovariant extension of pA 

~A pA -A ~ ,  J 
= -- g lJ  ~)mX 

(2.2.21) 

(2.2.22) 

Later, we will also need the equations of motion for the physical fields, which 
read 

D m (p~ A - I  n J / 3"  I J - I  m J 1 mnp I J ' ; ' l - - J \  t I jX  7 7 . , ¢ . )  As . .B  k~ ze X 3' X 
(2.2.23) 

and 
_iTmD,.(~)X z .A n m ~ S ~ A  X I = rz j7  7 ~v,,rm + ½ (XJX J) (2.2.24) 

where the Fierz-identity (~zT=XJ)2 3 =z. z~2 = ~(x x / has been used, a n d ~ i s t h e  
supercovariant spin connection 

^ • - I  I i - I  I 3 L ~ a ~ f m ~ ) b  l ' m a b X I X  I ( 2 . 2 . 2 5 )  

The Lagrangian (2.20) is, of course, also invariant under general coordi- 
nate transformations in three dimensions, the local Lorentz group SO(l ,  2) 
SL(2, JR) and SO(2) gauge transformations. It has already been pointed out 
that  the fermions are inert under the rigid group G unless a SO(2) gauge is 
chosen. If, on the other hand, a gauge is fixed as in (2.2.8), the fermions do 
transform under G via the induced compensating H rotation h(x, g; V). 

2.3 R e m a r k s  on  t h e  C a n o n i c a l  F o r m a l i s m  

It is well known that  the invariance of a Lagrangian under  a set of rigid sym- 
metry  transformations leads to a conserved charge Q. For the bosonic a-models 
discussed in the preceding section the conserved charge associated with the rigid 
symmetry under G can be easily obtained by integrating the t ime component  
of the conserved current 

,.7 m = V P " V  -1 (2.3.1) 
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over a space-like hypersurface. Note that  the vielbein Y converts Pro, which 
transforms under H and is inert under the rigid symmetry G, into a quantity 
which is inert under the local symmetry and transforms covariantly under G 
(cf. (2.2.7)) 

,.Tin ---, g - l  f lm  g (2.3.2) 

The conserved current exists, of course, also for the locally supersymmetric 
theory. For instance, the conserved SL(2 ,  JR) current for N = 2 supergravity is 
given by 

,.Tin =.12 y A l2 -1  ( p ,,, A - "q) n I m,.,[ n X J • AI j ) "~ "4- 

[1 -1  mnp 1 J r I . J  ¼ i e l J ~ I , ~ m x J  ) + y y 3 y - 1  ~fie e e ~v,,VJi, - 
(2.3.3) 

The algebra of symmetry transformations generated by the conserved 
charges and the interplay between rigid and local symmetries is most conve- 
niently analyzed in the canonical framework. Of course, there is no room here 
to explain the the basics of canonical gravity in all but the scantiest detail. 
Fortunately, there are several excellent introductory articles available (see e.g. 
Isham's contribution in this volume or [32]), to which we can refer the reader 
for more details. At this point, I would also like to alert the reader to [33] 
where the issues raised here are discussed in much more detail for maximally 
extended supergravity in the framework of Ashtekar's formalism. 

Canonical gravity is substantially different from other canonical theories 
in that the Hamiltonian becomes a constraint which, in the classical theory, 
singles out a physical submanifold in the phase space of general relativity [34]. 
This constraint is a consequence of the invariance of Einstein's theory under 
reparametrizations of the time coordinate. In the quantum theory, the con- 
straint must be imposed as an operator constraint on the Hilbert space of wave 
functionals, and then becomes the famous Wheeler-DeWitt operator 7"(0 [35]. 
In addition to 7/0, there are the constraints 7~, associated with the invariance 
under spatial diffeomorphisms, and, for the kind of theories we are concerned 
with here, the constraints associated with the invariance under H gauge trans- 
formations, which carry no dynamical content, however. In a locally supersym- 
metric theory, there is also a supersymmetry constraint S, which generates all 
the other constraints upon commutation and thus carries both dynamical and 
kinematic information. Because {S, S} = ?t0 + . . . ,  the equation S~P = 0 can 
be regarded as the square root of the Wheeler-DeWitt equation in the same 
way as the Dirac equation is the square root of the Klein Gordon equation. 

A central (and unsolved) problem in canonical gravity is the construction 
of genuine observables. An observable in the sense of Dirac is any functional 
O which does not vanish on the physical subspace generated by the canonical 
constraints and which weakly commutes with all the constraints. Thus, one 
demands 

{¢, o} 0 (2.3.4) 
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where ¢ collectively denotes all the constraint generators. Since, in contrast 
to ordinary canonical theories, there is no a priori "time" in canonical grav- 
ity, (2.3.4) replaces the statement of conservation. The difficult part  here is, 
of course, to get O to commute with the Hamiltonian constraint, whereas the 
kinematic constraints are comparatively easy to satisfy. We now see that  con- 
served charges of the above type are good candidates for observables. All one 
has to show is that O = Q weakly commutes with all the constraints accord- 
ing to (2.3.4). In the case at hand, it is rather easy to check that (2.3.4) is 
indeed satisfied for the charge Q obtained from (2.3.1). This shows that,  in the 
presence of matter,  it is not at all difficult to construct genuine observables, if 
the matter  sector has some rigid invariance group. There is, however, one dif- 
ference between symmetries introduced "by hand" and the hidden symmetries 
discussed here: the latter originate from gravity itself. In other words, even in 
pure gravity, it is possible to construct observables provided one reduces the 
theory by one (or more) dimensions. 2 

In principle, these statements carry over to the quantum theory. Of course, 
ordering problems and ill-defined operator products will vitiate many argu- 
ments, but let us assume for the moment that these difficulties can be overcome 
(this is one motivation for considering extended supergravity rather than pure 
gravity!). Then equation (2.3.4) schematically translates into 

[¢, Q] = f(. . .)¢ (2.3.5) 

where f( . . .)  denotes a functional of the fields. This means that from any given 
solution ~ of the Wheeler-DeWitt equation, one can generate another accord- 
ing to ~ = Q~  [38,33]. Consequently, the solutions of the Wheeler-DeWitt 
equation form multiplets of the rigid symmetry group G (which are, in fact, 
infinite-dimensional owing to the non-compactness of G, if the representation 
is unitary). Although there is so far no concrete calculation exemplifying this 
idea, it is clear that what we have here is nothing but  the quantum analog of 
the solution-generating procedures for the classical field equations. The argu- 
ment also shows that the widely acclaimed uniqueness of the wave function of 
the universe is merely a consequence of overly restrictive assumptions about 
the boundary conditions imposed on ~. In any physically "reasonable" theory, 
and certainly in any theory originating from higher dimensions, there will be 
hidden symmetries leading to conserved charges, and the uniqueness of the 
wave function ~ will be lost. It is amusing to speculate about the cosmological 
interpretation of the conserved quantum numbers. 

Ultimately, we are interested in the reduction to two dimensions. There now 
remain only two constraints from the gravitational sector, which when written 
in the form 

This was independently noted in [36], where Ashtekar's version of d = 4 gravity [37] is 
directly reduced to d = 2. Their SL(2, IR) group is, however, not the same as the one 
generated by the charge Q and corresponds to the "Matzner-Misner SL(2, IR)" rather 
than the "Ehlers SL(2, IR)" generated by Q above. It is also not obvious to me whether 
the loop group identified in [36] is related to the Geroch group, as the latter arises through 
the interplay of the Ehlers and the Matzner-Misner groups. 
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T + +  = 7"/0 + 7"/1 ~ 0 (2 .3 .6 )  

are easily recognizable as the Virasoro constraints well known from string the- 
ory [39]. (For chiral reductions to o n e  dimension of the type considered in the 
appendix, only one of the constraints (2.3.6) survives.) Despite the obvious sim- 
ilarities with string theory, there are also some differences. A glance ahead at 
(3.2.7) shows that,  in contrast to (critical) string theory, the properly defined 
energy momentum tensor T++ receives a contribution not only from the mat- 
ter degrees of freedom, but  also from the conformal factor, and that the role of 
the unphysical target space coordinates X + in string theory is now played by 
certain privileged components of the dreibein 3. The Wheeler-DeWitt equation 
then amounts to the familiar requirement that the physical states should be 
annihilated by T++. The really new feature here is the presence of an infinite- 
dimensional rigid symmetry G °° (to be described in chapter 4), which acts 
non-trivially on the space of physical states and has no analog in string the- 
ory. To what extent then can we generalize the above considerations to this 
case? Clearly, a first desideratum is the construction of a suitable conserved 
Kac Moody current 3+ corresponding to (2.3.1) and (2.3.3). A candidate will 
be presented in section 3.5. The conserved charges constructed from it are, 
however, non-local, and the proper canonical treatment has met with some 
technical difficulties already in much simpler models [40,41]. Nonetheless, it is 
possible to show that {T++, Q} ,~ 0, at least for classical theory, although the 
full algebra of conserved charges remains to be evaluated. 

3 .  F r o m d = 3 t o  d - - 2  

It is the main purpose of this chapter to explain why Einstein's theory as well as 
more general (supersymmetric) models become integrable after the reduction to 
two dimensions. At the heart of the construction is the linear system (3.3.2) and 
its generalizations. The emphasis is more on the practical side in the following 
sections, and I will give an explicit example illustrating how the method works 
for colliding plane wave solutions. The supersymmetric case is discussed in 
section 3.5. 

3.1 G e n e r a l  R e m a r k s  

To reduce the theory to two dimensions, we can choose to drop the dependence 
on either the time-like coordinate x ° or on the space-like coordinate x 2. In 
more technical terms, the corresponding solutions will then have one time-like 
and one space-like or two space-like Killing vectors, respectively. The so-called 
stationary axisymmetric solutions belong to the first class of solutions; weU- 
known examples are the Schwarzschild and Kerr-Newman solutions. Of course, 

3 See the appendix for a further discussion, If you find these remarks too cryptic. 
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many solutions of the stationary axisymmetric type are known [1], but  not all of 
them are physical (as they possess either naked singularities or need stiff "rods" 
for stability). The second class of solutions describes colliding plmle waves. The 
first non-trivial example of such a solution was discovered in 1970, and more 
complicated solutions have been found since [11,12]. The two cases require a 
very different t reatment:  the study of stationary axisymmetric solutions leads 
to an elliptic boundary value problem while, in the second case, one has to 
analyze a hyperbolic partial differential equation. The  structure of solutions 
is also very different; for instance, in the stationary axisymmetric case, the 
singularities are located "on the axis", whereas in the second case, they occur 
"after the collision". 

While the solution generating procedures have been extensively applied to 
the stationary axisymmetric case, it is only recently tha t  the at tent ion has 
shifted to the study of colliding plane wave solutions in this framework [13]. 
It is for this reason, that  I will concentrate here on the plane wave case. A 
new result presented in these lectures is the reconstruction of some recently 
found colliding plane wave solution via the group theoretical method.  These 
solutions are usually constructed piecewise, by first solving the equations in 
the interaction region where the collision takes place. Once a solution has been 
found it is often straightforward to extend it from the lower boundary of the 
interaction region into two separated regions with pure radiation; in between 
the incoming waves the space-time is Minkowski (the known solutions can, 
however, not be continued into the future as they exhibit singularities on the 
upper  boundary of the interaction region, see the figure). It is noteworthy that  
the group theoretical method  yields the pertinent information (i.e. the solution) 
where it is most interesting, namely in the interaction region. 

3.2 Once  More: E ins te in  Gravi ty  

As already indicated in the foregoing section, we will take the three-dimensional 
a models as our point of departure,  starting with the Lagrangian (2.2.12) cou- 
pled to gravity (or the corresponding supergravity Lagrangian, see section 3.5), 
rather than  reducing the theory directly from d = 4 to d = 2. Thus we proceed 
from 

1 m n , ' ~  £ = -¼eR(e) + ~eg l rPmP,  (3.2.1) 

As in section 2.1, we can make use of the local Lorentz group to simplify the 
dreibein and bring it into the form 

a (A60: PB~' ) (3.2.2) e m = p 

where Greek indices refer to two dimensions. In contrast to the vector Bm 
in (2.1.2), the two-dimensional Kaluza Klein vector B~, carries no physical 
degrees of freedom any more, but  is an auxiliary field which can be dropped 
with impunity here (however, it gives rise to higher order fermionic terms in 
supergravity, see section 3.5). So, effectively, 
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£rn ~- # .2. 

from which we can immediately compute the components of the three-metric 
and other quantities of interest. At this point, we can drop the distinction 
between fiat and curved indices ~ , . . .  and p, . . . .  Furthermore, derivatives such 
as D~ in (3.2.5) below are only covariantized with respect to H, whereas the 
Lorentz covariantizations have been written out and are properly accounted 
for by the extra factors of p (and the rescalings of fermions by a factor A½ in 
supergravity) in all equations referring to two dimensions. It is well known that  
the form of this gauge is preserved under the conformal reparametrizations 

/~x + = ~_(x +) 6x-  = ~+(x- )  (3.2.4) 

1 0 with the light-cone coordinates x + - 7~(x + xZ). Substituting the gauge 

(3.2.3) into the scalar field equation (2.2.13), we arrive at 

p-1D  (pP ) = 0 (3.2.5) 

Readers should recall that D~, is the H-covariant derivative. The dependence 
of this equation on p is all that remains of three-dimensional gravity. 

The remaining equations, which follow from higher dimensions, are the 
equations for the field p and for the eonformal factor A. p is a free field in 
two dimensions which can be solved for in terms of two arbitrary functions 
(left-movers and right-movers) 

p(x) = p+(x +) + p _ ( x - )  (3.2.6) 

In the Euclidean case, where the fields depend on two space-like coordinates 
, 1 z + ix2), would (x 1 x 2) or on the complex coordinates (z, ~,) where z = : ~ ( x  p 

be the sum of a holomorphic and an anti-holomorphic part. There remains 
some freedom in the choice of these functions as we still have the conformal 
transformations (3.2.4) at our disposal 4. In the Euclidean case, we can make 
use of them to identify p with one of the coordinates (so-called "Weyl canonical 
coordinates", see [1,10]. For plane-wave type solutions, another choice is usually 
preferred, see section 3.4. 

The equation of motion for the conformal factor reads (for later convenience, 
I employ light-cone notation) 

p-lO± p ~-lor~ = p~p~:A A + ]pl -z~2uep (3.2.7) 

Note that the second term on the right hand side can be absorbed into A 
through the replacement A ~ A(O+p)-](O_p)-½, and that this equation de- 
termines A only up to a constant factor (this corresponds to the freedom in the 

4 Similarities with string theory [39] were already mentioned before. The field p corresponds 
to the target space coordinate X +, which can be identified with one of the world-sheet 
coordinates by a conformai coordinate transformation of the type (3.2.4). The conformal 
factor A, on the other hand, resembles the string coordinate X -  in that both are depen- 
dent fields which can be solved for in terms of the physical fields (the transverse degrees 
of freedom) by means of the Virasoro constraints. 
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normalization of the first term in (3.2.9) below). Observe also that this equa- 
tion has no analog in flat space theories and this, together with the presence of 
the field p makes an enormous difference. For instance, we cannot simply put 
p = c o n s t ,  as  this would imply the vanishing of the right hand side of (3.2.7), 
which by the positivity of the Killing metric on the subalgebra K would imply 
P+ = 0 and leave us only with the trivial solution Y = c o n s t  (modulo H gauge 
transformations). It is also evident from (3.2.7) that the theory would be con- 
formally invariant without the extra field p, as the conformal factor A would 
then completely decouple from the rest of the theory. 

It is instructive to work out the equation of motion (3.2.5) explicitly for the 
G / H  = S L ( 2 ,  ] R ) / S O ( 2 )  coset space. To do so, we again employ the triangular 
gauge (2.2.14) together with the explicit expressions for Pt, and Qt, in (2.2.16). 
After a little algebra one arrives at the result 

AO. (pO"£) = p0.£0"£ (3.2.8) 

in terms of the complex potential £ - A + i B .  This is just the well known Ernst 
equation [42]. Solving Einstein's equations is now simply a mat ter  of choosing 
the appropriate p ( x ) ,  finding a solution to the non-linear partial differential 
equation (3.2.8) and finally determining the conformal factor A by integration 
of (3.2.7). For the colliding plane wave solutions, one distinguishes waves with 
collinear polarization, where B = 0, or, equivalently, g23 = 0, and waves with 
non-collinear polarization. For collinearly polarized waves, the non-linear Ernst 
equation can be reduced to a h n e a r  partial differential equation through the 
replacement A = exp ¢ [43]. For later reference, let us also quote the expression 
for the four-dimensional line element in the case of collinearly polarized waves, 
which reads 

ds  2 = 2A-1A d x + d x  - - A - l p 2 ( d x 2 ) 2  -- A(dx3) 2 (3.2.9) 

where Zl, p and A depend only on x + and x - .  

3.3 T he  Linear S y s t e m  

The integrability of the non-linear equation of motion (3.2.5) is reflected in the 
existence of a linear system (or Lax pair). This means that  there is a set of 
l i n e a r  differential equations, whose compatibility conditions yield just the non- 
linear equations that one tries to solve. Such linear systems are well known in 
flat space integrable models (such as the KdV system or the KP hierarchy), so 
let us first recall how this method works for flat space a-models and ignore the 
conformed factor A, putting p = c o n s t .  To formulate the linear system one must 
introduce a so-called spectral parameter t as an extra variable and replace 1;(x) 
by a matrix l; which also depends on t [44] ( For the reduction to a Euclidean 
space, one must replace t ~ i t ,  cf. [10]) 

"]~(X 0, X 1 ) --+ ~(X 0, xl;  ~:) (3.3.1) 
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The linear system is now given by 

1 + t  2 2t e P~ 
v - l ° " v  = Q" + T-27  ~p" + 1 - ~ "" 

To prove this assertion, one must check the integrability condition 

(3.3.2) 

l + t  = ¥ p+-X~ 

This first order equation can be explicitly solved with the result 

t(x; w) = ~/~ + p+(x+) - ~ / ~  - p _ ( x - )  
~/~ + p+(x+) + ~ / ~  - p _ ( = - )  

where w is an integration constant. An equivalent expression is 

It is an elementary exercise to verify that  (3.3.3) is equivalent to the integrabil- 
ity relations (2.2.11) and the scalar equation of motion (3.2.5) with p = 1 (Note 
that  Pohlmeyer's original linear system involves the m a t r i x / / -  ~ y - 1 ) .  Once 
this equ~ion is solved, one can retrieve the original matrix l) by setting t = 0, 
i.e. l) = l~(t = 0); the equations of motion will then be satisfied automatically. 
In practice, it is, of course, not so easy to solve (3.3.3), and the solutions of the 
flat space a-models have not been completely classified despite the existence of 
the linear system [45]. 

Restoring the p-dependence in (3.2.5), we see that a constant spectral pa- 
rameter will no longer do, and that some modification is necessary. The trick is 
to make the spectral parameter x-dependent [7,8,10]. It takes a little more work 
to check that  the proper p-dependence is recovered if t obeys the differential 
equation 5 

(3.3.5) 

(3.3.6) 

For fixed x, the function t(x; w) lives on a two-sheeted Pdemann surface over the 
complex w-plane, with an x-dependent cut extending from p _ ( x - )  to p+(x+). 
The integration constant w can be regarded as an alternative spectral param- 
eter. Evidently, the linear system could also be formulated in terms of w, but 
at the expense of introducing x-dependent poles and cuts in the linear system. 
This phenomenon appears to have no analog for flat space integrable models. 

5 A useful al ternat ive version of this formula is 

~-t 11-I-t t - I O + ~ = P - I O + P  -t-t  ' t - l ~ - t=p - l ~ -P  - t  
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As we will see in chapter 4, both t and w play an essential role in the investi- 
gation of the underlying group theoretical structure. Below we will also make 
use of the inverse relation 1( 

w = t + - ( p +  - p _ )  ( 3 . 3 . 7 )  

which shows, incidentally, that the values t = 0 and t = eo correspond to 
w = oo on the different sheets. 

Let us pause to contemplate the significance of the replacement (3.3.1). 
Obviously, a spectral parameter is required if one wants to enlarge the finite 
Lie group to its affine extension, and the appearance of t in (3.3.1) fits nicely 
with this expecta~on. There is now an infinite hierarchy of fields, as one can 
see by expanding ]2 in t. For conveniencej, let us go to a generalized "triangular 
gauge" defined by the requirement that Y should be regular at t = 0 [17,10], or 

oo 

P(x; t) -- exp ~ t"~,(x) (3.3.8) 
n=0 

Substitution into the linear system shows that  the higher potentials are all 
related to the original field ~0 containing the physical degrees of freedom in 
a non-linear and non-local fashion; in addition, ~0 must obey its equation of 
motion. This is clearly illustrated by the lowest order result 

0D~I -~- e . v 0 v ~ 0  "~- . . .  (3.3.9) 

For the special choice G/H = SL(2, ]R)/SO(2) this infinity of new fields in 
just the infinite hierarchy of "dual potentials" first introduced by Kinnersley 
and Chitre in their study of the Geroch group [5]. Note also that t-dependent 
transformations will mix the fields in this hierarchy, and therefore constitute an 
infinite-dimensional generalization of "duality symmetries" of Maxwell's equa- 
tions in empty space. 

Another important feature of the linear system (3.3.2) is its invariance under 
a generalization of the symmetric space automorphism (2.2.3) [10]. Define (for 
~=I) 

or, in terms of the Lie algebra, 

Qp --+ Qp 

It is straightforward to verify that 

1 
P, ~ - P , ,  t - -*-  (3.3.11) 

t 

a property which does not hold for (2.2.9) if we replace r °~ by r.  

(3.3.12) 
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3.4 An Example: Recovering Colliding Plane Wave Solutions 

At this point we can already convince ourselves that the results obtained so far 
can actually be used to construct non-trivial solutions of Einstein's equation, 
and I will here discuss a specific example to demonstrate the usefulness of 
the method. Of central importance for the reconstruction of solutions is the 
monodromy matrix [10], which is defined as follows. 

.A,'f =~T°°~--I =~(X;~)~T(x; 1) (3.4.1) 

A short calculation reveals that 

where the result (3.3.12) was used. Consequently, .M can only depend' on w. 
The solution generating procedure now consists in choosing a matrix A4(w) 
and finding a factorization as in (3.4.1). In order to be able to extract the 
components of the metric tensor, the matrix ~ should be chosen in a triangular 
gauge, so that in (3.4.1) one factor is analytic in a neighborhood of t = 0 while 
the other is analytic in a neighborhood of t = oo, such that the overlap of the 
respective domains of analyticity is an annular region. This is a variant of the 
famous Riemann-Hilbert problem. Observe that the x-dependence of t, which 
may have seemed a nuisance in the analysis of the linear system, is absolutely 
essential here because it is precisely the x-dependence of t in the factorization 
(3.4.1) which generates the x-dependence of l] and thereby of Y and the metric. 
In fact, it is obvious for this reason that this factorization method would not 
work for a flat space integrable theory. 

To facilitate the comparison with the standard literature, I will in this 
subsection use the notation 

u - x  + , v - x -  (3.4.3) 

for the light-cone coordinates. Furthermore, the remaining conformal invariance 
is entirely fixed by choosing the coordinates such that 

½ ( 1 - 2 u  2) , p_ (v )=  ½ ( 1 - 2 v  2) p(u,v) = 2 (3.4.4) 

The interaction region, where the waves collide, is 0 < u , v  < 1 , p ( u , v )  > 
O. In the region "before the collision" the solution is obtained by defining 
g ( u , v )  - g(O,v) for - c o  < u _< 0;0 < v < 1 and g ( u , v )  - g(u,O) for 
- o o  < v _< O; 0 < u < 1. Between the incoming waves, the space-time is 
Minkowski (g(u,  v) = g(O, 0)). Although the solution is continous across the 
boundary by construction, the matching introduces certain discontinuities in 
the higher derivatives (gravitational shock wave). Furthermore, the solution 
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Fig .  1. Space-time for a colliding plane-wave solution. The metric is fiat (Minkowski) in (I), 
and corresponds to pure gravitational radiation in regions (II) and (III). In the interaction 
region (IV) it is given by the solution (3.4.14) below. The dashed line indicates a curvature 
(Weyl tensor) singularity [11-13]. 

cannot be extended beyond p(u, v) = 0 [11-13]. The situation is illustrated in 
the figure. 

We now consider the simplest non-trivial monodromy matrix 

.A4 (w) -- wo+~ (3.4.5) 0 w0+w 
W0 ~ 

for the special value wo = ½ as an example e. Next we use (3.3.7) to derive 

P (t-t0) (~- t0)  w - w0 = -4t0 (3.4.6) 

with to(u, v) =- t (u,  v; w = wo). Substituting (3.4.6) into (3.4.5), and defining 
the functions (see (3.3.5)) 

For a Euclidean metric, essentially the same mmaodromy matrix yields the Schwarzschild 
solution with mass m = w0 in Weyl canonical coordinates [18]. The relative minus sign is 
due to the fact that,  for the solution (3.4.9) below, P(t  = 0) = 12 and ~( t  = co) = -r12, 
so ~(oo) = -1. 
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` / 1  - u 2 - v 

t l ( U , V )  t(u,v;w 4~ > 0  
~"  , / 1 - ~ + v  

(3.4.7) 

and 
v 'T-  v2 + u 

< 0 (3.4.8) ~2(u , , ) - t (~ ,v ;w=-½)= ~ _ , ~ _ ,  

(the inequalities hold in the interaction region), we obtain the desired factor- 
ization in the form (3.4.1) with o) 

9 ( u ,  v; 5) = V - ' ,  ' - ' ,  

0 
(3.4.9) 

Put t ing  t = 0, we can directly read off the result for A by virtue of (2.2.14) 

tl 1 - 
A = _ - - -  > 0 ( 3 . 4 . 1 0 )  

t2 1 + ~  

where, on the right hand side, I have introduced the oblate spherical coordi- 
nates, widely used in the literature: 

= u~/1 -- v 2 + vV/1 - u 2 

77 --- u X/1 - v 2 - v X/1 - u 2 
(3.4.11) 

To determine the conformal factor, we integrate the equation (3.2.7), using 

p~_ .= 1 -1  ( }  -- f,1 
-~p O+p "+ tl 1 ~ 2 ) 1  - t2 (3.4.12) 

Some further calculation shows that  

A2 = 8uv( 1 (1 - t i t 2 )  2 _ ~ - ~ - i ~ )  ( 3 . 4 . 1 3 )  

where the undetermined overall factor has been chosen for convenience. In 
section 4.2, I will re-derive this result directly from the Breitenlohner-Maison 
cocycle formula. Collecting all contributions, reexpressing them in terms of the 
coordinates (3.4.11) and substi tuting the result into (3.2.9) yields the metric 

d--~2 drl2 "~ - p211-~+~(dx2)2 l + ~ ( d x a ) 2  (3.4.14) ds2 = (1 +~12 ( 1 -  1 - - ~ 2 /  - 1 -  

This is just  one of the Ferrari Ibanez metrics 7. It is quite obvious now that  
more complicated monodromy matrices with off-diagonal terms in (3.4.7) will 
lead to colliding plane wave solutions with non-coUinear polarization of the 
type discussed in [13]. 

To conclude this section I will sketch how the factorization works in the 
general case, given a "reasonable" form of the monodromy matr ix (I here follow 

7 Equat ion (2.1) of the first paper in [13] for n = - 1 ,  to be completely precise. 
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the derivation given in [46]). For simplicity, we again assume absence of higher 
order poles in the monodromy matrix 

N 

A, (3.4.15) ~w( ) = r + ~ .  w -  w, 
I : l  

where Y = .A4(o0) and the Ai are constant symmetric but otherwise arbitrary 
matrices. Defining ti = t(x; wi), we have 

1 ( tt_,t~ __~lt,t) (3.4.16) w -- wi -- v, + 1 

with the functions l]i 

Vi(Z) ~-- --4p -1 t, (3.4.17) 
1 - t ,  2 

Inspired by the explicit result (3.4.9), we make the following ansatz for 

Bi  
9(t) = B0 + ~ t : t ,  (3.4.18) 

i 

where the functions Bo(x) and B,(x) are to be determined. Once the solution 
of the factorization problem has been brought into the form (3.4.18), we can 
immediately read off the result for I)(z), which is 

F = B 0 -  E ~ (3.4.19) 

Inserting the ansatz (3.4.18) into (3.4.1), we obtain the following matrix equa- 
tions after a little algebra 

Y =BoV T 

vit'Ai =Bi ( VT + E B T 1  ) ,  t i 1='tit, 

v,t,Ai = Bo + E B1 i --'t,t, 
3 

(3.4.20) 

Assuming that these equations can be solved, we have therefore succeeded in 
reducing the problem of solving a non-linear partial differential equation to a 
purely algebraic pro~em in this way! Finally, we have to make sure that acting 
with a derivative on V, we do get the right pole structure for the linear system. 
After a little further calculation (not forgetting the derivatives on t and t, !), 
we find 
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=O+Bo + t O+B, + p-'O+pB, 
i 

lq- t - - t , l + t i  
| 

which displays the desired structure explicitly. 

(3.4.21) 

3 . 5  E x t e n s i o n  t o  S u p e r g r a v i t y  

The foregoing considerations can be generalized to supergravity theories [19]. 
In this section, I will give the results for N = 2 supergravity, making use of 
the results in section 2.2, and also present the Kac-Moody generalization of the 
current (2.3.3), which can be cast into a very simple and model-independent 
form. As before much labor is saved if we start from the three dimensional 
Lagrangian (2.2.20) rather than N = 1 supergravity in four dimensions. Again 
it proves convenient to fix certain gauges. For the dreibein, we make the same 
choice as in (3.2.2). In addition, we invoke local supersymmetry (2.2.21) to put 

= (3.5.1) 
(the index a is a f lat  Lorentz index in three dimensions). Thus, in two dimen- 
sions, we have the correspondence 

A *-. Cz , p *-* ¢2 x (3.5.2) 

It is important that,  just as in the bosonic theory, there is a residual invari- 
ance which preserves the form of this gauge. In addition to the conformal 
reparametrizations (3.2.4), we now have the residual superconformal transfor- 
mations with a parameter  e I subject to the constraint 

7~ 7~D~J = 0 (3.5.3) 

This residual invariance can be used to put ¢ / =  0 in the equations of motion 
(however, it is also possible to keep the gravitinos by not fixing this remaining 
gauge, see [20]). A further simplification of the equations of motion of the 
physical fields occurs when one passes to second order formalism and eliminates 
the auxiliary vector B~, in (3.2.2) through its equation of motion [19]. Defining 
e~vF = A-lp(O~Bv - O~B~) and rescaling the fermions by a factor A~, a 
calculation completely analagous to the one leading to (2.1.4) reveals that the 
field F appears only in the following combination 

~, 1 2 l p F ( ~ I ¢ I  _~ l~I_  I, = ~pF - ~ x ) (3.5.4) 

Elimination of F therefore produces the following extra quartic terms 

C ' = - ~ p ( ~ % z ) 2  ~ p ¢ ~ ¢ ' ~ J x  J ' - V X  ~'2 (3.5.5) - - ~ p ~ ,  ) 

to which we must add the terms originating from the second order spin con- 
nection 
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z" = -~p(~'¢')~ + - ~ p ~ ' ¢ ' ~ x  ~ -  ~p~ ( # x ' )  ~ (3.5.6) 
Adding up these contributions, we see that the remaining gravitino components 
¢ I  decouple, since no further contributions involving ¢ I  arise from the extra 
terms in (2.2.23) if we put ¢~ = 0. Taking into account all the (~X) 2 terms and 
rescaling the fermion fields by A], we arrive at the equations of motion 

and 

,,-'D,' (pv~) =3ie: ~"~"x' 
p-, D. (pp~) = - 3 z P ~  :~17~X2  

(3.5.7) 

-zp  23' Dr 
(3.5.8) 

= 

These equations constitute the supersymmetric generalization of the Ernst 
equation (3.2.8). 

The bosonic linear system (3.3.2) admits the following generalization for 
N = 2 supergravity 

1 + t ~ ~A 

(3.5.9) 
t(1 + t 2) 3i~1737ttX2) yZ 

To prove this assertion, the integrability relation (3.3.3) must again be checked; 
the explicit calculations are now considerably more tedious than in the bosonic 
case due to the extra contributions arising from the derivatives on the spectral 
parameter and the quartic spinor terms. The main feature distinguishing (3.5.9) 
from the bosonic result (3.3.2) is the appearance of higher order poles in the 
spectral parameter t (even higher order poles appear when the gravitinos are 
retained [20]). For N = 2, some information is lost in the linear system because 
the cubic terms on the right hand side of (3.5.8) as well as the coupling between 
X and the gauge field Q~ drop out because the subgroup SO(2) is abelian. This 
is no longer true for non-abelian H. Apart from this, the on-shell information of 
N = 2 supergravity is now entirely contained in the matrix 1}. It is noteworthy 
that the linear system with the fermions remains invariant under the generalized 
symmetric space automorphism r °° of (3.3.12). 

There is also an analog of the conserved current (2.3.3) [38]. It is 

[ 1 + t 2 A 2t ,p,A'~ y A _  
flit = pK~ ~ ]--z-~ P; + 1 - t  z _ e.. ] 

(1  +6t 2 JI- t4 3i~1 X2 4t(1--{- ,2) 3,~1.~3 )~2~ )~--1 ~ - ~  ~ ~" + ( 1 - ~ ) ~  "r., ) r  ~ 

(3.5.10) 
where the factor K satisfies the differential equation 
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K_IO~K _ 4 
1 - -  t 2 %'vO~'t 

and is explicitly given by s 

t 2 2 0t 
p K  = - 8 p  -1 (1 - t 2 )  2 1 - t 2 0 w  

(3.5.11) 

(3.5.12) 

"-109) 0(9-10.9)=0. V 

and 

together with (3.5.12) above, some re-arrangement leads to a much more elegant 
formula for the Kac Moody current 

& = - ] (3.5.16) 

In this form the result is completely general and model-independent, and re- 
mains valid in particular when gravitinos are included. We will come back to 
it in section 4.2 when discussing the central term. 

Finally, a remark on the status of fermionic solutions is in order. To date, no 
such solutions of the supersymmetric Ernst equation (3.5.7) and (3.5.8) describ- 
ing colliding supergravitational plane waves are known, but  there is no reason 
of principle why such solutions should not exist. This is strongly suggested by 
the existence of fermionic solutions extending the extreme Reissner-Nordstrom 
solution [48]. There remains, of course, the question of how to interpret Grass- 
mann valued solutions. Their main importance in the present context derives 

s This simple solution was overlooked in [38], where it was erroneously claimed that K is 
a non-local function of t. 

0 
Now using 

The somewhat unexpected prefactor p K  ensures that the divergence ff~ is 
indeed proportional to the equations of motion (with the correct factors of p!) 
and therefore vanishes. Readers skeptical that we are on the right track with 
the above expression for the Kac Moody current should note that  in fiat space 
(i.e.rigidly) supersymmetric models, one finds exactly the same expression for 
the conserved current [47], but  wi thou t  the prefactor p K ,  since we have p = 1 
and t = const  in that case. 

There is a very nice simplification of the result (3.5.10). To derive it, re-write 
(3.5.10) as follows 
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from the new insights one might hope to gain into the structure of the linear 
system (3.5.9). 

4 .  G r o u p  T h e o r e t i c a l  S t r u c t u r e  

As already emphasized in the introduction, one of the main motivations for 
studying the reduction of gravity and supergravity theories to low dimensions 
is the search for a better understanding of the underlying symmetry structures. 
In this section, I will describe the emergence of infinite-dimensional symmetries 
of the atone Kac-Moody type for the purely bosonic theory. Although the work 
of the last few years has provided us with a fairly satisfactory understanding in 
that case, there have been some surprising developments such as the discovery 
of the central extension [17,10] and of a Virasoro algebra acting on the space of 
solutions [49,18]. These will be reviewed in sections 4.2 and 4.3, respectively. A 
new result is the formula (4.2.18) for the variation of the conformal factor. While 
the first two sections of this chapter deal mostly with the bosonic theory, the 
last section is devoted to a discussion of the supersymmetric theory, where some 
perplexing questions remain. These are in part related to the fact that,  until 
now, no fermionic analog of the infinite hierarchy of dual potentials in (3.3.7) 
has been found: the chiral fermions behave like eigenstates under the duality 
rotations associated with the infinite-dimensional extensions of G (cf. equation 
(4.2.29) below). This and our lack of understanding of how to treat fermionic 
solutions in the present framework may be taken as a hint at the existence 
of yet more symmetries. In fact, by considering the hyperbolic extension of 
certain a~ne  Dynkin diagrams, B.Julia was led to conjecture the emergence 
of hyperbolic symmetries in the reduction to one dimension, and in particular 
of an El0 symmetry in the maximally extended N -- 16 supergravity theory 
[24]. In section 4.3, I will argue that the appearance of such algebras is related 
to the introduction of fermionic degrees of freedom. The suggestive relation 
between hyperbolic Lie algebras and locally supersymmetric theories is most 
impressively exemplified by the fact that the "maximally extended" simply 
laced hyperbolic Lie algebras are extensions of Es and Ds = SO(16) [23], 
which are precisely the groups that appear in the maximally extended N = 16 
supergravity theory. 

4.1 In f in i t e  D i m e n s i o n a l  Cose t  Spaces  

In section 2.2, some pertinent results for finite-dimensional a-models were 
briefly reviewed. We would now like to generalize these results to the infinite- 
dimensional case. The appearance of the spectral parameter t in section 3.3 
was the first evidence for the emergence of an mCl:ine Kac-Moody symmetry. 
The situation is somewhat complicated by the x-dependence of t, and in sec- 
tion 3.3 we also noted the existence of another spectral parameter w, which 
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does not depend on x, and which is, in principle, interchangeable with t. As 
already pointed out before, both these parameters are essential for the gener- 
alizations of the various concepts introduced in section 3.3. To see why this 
is so, recall that  the Kac Moody group G m, which extends (and contains) G 
must act rigidly. Therefore the elements of this group must depend on w rather 
than t. On the other hand, the infinite-dimensional generalization r °° of the 
symmetric space automorphism introduced in (3.3.10) involves the parameter 
t, and therefore automatically brings in an x-dependence. This shows already 
that we must introduce matrices which depend on both  x and w, if we want to 
define an infinite-dimensional extension of the coset space G/H.  We are thus 
naturally led to consider the matrix ~(x, t(x, w)) as an element of G ~ for each 
(fixed) x. The actual definition of G c¢ also requires some technical assumptions 
about the regularity properties of g(w) E G °° such as the requirement that  g(w) 
should be a meromorphic function of w, but  I will not further elaborate on this 
issue here (see [10] for a discussion). The subgroup H °° extending H is then 
defined to consist of all matrices h(x; t) in G °° invariant under the generalized 
automorphism r ~ ,  or 

h(x;t) e H °° -: ' .-(h(x;t)) -1 = h x; (4.1.1) 

The Lie algebras associated with G ~ and H ~ will be called G °° and H °°. An 
element of G °° is written as 

 g(w) = 59.w" (4.1.2) 

whereas the general element of H °° has the form 

n > 0  n > 0  

with 8h,  E H and 6k,  E K. So, roughly speaking, H °° is "half '  of the Lie 
algebra G ~ .  

We are now interested in finding and classifying the solutions ~(x,  t) of the 
linear system (3.3.2). According to (3.3.12), the expression ~ - l a ~  must be an 
element of H ~ ,  which, by construction, is "pure gauge". This suggests that  9. 

~(x, t) = g-Z(w)h(x, t) (4.1.4) 

because we still have the freedom of multiplication by an x-independent but  
w-dependent matrix from the left, since ~ is an element of G °° , and not just  
H ¢~. The explicit t-dependence on the right hand side of (3.3.2) imposes a 
stronger constraint on ~ - l a t , ~  , since matrices of the form (4.1.3) will not yield 

9 The question of whether indeed all solutions of (3.3.3) can be represented in this way 
is related to the question of whether the group G °° acts transitively, see the discussmn 
below. 
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the t-dependence prescribed by (3.3.2) in general. In addition, we demand that 
should be regular at t = 0, so we can recover 12 in the limit t --* 0. This 

requirement is tantamount  to the existence of a triangular gauge for ~ as in 
(3.3.8). For arbitrary matrices in (4.1.4), 1) will, however, fail to satisfy these 
requirements, because the replacement of w by t through (3.3.7) introduces 
poles at t = 0. Nonetheless, we can argue that there exists a special ho(x, t; g), 
implicitly depending on g(w), such that 

9o(x, t) = g- l (w)ho(x,  t; 9) (4.1.5) 

has the desired properties. To see this, let us first determine the monodromy 
matrix from (4.1.4), which is .~4(w) = (gr(w)g(w))-'. If the matrix equations 
(3.4.20) can be solved, there exists a solution Y0 to the Riemarm Hilbert fac- 
torization problem, which is of the form (3.4.18) and thus indeed regular at the 
origin. The H ~ matrix in (4.1.5) is then simply h0 = g(w)~o. Differentiating 
this solution generates at most first order poles at t = 5=1 by (3.4.21), and this, 
in turn, guarantees the absence of higher order poles from the linear system 
(3.3.2). Altogether, these arguments show that,  given a suitably regular matrix 
g(w) in (4.1.3), we can always construct a solution of the linear system with 
the requisite properties. 

These considerations make it highly plausible that the space of solutions to 
the non-linear equation (3.2.5) can be identified with the coset space G°°/H ~. 
To see this, consider the space of all matrices ~(x; t) with P-10~,~ E H ~ ,  but 
not necessarily of the special form (3.3.2). On this space, there is a combined 
action of G °~ × H °~ 

9(x; t) 9'(x; t) = t)h(x; t) (4.1.6) 

Thus the group G ~° acts rigidly from the left, while H °° acts as a gauge group 
from the right. The infinitesimal counterpart of (4.1.6) is 

~9(x; t) = -~g(w)  f ( x ;  t) + 9(x; t) ~h(x; t) (4.1.7) 

where 6g(w) and 6h(x;t) are to be expanded as in (4.1.2) and (4.1.3), but with 
constant 6g, and x-dependent 6h,  and ~kn. Observe that through the eleva- 
tion of H ~ to a gauge group, the infinitely many "dual potentials" introduced 
in (3.3.8) (now with n E 2~) become independent gauge degrees of freedom. 
The transformation law (4.1.6) generalizes (2.2.7) to the infinite-dimensional 
case. The coset space G~/H °~ can now be defined in complete analogy with 
the finite-dimensional space G/H: two matrices ~ and ~t will be called gauge 
equivalent if and only if there exists a matrix h E H ~ such that ~ = ~h. 
The equivalence classes of such matrices constitute the elements of the coset 
space G~/H c¢. By the above reasoning, each equivalence class contains one 
particular element ~0, which is analytic at t = 0 and from which the matrix Y 
solving the field equations (3.2.5) can be reconstructed. Therefore, the equiv- 
alence classes are in one-to-one correspondence with the solutions of (3.3.2), 
and thereby of (3.2.5). Conversely, one can proceed from a given solution ~0 
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and act on it with an arbitrary matrix g(w) E G °°. This transformation will in 
general take us out of the coset to which T0 belongs, and a compensating H °° 
rotation must be applied to restore the triangular gauge. 

In summary, theaffine Kac-Moody group G °° acts on the space of matrices 
satisfying ~-10~1) e H °°. If we insist that ~ be triangular as in (3.3.8), or, 

equivalently, that ~ - 1 0 , ~  be subject to the more restrictive condition (3.3.2), 
the symmetry is realized non-linearly. Since we can then extract the solution of 
the original non-linear field equation from ~, there is also a non-linear action 
of G °° on the space of solutions. There is an obvious analogy between ~ and 
the vielbein in general relativity, with G °° replacing GL(D, IR) and H °° the 
Lorentz group (however, G °° and H °° contain only their transverse subgroups). 
For this reason, and because G °° is infinite-dimensional, the matrix Y might 
be appropriately referred to as "oo-bein". This analogy is deficient only insofar 
as all the elements of G°° /H  °° are "on shell" by construction, whereas this is 
not the case for the finite-dimensional coset spaces of section 2.2. 

To be sure, there remain some thorny technical issues. One is the question of 
whether all the solutions of (3.2.5) can indeed be obtained in this way, or, equiv- 
alently, whether the group G °° acts transitively on the space of solutions, and 
all solutions can be "reached" from l)0 = 1 via (4.1.6). For stationary axisym- 
metric solutions of Einstein's equations, this has been demonstrated modulo 
some technical assumptions in [50]. For the plane wave solutions discussed in 
section 3.4, the corresponding result is still lacking l°. A second, and perhaps 
more significant indication of our incomplete understanding is the existence of 
further symmetries. The considerations above did not take into account the 
conformal factor, a defect that will be remedied in the following section. As a 
consequence, the space of solutions is actually bigger, and the coset space de- 
fined above must be modified. In fact, there are more symmetries at work even 
in the purely bosonic theory, and in section 4.3, a Virasoro type symmetry on 
the solution space will be exhibited. There, we will also return to the fermionic 
theories. 

4.2 T h e  Central  E x t e n s i o n  

It is well known that every affine Kac-Moody algebras admits a central exten- 
sion [23]. In physical examples, the appearance of such a term is usually linked 
to quantization (see [51] for a very readable introduction). It is therefore rather 
surprising that, for the affine algebra G °°, a central term is already present in 
the classical theory [17,10]. Moreover, this central term is not a c-number, but  
acts as a scaling operator on the conformal factor. In this section, a deriva- 
tion of this result is given which generalizes previous ones and also applies to 
supergravity theories. Although the final result (4.2.18) is completely general, 
the proof is only given for the bosonic model in order to avoid cumbersome 
formulas. Furthermore, I will employ light-cone notation from now on (with 

10 At least to the best of the author's knowledge. 
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1 0 the usual conventions V + _= ~ ( V  ~ V 1) for vectors, etc.), since the deriva- 
tion becomes much more transparent in this way. Details of the calculation are 
provided only for positive (+)  chirality components, since they are the exactly 
the same for the opposite chirality. 

The linear system (3.3.2) will now be used in the form 

1 - t  l + t  
9 - 1 0 + 9  = Q+ + ~ P+ ' 9 - 1 0 - 9  = Q -  + T ~  P -  (4.2.1) 

so the right and left moving components of the linear system have poles at 
t = - 1  and t = 1, respectively. The correspondence between the chirality and 
the location of the poles in t remains valid for supergravity, as one can easily 
verify from (3.5.9) and (3.5.10). 

The starting point is equation (3.2.7), which determines the conformal factor 
in terms of the "matter  fields" up to an overall factor, and which we now write 
a s  

p-lO+ p A-IO±A 1 = ~Tr P+P± (4.2.2) 

disregarding the term involving second derivatives of p, which can be absorbed 
into a redefinition of A, from now on. To analyze the action of G °° on A, we must 
first find out how this group acts on the right hand side of (4.2.2). From (4.1.6) 
and (3.3.2), it is clear that P+ and Q+ axe inert under the action of G °°, and 
therefore this group can act only via the induced compensating H °° rotation 
needed to restore the generalized triangular gauge. Hence, we must examine 
the compensating generalized duality rotations in a little more detail. It is 
advantageous to analyze infinitesimal transformations of the form (4.1.2) with 
a "cutoff" on the number of components, i.e. @n = 0 for Inl sufficiently large. 

Assuming V to be regular at t = 0, we now demand that the the compensating 
H °° variation in (4.1.7) should be chosen in such a manner that  6Y is also 
regular at t = 0. Inserting the expansion (4.1.2) into (4.1.7) and using (3.3.7), 
we see that only the positive powers of w in (4.2.1) lead to poles in t which must 
be compensated by an appropriate Sh(t). If, on the other hand, only negative 
powers of w appear, we can put 5h(t) = 0 because w -1 -- 4p-it + O(t 2) for 
t --+ 0 from (3.3.7). For this reason, we can restrict attention at this point to 
variations of the form 

N 

= (4.2.3) 

For such @(w), we have 

oo 
= 4 _ .  4 _ 1  

t -  (4.2.4) 

by (3.3.7); the G-valued matrix functions av = av(x) are implicitly defined 
through this equation. The compensating transfo~nation 5h(t) needed to re- 
move the pole terms is therefore 
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_,2( )  h(t) = - V - -  + " "  + --V- + + + + . . .  + = 

N N 

u = l  u = l  

(4.2.5) 
with Shy = (a -~  + r (a_~) ) ,  etc.; for the definition of v, see (2.2.3). We can 
express the constraints a~(z),  or equivalently on 5h,,(x) and ~k,,(x), which 
follow from the definition (4.2.4), in a somewhat different form. Differentiating 
the left hand side of (4.2.4), we get 

Inserting (4.2.1) and the expansion (4.2.4) back into this expression, and com- 
paring this with the result obtained by directly differentiating the right hand 
side of (4.2.4), it is straightforward to show that  

D+av+D+av_l+p-lO+p(va~,-(v-1)a~,_l)+[P+,a~,-a~,_l] = 0  (4.2.7) 

where we define a - n - 2  = tr_,,_l - 0. The variation of Q+ and P+ can now be 
deduced from 

(V-IO+V) = O+Sh + [V-10+V, 5hi (4.2.8) 

It is essential here that  the t-dependence of the linear system is preserved 
in this variation because contributions potentially violating this form of the 
t-dependence vanish by virtue of (4.2.7). Comparing the coefficients of the re- 
maining terms in (4.2.8) and neglecting the (trivial) term with ~h0, one obtains 

8P+ = ]D+akll + l p - 1 0 + p ~ k l  - -  ½ [P+,ghl]  (4.2.0) 

(The result for 5Q+ is similar, but not needed here). Next, we eliminate D+6kl, 
using (4.2.7) for v = 2, and repeat this procedure until all derivatives have 
disappeared (remember that  5h,, = 5k,, = 0 for v = n + 1, n + 2). The  variation 
of P+ is thus found to be 

n n 

y = l  v = l  

Inserting this result into the variation of (4.2.2), we see that  the second te rm 
in (4.2.10) drops out,  so the factor p-XO+p appears on both  sides and cancels 
out (notice that  p is not varied). Therefore, 

n 

0+ (A-15A) = E(-1)"+lvTr(Sk ,  P+) (4.2.11) 
v = l  

In order to exhibit the right hand side as a derivative, we re turn  to the formula 
(3.5.10) which, of course, remains valid for the purely bosonic theory if we put  
X I = 0. By use of the various relations given there, the relevant component  of 
the Kac-Moody current can be writ ten as 
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2 PP+P-' (4.2.12) 
3+ = (1 0 2 

A short calculation now shows that the result (4.2.11) can be alternatively 
expressed as a contour integral in two different ways 11 

a+ (A-16A) = ~ -1 ~ Tr • = 

(4.2.13) 
=_-11 d, 

2 ft=o 

Therefore, integrating over the chain C = Co + ½C_I, with Cto encircling the 
point to in the complex t-plane once, we obtain the identity 

(for the opposite ( - )  chirality, one must integrate over C = Co + ½C1). On the 
right hand side of (4.2.14), we can now deform the contour to a circle around 
t = - 1 ,  since the compensating transformation 6h(t) was designed precisely 
for the purpose of removing the pole at t = 0 (for triangular ~). Hence, 

Ow I^ 1 ^ 

(4.2.15) 
Replacing the integral involving 5h(t) by O+(A-~SA) according to (4.2.13) 
(which is the expression we set out to calculate), we arrive at 

In the last step, we convert the integral on the left hand side into an integral 
over w, remembering that the point t = 0 corresponds to w = oo in the complex 
w-plane, and invoke formula (3.5.16) in the form 

fw=oodWTr(3+.'g(w))=-O+(/w= dwTr(~w~-l.$g(w)) ) (4.2.17) 

In dropping the derivative operator O+, we must allow for an arbitrary function 
depending only on x - .  This function is then fixed by repeating the above steps 
for A-10_A. The final result (and the main formula of this section) is 

A-'SA = jw=oodwTr  .Sg(w) (4.2.18) 

From this formula, we can now recognize the action of the central term if we 
perform a second variation on ]2 according to (4.1.7). To pick out the central 
term, it is sufficient to consider a 5g(2)(w) of the form 

11 The  definit ion of the  con tour  integral  includes a fac tor  (2~ri)-1.  
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N 

~g(2) = E 6-(2)y-"w-" (4.2.19) 
n = l  

for wldch, by the arguments preceding (4.2.3), the compensating H °° rotation 
vanishes. This trick simplifies the calculation of the commutator  considerably 
and leaves us with the result 

The first contribution is the central term advertized before, while the second 
term is just the result expected from the Lie algebra structure of G °°. A remark- 
able feature of this result, already alluded to before, is that  the central term 
is not just a c-number, but a transformation operator. Already after (3.2.7), 
it was noted that  the equations of motion admit constant rescalings of the 
conformal factor as an extra symmetry. The corresponding generator Z acts 
according to 

~-ltl~ = const (4.2.21) 

The G °° Lie algebra is therefore characterized by the commutation relations 
(with self-explanatory notation) 

a b [T~, T~] = fabeT~,l+ri + m,Sm+,,o6'~bZ (4.2.22) 

The symmetric space automorphism r °0 can be generalized to the centrally 
extended algebra [10]. Using (3.3.10) it is easy to check that (4.2.22) is invariant 
under 

r ° ° ( T ~ )  = r(T~_m) , r ° ° ( Z )  = - Z  (4.2.23) 

This means that,  in contrast to G °°, the r °° invariant subalgebra H °° does not 
possess a central extension. 

The appearance of the operator Z in the Kac Moody algebra (4.2.20) sug- 
gests that  the conf^ormal factor A should be included into an enlarged version 
of the "oo-bein" V. In accordance with this idea, it was proposed in [10] to 
consider pairs (7, A) with the multiplication rule 

(Y,, ~z) o (72, .k2) = (Y, 72, ~, )~2 exp ,.¢2(~,, 72)) (4.2.24) 

where ~2(7,, 72) is a group two-cocycle (an introduction for physicists is given 
in [52]). This cocycle is only determined up to a coboundary, which can be 
absorbed into a multiplicative redefinition of A. The above multiplication rule 
correctly implements the central extension of the Kac Moody algebra G °° at 
the level of the Kac Moody group G °°. Denoting the centrally extended version 
of G °° by G °° it is clear that the coset space Ge°~/H °° is related to the space of c e ,  

solutions of (3.2.5) and (4.2.2) in the same way as G ° ° / H  °° was related to the 
solutions of (3.2.5) alone. The Geroch group is now properly identified as G~ .  
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It is perhaps worth emphasizing that  through the enlargement of the original 
"cx~-bein" to a new entity also containing the conformal factor, the unification of 
symmetries, which is observed in the reduction from higher dimensions, for the 
first t ime touches upon the unphysical gravitational degrees of freedom (while, 
incidentally, the last remnant  of local Lorentz invariance on the zweibein has 
disappeared). This indicates that  any further unification of symmetries beyond 
G ~ will involve the boost generators. 

As pointed out in [10], the automorphism r ¢¢ can generalized to the cen- 
trally extended Kac Moody group. The analog of (3.3.10) is 

too(9,  ) = (4.2.25) 

We can now repeat the argument which was used in (3.4.2) to prove the x- 
independence of the monodromy matrix and show that  

.,~- (~, ,~)o ,°° (~,,~)-' = (~T°"~-',,~2 exp f2 (~, ,°°~-'))(4.2.26) 

is likewise z-independent.  Thus, the second entry on the right hand side must  
be constant,  whichimmedia te ly  leads to a beautiful formula for the conformai 
factor in terms of V [10], viz. 

ln~ ---- __1~'~ (~, Too~--I) 71_ C0T$8' (4.2.27) 

Unfortunately, the practical usefulness of this result is l imited by the scarcity 
of explicit formulas for group cocycles [52]. Nonetheless, there are some special 
cases where an explicit computat ion is possible and (4.2.27) can be "tested". 
One is the colliding plane wave solution reconstructed in section 3.4, for which 
the matrix V is diagonal due to the collinear polarization of the waves. By use 
of the formulas given in appendix B of [10], (4.2.27) reduces to 

t l  l - t t l  "~ _ 
l n A = - ~  d t  I n  " t 2 t  

1 (1  - t i t s )  2 
= + ~ In (1 - t~)(1 - t~) 

(4.2.28) 

This agrees with (3.4.13) after re-insertion of the factor (O+p)-~(O_p)-½ and 
adjustment  of the integration constant. 

I conclude this section with some comments on the supersymmetric the- 
ory. As already mentioned, the above derivation of the central term is more 
general than  previous ones in that  it also works for supergravity (the method  
of commuting an Ehlers with a Matzner-Misner transformation and evaluating 
its effect on the conformal factor [17,10] does not obviously generalize beyond 
SL(2, IR), and is certainly insufficient for supergravity). Remarkably, formula 
(4.2.18) for the variation of the conformal factor remains valid as it stands, 
al though the intermediate steps are different and more cumbersome due to 
the extra fermionic terms in (4.2.2) and the appearance of higher order poles 
in the linear system. Amongst  other things, one must  work out the action 
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of the compensating duality rotation on the fermions. In a chiral basis (with 
1 X+ ---- ] 7 - 7 + X  and X- - ½O'+q'-X, etc.), one finds that  the chiral components 

of X transform as eigenstates under the action of 6h(x; t) at t = q-l, viz. 

6X+ = 5h(x;-1)X+ , 6X- = 6h(x; +l)x_ (4.2.29) 

This is, of course, not an unexpected result in view of the fact that  the fermionic 
analogs of the "dual potentials" in (3.3.7) are still missing. 

4.3 Hints  o f  More  S y m m e t r i e s  

The foregoing analysis has revealed an impressive array of "hidden symmetries" 
in Einstein's theory and its various generalizations. Nevertheless, there are still 
more symmetries even in the purely bosonic theory, and it seems like we have 
only had a glimpse of the full structure so far! As discovered only very recently, 
one can realize a Virasoro algebra on the space bosonic solutions [49,18]. It is 

A 

most simply defined through its action on l) 

6w O°Yw (4.3.1) 

where 6w = f(w) with an arbitrary meromorphic function f(w). Expanding 
f(w) in powers of w, we have the following correspondence with the well-known 
Virasoro generators 

Lm : --* - w  m+l  0 F  
Ow (4.3.2) 

To keep )2 in the triangular gauge, a compensating H °° rotations is again nec- 
essary. However, there is a further subtlety now. To maintain the pole structure 
of the linear system, a compensating conformal coordinate transformation of 
the type (3.2.4) is also needed. More precisely, one demands that  

= 6wo~ + 5z+c3+t -t- 5x-O_t (4.3.3) 5t 

should be regular as t ~ =El, so no higher order poles are introduced through 
the transformation (4.3.1) into the linear system (this compensating transfor- 
mation is also necessary to take care of the extra contribution 5(p-lO+p) ~ 0 
in the variation of (4.2.2)). It is not difficult to prove that the generators Lm 
indeed satisfy a Virasoro algebra, and that the commutator  of a Virasoro and 
a G °° transformation gives expected result 

[Lm,T2] = - n T £ + .  (4.3.4) 

Finally, the conformal factor also transforms under the Virasoro algebra, and 
its variation can be determined from (4.2.2) as before. 

The presence of the extra symmetry (4.3.1) suggests that  the coset space 
Gc~/H °° may not be enough to properly characterize the space of solutions, 
since it does not take the extra symmetry (4.3.1) into account. Likewise, the 
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subgroup H °° should be extended so as to accomodate the conformal coordinate 
transformations (3.2.4). This, too, may not be enough for the supersymmetric 
theory because it was shown in [20] that after re-introducing the gravitino com- 
ponents into the linear system (3.5.11), the local superconformal invariance of 
the theory could be expressed as a Grassmann valued H °° gauge transformation 
(plus a compensating conformal coordinate transformation, see the appendix). 
All of this hints at the existence of an even larger coset space in terms of an 
as yet unknown quotient G~°°/H °°°°. In view of our ignorance about G ~ 
and H °°~,  it is advisable to collect the available information. Designating the 
associated Lie algebras by G °°°° and H °°~,  respectively, we know that  the set 
of rigid symmetry generators must contain ( ~ ,  Z and the Virasoro algebra 
Vir(w). Thus 

G G z Vir(w) (4.3.5) 

For the gauge symmetries, we have in addition to H c¢ the generators of the 
conformal coordinate transformations (but no central term!), or 

H ° ~  D H °° @ Vir(x +) @ Vir (x- )  (4.3.6) 

where Vir(x ±) stands for the algebra of conformal coordinate transformations 
(3.2.4) depending on x + or x - .  What could the algebra G~ ~ be? A glance 
at the table of Cartan Kac Moody Lie algebras shows that,  beyond the known 
affine Kac Moody algebras, there remain only the so-called hyperbolic algebras 
[23,53]. It was in fact this observation which led to the conjecture that  such 
hyperbolic algebras should emerge in the reduction to one dimension [24]. In 
the appendix, I will argue that  this last step should involve a chiral reduction, 
so one of the summands Vir(x +) should be omitted from (4.3.6). Nonetheless, 
even without actually considering this reduction in detail, we can adduce some 
evidence for the correctness of the conjecture by taking a closer look at (4.3.5). 
The point here is that the extra generators Z and L0 E Vir(w) identified in 
(4.3.5) are precisely the generators needed to enlarge the Cartan subalgebra 
of (]  to that of its hyperbolic extension! This is most easily understood in 
the language of string vertex operators. In the vertex operator construction of 
Kac Moody algebras [51,54], the Cartan subalgebra is always spanned by the 
zero mode string momentum operators j~Q, OX ~'. Choosing the polarization 
vector e~ space-like, one gets the Cartan subalgebra of the finite dimensional 
Lie algebra (~. Taking ¢~ to be one of the remaining two light-like vectors, 
on the other hand, one obtains just the two operators Z and L0 above (these 
operators are called k and d in [51]). Observe that the metric in root space has 
the required signature ( -  + . . .  +). In fact, one can embed the whole Virasoro 
algebra Vir(w) into the hyperbolic extension by considering vertex operators 
of the form j~: gOXexp(imcX):, where Q, and g~ are the two light-like vectors 
obeying ¢ • g = 1, and m E 7I. 

Obviously, these considerations do not suffice to really prove that (3 ~ is 
the hyperbolic extension of (],  even after reduction to one dimension. Moreover, 
it appears that the inclusion of fermions is absolutely indispensable if one is 
to get the full hyperbolic algebra. The reason for this expectation is related to 
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the following puzzle, which has been carefully kept under the rug so far. Up to 
this point, I have pretended that the addition of fermions is hardly more than a 
technicality, resulting in higher order poles in the linear system and the like, but 
not fundamentally altering the structure of the theory. For this reason, we have 
so far mainly dealt with the bosonic theory, identifying the coset space G ~ / H  °° 

with the bosonic  solutions. Arguments were given at the end of section 3.4, that  
these solutions indeed cover the whole coset space. What  happens when we 
switch on the fermionic degrees of freedom? Surely, the space of solutions must 
be enlarged in one way or another, if the bosonic solutions fill out the coset space 
already by themselves, leaving "no more room" for the fermions 12. The folklore 
line of reasoning might now entice one into believing that  cosets should simply 
be replaced by super-cosets, but here we encounter trouble: once the local 
supersymmetry has been eliminated by fixing a gauge, no rigid supersymmetry 
remains that could act on a super coset space. Moreover, in many cases of 
interest (e.g. G = Es and G °° = E9 ), a super-extension of the algebra G °° 
does not exist [22]! There seems to be only one way out of this impasse: the space 
of combined bosonic and fermionic solutions must be related to the hyperbolic 
extension of the affine Kac-Moody algebra G °°. The missing generators on the 
right hand side of (4.3.5) would then correspond to transformations mixing 
bosonic and fermionic solutions. These conclusions seem to concur with the 
analysis of [55], where the the hyperbolic algebra extending A~ 1) was shown 
to exhibit a graded structure reminiscent of a fermionic Fock space. Could it 
be that the new "supersymmetry transformations", which have apparently no 
analog in higher dimensions, are related to the hyperbolic generators associated 
with negative norm roots, for which no manageable representation has been 
found so far? 

Acknowledgements: I would like to thank the organizers for inviting me to this 
very pleasant meeting and P. Aichelburg and C. Isham for some interesting 
discussions related to this work. I am especially grateful to P. Breitenlohner and 
D. Maison for having contributed to these lectures through many stimulating 
(and occasionally frustrating) discussions. 

Appendix: Maximally Extended S u p e r g r a v i t y  in O n e  D i m e n s i o n  

This appendix deals with maximally extended (N = 16) supergravity in one  

dimension. The notation and conventions are taken from [19-21], which readers 
are advised to consult for further explanations and details. In addition to the 
gauge conditions (3.2.2) and (3.5.1), I will employ the light-cone conventions 

1 already used in the main body of this article, in particular X+ - ~7-~/+X 
1 and X- -= ~7+7-X for the fermionic fields (in fact, we could introduce "one- 

component spinors" at this point, but I will not do so). Although the results 
below are deficient in that they only represent the very first steps in the search 

12 Nor does the coset space of the hosonic theory become larger after the reduction to 
one dimension, which again indicates that the reduction of the bosonic theory without 
fermions will not lead to the desired enhancement of symmetry. 
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for more symmetries, they might nonetheless be useful at some later stage, and 
this is my reason for including them in these lectures. Contrary to the prescrip- 
tion followed in chapters 2 and 3, it is proposed here to perform the dimensional 
reduction by dropping the dependence on one of the light-cone coordinates z ± 
rather than z ° or x 1 . In other words, the last step in the dimensional reduction 
should involve a ch ira l  truncation, so instead of (2.1.1) 

¢(x°,x a) , ¢ (x  +) or  ¢(x- )  (A.1) 

for all fields. One advantage of this procedure is that, unlike in the ordinary 
dimensional reduction, the equations of motion are e n f o r c e d  by this trunca- 
tion. As a consequence, the algebra of local supersymmetry transformations 
closes "without further ado (i.e. off-shell) on all fields with the exception of ¢~+, 
where a term proportional to the supersymmetry current J~. remains in the 
commutator. 

Imposing (A. 1) in the two-dimensional equations of motion immediately im- 
plies that certain chiral components vanish. More explicitly, using the notation 
of [19,20], one has 

xA_ " = Ct_ = ¢~_ = Q/J = pA = 0 (A.2) 

As already mentioned, the remaining (+) components of the "matter fields" 
then satisfy their respective equations of motion automatically. Observe that 
through (A.2) half of the physical degrees of freedom are eliminated. This 
would not have been the case for an ordinary reduction, where we would have 
ended up with N = 32 locally supersymmetric quantum mechanics instead. 
The only equations of motion that must still be imposed are those obtained by 
varying the traceless components of the two-metric and the gravitino, which 
were eliminated through the gauge conditions (3.2.2) and (3.5.1), respectively. 
These are just the generators of the remaining local invariances, namely the 
supersymmetry current J / a n d  the energy momentum tensor T++. 

The full supersymmetry variations of chiral N = 16 supergravity can be 
derived by truncation of the corresponding transformations in [21] and are 
characterized by the chiral transformation parameter 

e I = e I ( x  +) i.e. e / = 0  (A.3) 

In addition to the terms obtained directly from [21], a compensating S O ( l ,  1) 
rotation necessary to preserve the diagonaiity of the zweibein must be taken into 
account. Furthermore, it should be remembered that the gravitino components 

,~ I (flat indices), and that the second order below are defined from ¢ /  = e a Cm 
spin connections in the gravitino variations have been written out explicitly. 
Keeping track of all these contributions, one arrives at the the supersymmetry 
variations 

= gI o/,I A-16A igz ¢_~ p - l ~ p  - -w2+ , = - 

gl_ AI~I y A  (A.4) Y-16Y  = -X+ AA 

for the bosons, and 
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6XA+ i.-I I,-,I ~A ixA .~J_q,, ~ = ~a 7 _ e _ ~ A r _  ~ + ~  + 

,~¢~+ i - , - ,  ~ i¢1  # , / , s  ,_ ~s -1 s 
: --~,,~ p O+p'y_E_ q-- ~ 2+ " --V+ q- ~7-- -- " ~b2+7+I/~2+'~ 

+~7_j_  " -s  s (A.5) • ¢+7+¢2+ + ¼7-J_- £ + 7 - U J x +  

for the fermious with 
~ a _ p A  , -A s 

- AF~tAX+7+¢ + (A.6) 

On all fields but ¢~+, this algebra closes "off shell". With some heavy Fierzing 
(see the appendix of [21] for the necessary technology), one finds 

[~(~'), ~((2] =~conI((I) Jv~SUSY({I) JV~SO(16)(~0') (A.7) 

with the parameters 

dI -i7+¢~ ~g £g  , • g  (g  I) 
- = • 2-7-  , - + ~ 7 +  + "e2-7-~, -  

b3tlJ t IJ .~_ , ~K K = ~ _ Q +  ~ 2_7/--e1_ • ~+7+PIJx+ + ~K_7-e~L" ~+7+1"3]Kx+ (A.8) 

On the gravitino component ¢~+, one gets an extra contribution in the com- 
mutator 

• .-(~ J) [6(e1),6(e2)]¢~+ . . . .  - i~s_7_esl_ • S~ + ze2_7_e,_. S./ (A.9) 

where the supercurrent J~_ (the gravitino equation of motion) is given by 

S ~ _ = ) ~ - l p - , D + ( p ¢ I + ) l - 2 ~  0+A¢2+I .~_ i ,~-- 'p-- '0+p¢~_ __ . - - ,  r,I JI~-~A - -  

- • - ~ +7+~ x + . ¢ ~ -  ~+7+rHx+ .¢s+ 
(A.10) 

Thus, on ¢~+, the algebra closes only if J+/ = 0. As explained in section 2.3, 
this is just the condition defining the physical sector in phase space. The above 
results can be streamlined somewhat by rescaling the fermion fields according 
to 

X--*'k$X , ¢ / - -*  ~ ¢ ~  , ¢/+ --* A]¢~+ (A.11) 

and the supersymmetry transformation parameter according to 

e[ ~ A-}J_ (A.12) 

(The supersymmetry current is rescaled by a factor ~] .) In the remainder of 
this appendix I will use rescaled fields. 

The (+) component of the linear system for N = 16 supergravity takes the 
form 

9 - ' 0 + 9  = ~QIS( t )X ' J  + 7~A(t)Y A (A.13) 

with 
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and 

_ _  - [ 1  J-] + Q~J(t) = O ~  + (t  + ~)~ 

t2 • -1 J 
(A.14) 

t ( 1 - t ) ,  i - i  
:pA(t) = P.~ + 2 (1 + t) 3 Z£'AA¢2+7+X+ (A.15) 

Of course, (A.13) loses some of its lustre in one dimension since the compati- 
bility condition (3.3.3) is trivially satisfied for x- - independent  V. Nevertheless, 
the matrix V remains useful as it describes all the degrees of freedom in a 
unified manner.  In [20], it was pointed pointed out that  the local supersym- 
metry  transformations can be re-expressed as a Grassmann-valued H °° gauge 
transformation 

p- - l~p  : l s l J ( [ ) X I J  .jr_ s A ( t ) y A  (A.16) 

with 

st  ~ ¢ ~ +  sAC)  = 1 -  ~ ~ ,  _, 
s~J ( t )  = (1 ~ t ) z  ' 1 + t " AA ~ - x +  (A.17) 

provided the spectral parameter  is also varied according to 

1 - t  
t - ' 6 t  = - - - - ~  e ~ - ¢ ~ + 1  (A.18) 

One finds 

(A.19) 8t ~I j J  . l ~(IJ 
( 1 +  0 2 - 2 -  

It should come as no surprise that  the results obtained by varying the right 
hand side of (A.13) by use of (A.4) and (A.5), and the one obtained by sub- 
st i tut ing (A.16) into (A.19) again only agree on the physical subspace J.~ = 0. 
Agreement is likewise obtained for the cubic fermionic terms in the supersym- 
merry variations (A.4) and (A.5), as I have explicitly verified (this consistency 
check was not performed in [20]). As already remarked in [20], the result (A.18) 
is suggestive of some hierarchy of H °° (or H °°°° ?) gauge transformations,  of 
which local supersymmetry would only be a tiny part. Finally, the supersymme- 
try variation of the spectral parameter  (A.18) can be replaced by a conformal 
transformation with parameter  ~_ defined through 

~I ~ I  (A.20) 0 + p ( _  = - p  - ~ 2 +  

Let me end this appendix (and the lectures) on a speculative note. The 
potentially most important  reason for advocating a chiral reduction is that  
the N = 16 theory described here may give rise to a new dual model  which 
would be related to D = 11 supergravity [56] in the same way as the ordinary 
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closed superstring [39] is related to N = 2 supergravity in ten dimensions la. Of 
course, it is well known that the conventional superconformal theories defining 
the various superstrings stop at N = 4 [57]. On the other hand, N = 16 
supergravity is not a conventional superconformal theory. Among other things, 
this is evident from the fact that the algebra (A.7) is "soft" (i.e. the structure 
constants are field dependent). Despite these differences, the similarities with 
string theory are intriguing. The usual (super-)Virasoro generators are now 
replaced by the requirement that (A.10) and the energy momentum tensor 
(alias the Wheeler-DeWitt operator) 

T++ ~--I0+~ O+p "~O~rpl 2 __ 1 r~AnA _[_ , -A A + . .  . (A.21) = - ~pr+ r+ ~px+7+D+x+ 

annihilate the physical states. As one can see, the role of the unphysical target 
space coordinates X + and their fermionic partners is now played by the fields 
p, A, ¢ /  a n d  ¢ / + ,  which  o r ig ina te  f r o m  the  h ighe r -d imens iona l  v ie lbein  and  
grav i t ino .  I t  is e n c o u r a g i n g  t ha t ,  w i th  the  a s s u m p t i o n  t h a t  the  boson i c  a n d  

fe rmion ic  c rea t ion  o p e r a t o r s  are r c l a t ed  to  the  Four ie r  m o d e s  of  pA(x+) and 

X~(X +) and  t h a t  the  g r o u n d s t a t e  of  this  " supe r s t r i ng"  is jus t  t he  mass less  
mul t ip le t  of  D = 11 s u p e r g r a v i t y  (cons i s t ing  of  t he  44 a n d  84 r e p r e s e n t a t i o n s  
of  S O ( 9 )  in the  boson ic  sector ,  a nd  the  128 r e p r e s e n t a t i o n  in the  f e rmion ic  
sec tor) ,  we can  a d a p t  the  a r g u m e n t s  given in [58] to  show t h a t  the  s t a t e s  of  the  
first exc i ted  level can  be  assembled  in to  mul t ip le t s  of SO(IO)! T h e  full SO(l ,  10) 
Lo ren t z  a lgebra  would  then  have to  be con t a ined  in the  a lgebra  H °°°° in t he  
s a m e  way  as its t r ansve r se  S O ( 9 )  s u b a l g e b r a  is con t a ined  in H °°. 
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