General Relativity and Gravitation, Vol 22, No. 12, 1990

Using Gravitational Lenses to Detect Gravitational

Waves T

B. Allen!

Gravitational lenses could be used to detect gravitational waves, because
a gravitational wave affects the travel-time of a light ray. In a gravita-
tional lens, this effect produces time-delays between the different images.
Thus the bending of light, which was the first experimental confirmation
of Einstein’s theory, can be used to search for gravitational waves, which
are the most poorly confirmed aspect of that same theory. Applying this
method to the gravitational lens 09574561 gives new upper bounds on
the amplitude of low-frequency gravitational waves in the universe, and
new limits on the energy-density during an early “inflationary” phase.

1. INTRODUCTION

The deflection of star-light by the gravitational field of the sun was first
observed in 1919; it was the first successful prediction of Einstein’s general
theory [1]. This bending of light is now routinely observed in gravitational
lenses. In a gravitational lens, light from a distant quasar is bent as it
travels around a galaxy or cluster of galaxies (see Figure 1). The result of
this bending is that an observer on the earth, looking in the sky, sees two
(or more) images of the same quasar (see Figure 2). Since the discovery of
the first of these “double quasars” (0957+561) in 1979, about thirty such
gravitational lenses have been found [2].
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Figure 1. Schematic diagram of gravitational lens, showing paths of light-rays. (a} The
lens 0957 + 561 is a large galaxy at a redshift of 0.36, imaging a quasar at a redshift at
1.4.
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{b} Idealized model used for gravitational-wave calculation has paths coraposed of four
symmetrically-placed segments.

A second, more poorly verified prediction of Einstein’s general theory
is that weak gravitational disturbances, propagating at the speed of light,
carry energy and momentum away from an accelerated body. Only a single
indirect observation of these waves has been made, in the binary pulsar
PSR1913+16. This rapidly orbiting system is slowly sppeding up, and the
corresponding loss of energy is taking place at exactly the rate predicted
by General Relativity. The usual interpretation is that the binary pulsar
is losing energy in the form of gravitational radiation. An intensive effort
is now underway to construct a pew generation of sensitive gravitational
wave detectors, to permit direct observation of this type of radiation [3].

The main point of this essay is that gravitational lenses can serve as
gravitational wave detectors. These “detectors” are 22 orders of magnitude
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Figure 2, Radio image of 0957 4 561, courtesy of the NRAO/AUI, observed by P. E.
Greenfield, D. H. Roberts, and B. F. Burke. Field of view is 19.2 arcseconds square.
The north (A) and south (B) point-like objects are images of the quasar, and the weak
image just north of B is the lensing galaxy.

larger than any of the existing or contemplated instruments, and conse-
quently they are sensitive to much lower frequencies. However, in many
respects they are similar to interferometric gravitational-wave detectors

(3]

2. GRAVITATIONAL LENSES AS GRAVITATIONAL WAVE DETEC-
TORS

The use of gravitational lenses as gravitational wave detectors is pos-
sible because gravitational waves would produce a time-delay between the
different images in a gravitational lens. This time-delay Af can be mea-
sured, because the source quasar fluctuates in brightness, producing images
whose brightness variations are correlated, with a time-shift [4].

Figure 3 shows the intensities s,(t) and sg(¢) of the two images in
09574561 over an eight-year period. The time-delay can be determined
from the correlation function o(At) = [ s,(i + At)sp(¢)dt. The function
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Figure 3. Optical intensities (magnitudes) of A and B images in 0957 +
561, from reference [4]. To separate the curves, the magnitude of image
B has been reduced by 1. It is easy to see from this data that image B is
delayed by 420 days from image A. The origin on the x-axis is 16 November
1979.
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o(At) is sharply peaked at At = 420 days [4], clearly establishing that the
two images show the same source.
The 420-day delay is about what one would expect due to path length
differences,
At~ L{1 — cosy) = Ln* ~ 1 year, (H

since the distance to the quasar is about L = 10'° light-years, and the
angle between the two images is n = 3 - 107° radians. (Throughout this
essay we use units in which the speed of light ¢ = 1)

A gravitational wave affects the time-delay because it perturbs the
metric tensor and hence modifies the path length of the two light rays.
The metric is given by

Gab = Tap + has, (2)

where 7,5 is the Minkowski metric, and hgp is a small perturbation. In
transverse-traceless synchronous gauge, a plane gravitational wave of an-
gular frequency w, traveling in the Z direction, produces a metric pertur-
bation

0 0 0 0
{0 Ry Ry 0 B
hab - 0 hx ——h+ 0 cos(w(t Z) ) (3)
0 0 0 0

In general, a wave moving in direction k is characterized by the amplitudes
of its two polarizations, denoted here by Ay and hy. We use

h? = haph® = 2(h% + h2), (4)

as a measure of overall amplitude.

One can calculate time-delay Af by examining the influence of the
metric perturbation on the equation of motion of a null geodesic [5]. For
the symmetric model of the gravitational lens shown in Figure 1(b), one
obtains [6]

At = 2w~ sin(wt) sin 6 sin? (% sin? g—) X

X [h+ cos ¢ + hy sin desc? g] , (5)

where we have assumed a small angle between images, 7 < 1. (Compared
to the laboratory interferometric detectors, the gravitational lens suffers
from poor design. Since the two “arms” are not perpendicular, the sen-
sitivity is reduced by a factor of 7.) The angle between the vector & and
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the line-of-sight to the lens is denoted by 8, and ¢ denotes the azimuthal
angle of k about the line-of-sight, measured from a line passing between
the two quasar images.

Now consider the effect of an unpolarized isotropic stochastic back-
ground of gravitational waves at frequency w. (The amplitudes, directions,
and phases of the different Fourier components are uniformly distributed
random variables, so the distribution is characterized by the mean-square
amplitude (h?).) Because the time delay At is linear in hy and hy, its
mean value vanishes, but its r.m.s value is non-zero:

trms = V ((At)?) = nLf(wL)\/(h?). (6)

The frequency response function f{wlL) is obtained by averaging equation

(3), ,
FA(z) = x-Z/O ds sin4($> (2 —5) (s +4/s), (7)

and is shown in Figure 4. This function is peaked around wlL = 27, which
means that the detector’s sensitivity is greatest at wavelengths comparable
to the overall size of the lens. At higher frequencies, the sensitivity drops
off as f(wL) = 1/wL.

The measured time delay in the gravitational lens §9574-561 can now
be used to put an upper limit on the amplitude of gravitational waves in
the frequency range w > 27 x 10718 Hz. The amplitude of the gravitational
waves must be less than

(8)

x 10~17] radian’

h<2><10‘5[ > ] e
2

or the expected time delay At.ns would be greater than the measured
value of 420 days.

At the low end of the frequency range, these limits are more than an
order of magnitude better than any existing limits on the gravitational-
wave amplitude. Because a period of inflation would have produced a great
deal of ultra-low frequency gravitational radiation [7], one can give an im-
proved limit [6] on the energy density during an early phase of inflationary
expansion,

084

Pinflation < 1 gm em™3. (9)

In units with A = ¢ = 1, this cnergy-density limit is pinfation < (5 -
1016 Gev)*.

The potential of this method w111 clearly take some time to exploit.

Simple estimates show that approximately 15,000 lenses ought to be visible
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Figure 4. [requency response of a gravitational lens to unpolarized
isotropic gravitational waves [equation (6)]. The response is peaked at
angular frequencies w ~ 1/L where L is the distance to the lens.
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with current telescopes [8], and in fact about one new gravitational lens
is being discovered every month. When the time delays in some of these
systems are measured, they will permit us to place more stringent bounds
on the gravitational wave amplitudes in our universe. For this purpose,
the most useful systems are those which are extremely symmetric, so that
the time-delay due to path length difference is small. One may also make
good use of lenses which form multiple images, for in these systems the
additional data permits the mass distribution to be tightly constrained.
By picking lenses at different distances away from us, one can also modify
the wavelength for which the detector has maximum sensitivity.

Another potential use of these very large gravitational wave detectors
is to probe the fluctuations in the mass density of the universe (the scalar
gravitational perturbations) but lack of space does not permit us to take
up this subject here.

Note added:

Since this paper was completed, it has been brought to my attention
that the Sachs-Wolfs formula, which was used (in Ref. 6) to calculated the
time delay [equation (5)] neglects the spatial perturbation of the geodesics
induced by the gravitational wave. In the case where the amplitude of
the gravitational wave h is small (h < ) the effects of this approximation
are negligible, and equation (6) for the r.m.s. time-delay can be applied.
However if h is larger than 7, the spatial motion of the geodesics which
form the two images becomes significant. While the r.m.s. time-delay
1s still well-approximated by equation (6), one side effect of the gravita-
tional perturbation is to change the angle 1 between the images, usually
by increasing it. The relative intensities of the two images also change.

Thus it becomes important to determine if the time delay due to the
gravitational wave can be larger than of order Ln?. If so, then the ideas
of this paper have practical applications. If not, it may be difficult, or
even impossible, to separate the “intrinsic” geometrical time delay from
the delay due to the effects of the gravitational wave. In this latter case,
the idea is much harder to apply, for it would involve detailed modeling of
each gravitational-lens system.
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