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We discuss the relation between world-sheet symmetries of general four-dimensional super- 
string theories and the classification of their massless and massive excitations. This follows from 
the connection between extended superconformal algebras on the world-sheet and extended 
space-time supersymmetry algebras. In particular we show that the relevant Kac-Moody symme- 
tries are extended to the spectrum symmetries of the supermultiplets of states. This analysis 
reproduces results for the field theory limit of superstring compactifications. 

1. Introduction 

Recent ly  some progress [1-8] has been made in unders tanding the geometrical 

propert ies  of  the moduli  spaces [9] of  four-dimensional  string theories [1,10-16].  

M a n y  of  these results are obtained using arguments based on the symmetries of  the 

low energy effective lagrangians. This method proves especially powerful for those 
string vacua  possessing space-time supersymmetry such as compactif icat ion on 
C a l a b i - Y a u  manifolds [10] which are thought  to be stable to all finite orders in 

string per tubat ion  theory. In order to determine the structure of  the moduli  space of  
the string compact i f icat ion one has to know the invariances of  the string theory, i.e. 
the symmetries  which leave the string spectrum invariant. Therefore, it is impor tant  

to unders tand  the relation between the space-time properties of these string vacua 
and  the propert ies of  the underlying superconformal  field theory. 

The  aim of  the present paper  is to clarify the connect ion between the chiral 
K a c - M o o d y  symmetry  currents on the string world-sheet and the symmetries which 
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are known to classify the spectrum of any field theory with (extended) space-time 
supersymmetry. For the massless string modes in the heterotic string theories the 
internal Kac-Moody symmetries are identical to the symmetries which follow from 
the space-time supersymmetry algebra. This is implied by the existence of auxiliary 
(unphysical) gauge fields for the corresponding Kac-Moody symmetries [17,18] 
such that the kinetic terms in the effective lagrangian of the massless modes are 
invariant under these symmetries. Furthermore this fact became also clear from the 
relation [13,18-23] between the exceptional groups and the supersymmetric string 
theories. The exceptional groups always contain the internal Kac-Moody group as a 
subgroup; the auxiliary gauge fields directly follow from the representations of the 
exceptional groups. However the classification of the massive string spectrum by the 
world-sheet Kac-Moody symmetries is, except for local gauge symmetries, meaning- 
less from the space-time point of view because the Kac-Moody symmetry genera- 
tors do not commute with the little group SO(3). It means that different helicity 
components of a single massive state are in different representations of the world- 
sheet Kac-Moody symmetry group. We show that the symmetry generators which 
classify all states in a Lorentz-invariant fashion are in general linear combinations 
of the Kac-Moody currents and additional world-sheet currents which are however 
not of the Kac-Moody type. 

The determination of the space-time symmetries is especially interesting for the 
type II superstring theories since additional constraints on the moduli space of the 
superconformal field theory, when used for compactification of type II theories, are 
obtained due to the enhanced space-time supersymmetry with respect to the 
heterotic theory [3, 4]. Simultaneously, the enlarged space-time supersymmetry alge- 
bra also extends the world-sheet Kac-Moody symmetries to a larger group. For 
example, in the case of (2, 2) compactification on a Calabi-Yau manifold the N = 2 
supersymmetry algebra leads to a SU(2) x U(1) symmetry which classifies all states. 
The corresponding (commuting) generators are built from the holomorphic and 
antiholomorphic internal U(1) Kac-Moody as well as the holomorphic and anti- 
holomorphic space-time SO(2) helicity currents. In this way, deriving the SU(2) 
generators directly from the string world-sheet degrees of freedom, we can deter- 
mine the SU(2) transformation properties of any state. E.g. the scalars of the 
universal sector of the N -- 2 theory which contain the space-time dilaton transform 
as a SU(2) doublet and must therefore be part of a complex hypermultiplet which 
parametrizes the quaternionic manifold (SU(2,1)/SU(2)x U(1)). This proves the 
result of ref. [4] which was obtained by use of the hidden symmetries of the N = 8 
supergravity lagrangian. More generally, we are able to derive the linearly realized 
H part of the supergravity non-compact scalar manifolds G / H  (especially for the 
scalars of the universal sector) directly from the string world-sheet symmetries. The 
hidden non-compact symmetries G are reproduced knowing the H transformation 
properties of all massless scalars since they are just the coset representatives of the 
corresponding non-linear o-models. 
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The paper is organized as follows. In sect. 2 we explain how one obtains a 
Lorentz-invariant classification of the string spectrum from the underlying world- 
sheet K a c - M o o d y  symmetries. In sect. 3 this discussion will be the basis for the 
derivation of the relation between the space-time symmetries, which are implied by 
the space-time supersymmetry algebra, and the world-sheet symmetry currents 
of the underlying superconformal field theory. We emphasize the difference between 
the heterotic and type II superstrings and also the different classification of massive 
states due to the presence of central charges in the supersymmetry algebra. Finally 
in sect. 4 these results are applied to some models to derive the transformation 
properties of the massless scalars under the relevant symmetry groups and to 
reproduce the known coset manifolds which are parametrized by the massless 

scalars. 

2. General aspects of symmetry currents in four-dimensional fermionic 
string theories 

In this section we want to emphasize some issues concerning symmetries which 
classify massless and massive states in four-dimensional fermionic string theories 
(see also the discussion of Banks and Dixon [24]). The holomorphic world-sheet 
degrees of freedom of the fermionic string in four uncompactified space-time 
dimensions consist of four free bosons X~(z)  and fermions ~b~(z) ( # =  1 . . . . .  4) 
together with the conformal and superconformal ghosts b(z),  c(z), f l (z)  and 7(z).  
Via bosonization one can consider instead of ~" (z )  two bosonic fields ~ ( z )  
(i = 1, 2) and instead of fl(z), 7(z)  a scalar field q~(z) [25]. These fields provide - 9  
units to the central charge of the Virasoro algebra. Thus, the so far unspecified 
internal n = 1 superconformal field theory of the fermionic string must have c = 9 
to cancel the conformal anomaly. The local n = 1 world-sheet supersymmetry is 
generated by the supercurrent TF(Z ) which is a sum of the space-time supercurrent 
T / ~ ' t ' ( z )  = - l~pt  t 3Xtt(z) and the internal supercurrent T / ~ n t ( z )  w h i c h  has to satisfy 
the internal superconformal algebra 

3-  

T nt( z ) T)Fnt( w ) 2 + . . .  

( z - w )  ( z - w )  

3 Tint/l~,~ ~ z/~nt (w)  ~JF ~,vj 
T i n t ( Z ) T F n t ( w )  ( Z - -  W) 2 + (2"-- W) "4- " ' "  . (2.1) 

The covariant vertex operators of the fermionic string can be written as 

V.(  z ) = ( anX~( z ) ) N ( c3m¢i( Z ) ) Me'W "~(z)Vint( Z ) , 

W = (~1, ~2; q) ,  ~ =  (d~l, ~2; --ida). (2.2) 
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The Vint (Z  ) a r e  operators of the internal c = 9 superconformal field theory. The 
conformal weight of V.,(z)  is given by 

h = n N  + m M  + } ) ~ 2 - 1 q 2  q + him,  (2.3) 

where hin t is the conformal weight of Vint(Z ). The w's are lattice vectors of the 
lorentzian "covariant" lattice D2,1 [13] with conjugacy classes 0, S, C, V (for a 
review with more details and references on covariant lattices see ref. [26]). Decom- 
posing D2,1 to D 2 ® D1 the factor D 2 corresponds to the SO(4)Lorentz level one 
K a c - M o o d y  algebra with lattice vectors k ~ D 2. )~ describes the transformation 
properties under the space-time Lorentz group SO(4)L . . . .  tz and q ~ D 1 is the ghost 
charge. For  space-time fermions k is a weight vector of one of the two spinor 
conjugacy classes S, C of D 2 and q is half-integer. Space-time bosons have k ~ 0, V 
and q integer. A unique identification of physical, BRST invariant states is given if 
one considers only the canonical ghost charge q = - 1 , -  1 and counts only the 
transverse degrees of freedom of any state. This amounts in this formalism to 
decompose D2,1  t o  transverse D 1 ® D1,1. Then physical light-cone states are character- 
ized by their helicity X 1 and have fixed entries in Da, v On the other hand, states in 
different ghost pictures are only physical if they can be obtained from physical 
states in the canonical ghost picture via the so-called picture changing operation, 
which is basically a two-dimensional supersymmetry transformation: 

Vq+l(w ) = l imwPr (Z )Vq(W ),  P F ( Z )  = e+(Z)Tv(Z ) . (2.4) 

Let us briefly discuss the symmetries which classify the massless states in the 
theory. Any massless state is characterized by its transformation properties under 
the transverse Lorentz group SO(2), i.e. by its helicity component X 1 ~ D v For the 
state to be massless h must be one and therefore X~ can be 0, +1,  + ½ with 
corresponding hin t  = 1 3 5,0, ~. In addition, massless states in the canonical ghost 
picture cannot have oscillator excitations. The generator of the transverse Lorentz 
group with the correct action on the massless states in the canonical ghost picture is 
given by the SO(2) Kac-Moody  current: 

~.  d z  3 
L 3 ~ L 1 2 = ~ ~ i L  ( z  ) , L3(z)  = +1~2(z) = i Oq~l(z ) . (2.5) 

The transverse Lorentz symmetry is of course not a gauge symmetry since L 3 ( z )  

cannot provide a super-BRST invariant gauge boson vertex operator, i.e. L3(z) is 
not the highest component of a two-dimensional superfield and therefore cannot be 
obtained via picture changing from a physical vertex operator in the - 1  ghost 
picture. 

Now assume that there is an internal Kac -Moody  algebra g generated by 
dimension one currents j a ( z ) .  It is clear that all massless states automatically build 
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representations of g; SO(2)helicity trivially commutes with g. For g being a local 
gauge symmetry with corresponding BRST invariant gauge boson vertex operator 

the currents 
superfield: 

V( E, z)  = a X~( Y. ) j~( z )e ik"x"(~'z) , (2.6) 

j~(z )  must be the upper components of a dimension ~ world-sheet 

1 O?(w)/2 
int 

T/ (z)ja(w)- ( z - w )  2 7 ( w )  + z - w  + "'" ' 

T ~ n t ( z ) ? ( w ) -  J a ( w ) / 2  + . . . .  (2.7) 
Z - - W  

Then in the canonical ghost picture the gauge bosons of g have the form 

V(E, z)  : O X ~ ( E ) ? ( z ) e - ° m e i k ,  x"<~'z) . (2.8) 

If eq. (2.7) is not satisfied g cannot be a local gauge symmetry but only a symmetry 
which classifies all massless states. (Then the vertex operator (2.6) corresponds to 
auxiliary (non-physical) gauge fields.) 

As a simple example consider the holomorphic torus compactification of the 
fermionic string from ten to four dimensions. The internal free fermions and bosons 
+M(z), o YM(z) ( M = 1 . . . . .  6) generate an internal Kac -Moody  algebra 

g = S O ( 6 )  × [U(1)] 6 

with dimension one currents 

(2.9) 

= = a r M ( z ) .  (2.10) 

The internal supercurrent is simply 

6 
Tent(z) = - ½  E +MoYM(z)  . (2.11) 

M=I 

It now follows immediately that the SO(6) currents do not lead to a SO(6) gauge 
symmetry. On the other hand, the OYM(z) are the two-dimensional superpartners to 
~pM(z) such that [U(1)] 6 is a local gauge symmetry of the theory. The six physical 
gauge bosons are the six right-moving graviphotons which arise in any compactifica- 
tion on a six-torus. 

Let us now turn to the discussion of the massive states. We will go to their rest 
frame where their momentum is k s =  (M,0,0 ,0)  with M being their mass. The 
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S0(2) helicity generator gets an additional contribution which contains the trans- 
verse bosonic coordinates Xi(z) ( i =  1,2) and acts only on massive states with 
X-oscillator excitations: 

L 3 ( z )  = - + o X - ( z )  - x a X + ( z ) ) ,  (2.12) 

where X +-= (XI+ iX2)/v/2. Note that we have defined the holomorphic objects 
Xi(z) as integrals over the dimension one fields OXi(z), Xi(z) = f~dz' OXi(z'). In 
the rest frame we will not encounter logarithmic z-dependences in the operator 
product  between L3(z) and physical state vertex operators since L3(z)e ikx(w) = 
finite. In this way, L 3 correctly measures the helicity eigenvalue + 1 of 3X +(z). 
Also, eq. (2.12) leads to the correct oscillator expression. 

However massive states must build representations of the little group SO(3)Lorentz 
and not of SO(2)helicity. In the light-cone formalism we are using this means that 
acting with the raising and lowering operators L + of SO(3) the different helicity 
components  of a single massive state are obtained from each other. L + has a rather 
complicated form in the light-cone formalism. We are only interested in the part 
without purely bosonic transverse oscillator excitations: 

where 

- -  d z  + 

L +- = i z L  - ( z ) , L + ( z )  - + * ( z ) V ; ( z ) ,  

= - ½ ( o x + + - ( z )  + o x - + + ( z ) )  + 7"AOt(z) 

(2.13) 

Note that L+-(z) acts very similar to a picture changing, resp. two-dimensional 
supersymmetry transformation. Therefore we can understand the appearance of the 
second term in the SO(2) helicity generator (2.12) from a slightly different, but 
equivalent point of view. We know that the picture changing operation always 
provides a second version of any state. E.g. a massless holomorphic vector 
q~-+(z)e -*(O becomes in the zero ghost picture simply OX+-(z). Thus the second 
term in eq. (2.12) ensures that also the picture changed version has helicity _+ 1. 

Now let us turn to the internal Kac -Moody  symmetries. It is clear that all states, 
massless and massive, build representations of the Kac -Moody  symmetry g, i.e. g 
classifies the whole string spectrum since it is a symmetry of the string theory. The 
non-trivial question we are interested in is whether g is also a good symmetry from 
the space-time point of view, i.e. whether it classifies complete massive multiplets 
and commutes with the Lorentz group SO(3). This is not always the case as we shall 
see. Specifically, for massive multiplets to build representations under the internal 
symmetry group g one must ensure that L + commutes with the symmetry currents 
ja,  i.e. 

~ 2~rd-d-~zZi L+-(z) ja(w) =Oup to total derivatives. (2.14) 
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Again we consider two cases. First, if the dimension one currents ja(z) are the 
upper components of a dimension ½ superfield such that it leads to a local gauge 
symmetry, eq. (2.14) is automatically satisfied. However if ja(z) corresponds to a 
BRST variant "global" current it does not commute with L -+. Then the symmetry 
currents, similar to L 3, need an additional piece which does not act on the massless 
states in the canonical ghost picture. 

As an example take again the toroidal compactification from ten to four dimen- 
sions. It is easily shown that the [U(1)] 6 gauge currents OY M commute with L -+. 
However in order to obtain the correct SO(6) currents which classify all massive 
states one has to replace eq. (2.10) by 

• MN = ½i(yM(z) oYN(z) YN(Z) aYM(z)) (2.15) JSO(6) (Z) t~MIlIN(z) + -- . 

Note that the second part in this equation is not a generator of an internal 
K a c - M o o d y  symmetry. The SO(6) which commutes with SO(3)Lore,t~ is the sum of 
the internal SO(6)Kac_Moody currents, generated by the fermions ~M, and the SO(6) 
generated by the internal bosons y U .  This behavior originates from the fact that the 
internal supercurrent (2.11) defines a map from the c =  3, SO(6) Kac -Moody  
algebra to the internal c = 6 conformal field theory. The image of the SO(6) vector 
~M is nothing other than the [U(1)] 6 gauge currents cOY M. Thus, the second part in 
eq. (2.15) must be included. We will encounter this phenomenon in all supersym- 
metric string theories as described in sect. 3. However it is not true that all massive 
multiplets fall into SO(6) representations. Remember that in the rest frame of 
massive states their transverse momenta vanish and the zero modes of X i decouple. 
As far as the internal coordinates YM(z) (which we define as YM(z)= 
f Z d z '  o YM(z')) are concerned, their zero modes break the S0(6) symmetry. Only 
those states which carry no internal momentum pM, i.e. which do not have e ipMYM(z) 
as part  of their vertex operator, build S0(6) representations. We will discuss this 
phenomenon more carefully in the context of central charges of the supersymmetry 
algebra. 

3. Symmetry groups in supersymmetric string theories 

3.1. WORLD-SHEET SYMMETRIES 

Let us consider N holomorphic (i.e. right-moving) space-time supercharges Qd 
(A = 1  . . . . .  N) :  

Qa, = ~  dz Qa,(z). (3.1) 
2rri 

In the covariant formalism Q2(z) are conformal fields of dimension one and are 
given by 

Q2(z) = e/x°o(z) e-O(z)/2ZA(z), (3.2) 
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where 3,~ are the two spinor weights of SO(4)Lorentz and ZA(z) are conformal fields 
of dimension h = 3 /8  of the internal c = 9 superconformal field theory. The 
supercharges satisfy the N-extended supersymmetry algebra 

{ QA, QB*B } = 2i 8ff('/~) ~BP,, 

( e : ,  } = 2co .z . . .  (3.3) 

For  N > 1, the central charges Z AB = ~(dz/21ri) ZAB(Z) arise due to poles in the 
operator  product  expansion of Q2(z) and Q~(w). 

I t  is by now well known [18,27-29] that the existence of the holomorphic 
supercharges implies an n-extended internal superconformal algebra with corre- 
sponding K a c - M o o d y  symmetry g. Its currents can always be realized by free 
bosons or free fermions since g is at level one. Specifically, for N = 1 one deals with 
a system with c -- 9, n = 2 and g = U(1), for N = 2 one obtains a system with c = 6, 
n = 4 and g = SU(2) plus a system with c = 3, n = 2 and g = SO(2) where the second 
part  corresponds to a holomorphic torus compactification of two internal coordi- 
nates, and finally for N = 4 there are three systems with e = 3, n = 2, and g = SO(6) 
which corresponds to a holomorphic torus compactification of all six internal 
coordinates. The existence of the central charges in eq. (3.3) reflects the fact that 
N-extended theories are holomorphic torus compactifications. The central charge 
currents Z'4B(z) are nothing else than the compactified coordinates OYM(z) [18]. 
Thus the central charge of any state is given by its internal momentum on the torus. 

It  is also known [13,18-22] that the weight lattice of D2 L°rent~ ® D1 gh°St ® g, when 

demanding the necessary charge quantization conditions, is extended to the 
lorentzian lattices E3,1, E4,1, Es, 1 for N =  1,2,4. These lattices are the lorentzian 
analogs of the euclidian weight lattices of the exceptional groups E6, E 7 and E 8 
which are obtained by replacing the negative metric part  D ~  °St by a positive metric 
lattice D 3. This fact is very important when constructing the spectrum of the 
supersymmetric  heterotic or type II  theories since the representations of the excep- 
tional groups contain all information about the supermultiplet structure of the 

corresponding supergravity theory. 
Let us briefly discuss the different cases. For N = 1 the relevant U(1) K a c - M o o d y  

current is given by 

j(z) = iv~ OH(z), (3.4) 

where H ( z )  is an internal free boson. The n = 2 superconformal algebra 

3 / 4  j (w)/4 Oj(w)/8 + Tint(W)//4 
T ; ( z ) r ; ( w )  (z  - w) + ( z  - w) + ( z  - w) (3.5) 
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is generated by the two supercurrents 

509 

T # (  z ) ~- e ++- i(Vf3 /3)H(Z)TF+ ( Z ) , (3.6) 

where TF+(Z) are operators in the remaining conformal field theory with c = 8. 
According to the discussion in sect. 2 the U(1) current (3.4) is not a gauge current 
and acts properly only on the massless states in the canonical ghost picture since 

j ( z )  is not the highest component of a two-dimensional dimension 1 superfield. 
From eqs. (2.13) and (3.6) it is evident that j ( z )  as given in eq. (3.4) does not 
commute with SO(3)Lorentz. We have to complete it by a dimension one operator 
f ( z )  which satisfies f(Z)TF+-(w) -- T- TF+-/(Z -- w). In this way the U(1) Kac-Moody 
symmetry finds its image in the internal c = 8 part of the theory. In order to 
indicate how j ( z )  can be constructed, let us consider a situation where T+(z)  can 
be written as 

k k 

r F ( z )  E + + - G ~ ( z ) O ~ t ( z ) = e  ±i(~/3)H(~) ~,  d ~ ( z ) O ~ t ( z  ),  (3.7) 
M = I  M = I  

where the operators G~(z)  and O~t(z ) have conformal dimensions ~ and 1 
respectively. G~t and O~ are the two components of dimension ~ superfields with 
operator products 

~+ 
( z ) O ; ( w )  - - w )  

G~t( z )G u ( w ) - 8MN( z -- W) -1 (3.8) 

Assuming the existence of k operators G~t(z) immediately leads to k holomorphic 
vertex operators for k massless chiral multiplets: 

gscalar ( Z ) = e +- i((~ /3)m~)d~ ( z )e-~<z), 

V~ermion (Z) = e 'x-*(z) e ~: i(~/6)tt(z)d~t ( z )e-*(z)/2. (3.9) 

()~. is a spinor weight of SO(4).) The (internal) picture changed versions of these 
operators are 

gscalar(Z ) = 6M~(Z) ,  Vfermion(Z ) = eiX~'*(Z)e~i(v~/2)'(z)d~t(z)e ~(z)/2. ( 3 . 1 0 )  

(One of these operators is present in any symmetric (2, 2) Calabi-Yau compactifica- 
tion. It leads, after combining it with the analogous left-moving piece, to an SU(3) 
invariant s t a t e -  the corresponding complex scalar field is associated with the 
harmonic (1, 1)-form which corresponds to the overall scale deformations of the 
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six-dimensional compact manifold.) Then the U(1) current which commutes with 
L -+ is given by 

J(z)=i''H(z)--I{M=I ~" (S'd2'OM(2')OM(2)-- fZdZ'OM(2')OM(2))) " 
(3.11) 

Adding the second term in the above equation it is ensured that /ZF+-(Z ) has U(1) 
charge -T-1 and also that the scalar and fermion operators (3.9) and (3.10) have the 
same U(1) charge in both ghost pictures. 

To illustrate this procedure which might seem ad hoc, consider the symmetric Z 3 
orbifold with internal complex bosonic coordinates OYff(z) ( M =  1 . . . .  ,3) and 
their superpartners +h(z) .  We can write q~;t(z) as 

~k~t (z) = e ~+ i(vq/3)n(z)~ ( z ) ,  

G~(z )  = e  -+ iwM'o<z) , 

3 

i f 3  0H(z )  = • ~b~t~b~t(z ) ,  (3.12) 
M = I  

where the w~t are the three weights of the fundamental representation of SU(3) and 
(H, / - I )  are the three free bosons obtained from bosonizing ~k~t- (Combining with 
the corresponding left-moving vertex operators, +~t (z) resp. O Yff (z) leads to the 
nine complex untwisted moduli of the Z 3 orbifold.) The two internal supercurrents 
take the form 

T g ( z )  = _ 1  
3 3 

E +~(z )  OY~(z)---le'+~(vq/3)H(') E G~(z)  OYf f (z) .  
M = I  M = I  

(3.13) 

Clearly, the operators O~(z)  have to be identified with O Yff(z).  
The case N = 2 works out quite similarly. Here the c = 6, n = 4 superconformal 

algebra contains the SU(2) currents 

j ± ( z ) =  fVs e +-'¢~mz), (3.14) 

and the four internal supercurrents are given by 

T,g(z) = e-+i<~/:)H<')TF+-(Z ) (a= + +, + , +, - -  -- ) ,  (3.15) 
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where 7=F +- are two complex conjugate fields of dimension ¼. They can be con- 
structed analogously to the previous case. Now there is a map from the SU(2) 
K a c - M o o d y  to a second SU(2) in the ¢ = 5 part  of the n = 4 superconformal 
theory: 

k 

E ( 6 ; , ( ) 6 a + ( z ) + 6 D ( z ) "  + " = z OaT - ( z ) )  ( 3 . 1 6 )  
M = I  

(the fields 6~t(z  ) now have conformal dimension ¼). Then the Lorentz-invariant 
SU(2) currents are given by 

= '{ (f"dz'OD+(z')OD-()+f'dz'Oh-(z')OD+(z) j 3 ( z )  i N O H ( z ) - 2  z 
M = I  

-fdz,Oh-(z,)Oh+(z)- SZdz'OM+(z')Oh-(z))}, 

; - - )} + 1 # ~ + +  t ~ + # + - -  t + +  j + - ( z l = ~ e - i v ~ S 4 ( z ) -  7 dz O~ (zlOlff  ( z ) -  dz 0 R ( z lOM (z) . 
M = I  

(3.17) 

The second part  of the internal conformal field theory with c = 3, n = 2 and 
g = SO(2) × [U(1)] 2 is very simple since it corresponds to a compactification of two 
internal coordinates and the global SO(2) as well as the local [U(1)] 2 currents are 
expressed by the complex internal fields ~ -+ (z)  = e + i H'(z) and 0 Y + (z): 

Jso(2)(z) = i a r t ' ( z ) -  ½(Y+(z) O Y - ( z ) -  Y - ( z )  8Y+(z ) ) ,  

. +  
JOo) = i OY +-( z ) . (3.18) 

Finally the case N = 4 with g = SO(6) × [U(1)] 6 corresponds to a holomorphic 
torus compactification of all six internal coordinates and was already discussed in 
sect. 2. 

The existence of these kinds of symmetries is not in contradiction to the 
statement [24] that there are no global continuous symmetries in string theory. The 
currents we have considered correspond only to symmetries in the sense that they 
classify the string spectrum, but they will not be obeyed by the effective action of 
the string states (except for massless states with vanishing potential, i.e. the moduli 
of the superconformal field theory). 
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3.2. CLASSIFICATION OF MASSLESS STATES 

So far we have investigated the space-time helicity and the internal Kac-Moody 
currents which reflect the world-sheet symmetries of the underlying superconformal 
field theories. Our aim is to show the relation of these symmetries to those which are 
known to follow from the representation theory of field theories with extended 
space-time supersymmetries (see e.g. ref. [30]). In other words, we will relate the 
representations of the world-sheet Kac-Moody algebras to those of the space-time 
supersymmetry algebra. Specifically we will show how the spectrum symmetries are 
built up from the external and internal world-sheet currents. Consider first the case 
of massless states in the canonical ghost picture. Choosing the frame where the 
momenta are k ~ = (E,0,0, E) where E is the energy of the state in this frame, the 
supercharges are (A = 1 . . . . .  N): 

QA =_ QA, Q~i = Q~, 

Q~ =0 ,  Q~2=O. (3.19) 

In terms of QA and Q,~ the supersymmetry algebra takes the form 

{ Q A , Q ~ } = S A ,  

(cA, e"} = (o ,ez) =0,  (3.20) 

where we have rescaled the supersymmetry charges by ~ - .  The 2N supercharges 
QA, Q,~ build a SO(2N) Clifford algebra 

FzA_ ' = QA + Q~, F2 A = i( Qa _ Q,~ ) , 

( ~ , ~ }  = 28ij, i , j = l  . . . . .  2N. (3.21) 

The SO(2N) generators are 

1 
Aij= -~ [F~, Fj]. (3.22) 

Consider the SU(N) × U(1) subgroup of SO(2N) specified by the following genera- 
tors: 

1 
1 __ ~ A [ Q C ,  , AA=5[QA,Q~]  ~-~ Rt Qc] f o r S U ( N ) ,  

a = ¼[QA,Q~] forU(1) .  (3.23) 
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This SU(N) commutes with SO(2)helicity and classifies massless states. The eigen- 
value of the supercharge under the U(1), which is called intrinsic helicity, is the 
same as that under the space-time helicity: 

[L3, QA] = [A,QA] = 1QA. (3.24) 

This shows that one can construct a new generator A' called superhelicity, 

A t  = L 3 - A ,  (3.25) 

which commutes with QA and therefore is a constant on supermultiplets. 
To derive these generators from the superstring theories we first have to specify 

the supercharges QA and Q~. In the light-cone gauge the longitudinal and ghost 
parts in eq. (3.2) are irrelevant. We use instead the Green-Schwarz supercharges 
(see ref. [31]) which are the zero modes of the remaining transverse and internal 
parts: 

dz 
Q A = f  dz z-1/2eiq' ,(~'/2~A(z)----~iz-1/2QA(z) 

2 rri 

dz 
Q,~ = ~ ~ i  z-1/2e idPl(Z)/2~X(Z) ~ ~ 2q.I.i Z--1/2Q~(7-.), ( 3 . 2 6 )  

Then the supersymmetry algebra (3.20) follows immediately from the operator 
product expansion of ~A(z) and S~(w).  

Let us first investigate the heterotic string theories. For N = 1 only the intrinsic 
helicity current is present and ~ A =  ei~/2)~/. The operator product expansion 
between Q( z )= e i4'1(z)/2 e i(¢~ /2)H(z) and Q*( w ) has the following form: 

1 
Q(z)Q*(w) - + ½i 0~l(Z ) + ½v/3i OH(z) + . . . .  (3.27) 

Z - - W  

The singular term leads to the correct anticommutator between Q and Q*. The first 
non-singular term is the normal ordered product :Q(z)Q*(z): which we identify 
with the U(1) current. Thus, the commutator of two supercharges in field theory 
corresponds to the zero mode of the normal ordered product of two supercharge 
currents in string theory which means A~ - QAQ* B. This procedure is analogous to 
the one defining the SO(2n) Kac-Moody currents as the normal ordered product of 
two free anticommuting world-sheet fermions. Then for the N = 1 theory the 
intrinsic helicity U(1) current is given by 

A(z )  = ½:Q(z)Q*(z): = ¼i Oqh(z ) + ¼i7c3 OH(z), (3.28) 

where the corresponding U(1) charge is A = f~(dz/2rri)A(z). One easily verifies 
that the intrinsic helicity of the supercharge is ½. Note that the intrinsic helicity 
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current is given as a linear combination of the space-time helicity and the internal 
U(1) K a c - M o o d y  current. 

Next we discuss the N = 2 heterotic string theory with two supercharges: 

Q 1 , 2 ( , z )  = e iq'l(z)/2 e + i(v~ /2)H(z) eiH'(z)/2. (3.29) 

Then we derive the three SU(2) currents as 

a3 (z )  = ½(:Ql(z )Q{ ' ( z ) : -  :Q2(z)Q~(z):)  = i~22 0H(z ) ,  

a +(z) = f~ :Ql(z)Q~(z):  = ½v~ eiC~L'(z), 

A - ( z )  = ~[~:QZ(z)Q{'(z): = ½¢~-e ;~t4,z). (3.30) 

We recognize that these currents are identical to the SU(2) currents of the internal 
superconformal algebra (3.14). The intrinsic helicity U(1) current is obtained as 

A ( z ) =  ½(:Ql(z)Q~'(z): + :Q2(z )Q~(z ) : )=  ½iOepl(z ) + ½iOH'(z). (3.31) 

Finally for the N = 4 heterotic case, the 15 SO(6) currents are again identical to 
the internal SO(6) world-sheet currents given in eq. (2.10). 

Let us now turn to the four-dimensional type II theories which were recently 
investigated in refs. [3, 4, 23, 32]. There are more possibilities for extended space-time 
supersymmetries since we now have left-moving and right-moving supercharges. 
One can obtain theories with N = 1, 2, 3, 4, 5, 6, 8 space-time supersymmetry. Their 
supermultiplet structure follows from the product of the corresponding left- and 
right-moving exceptional groups [23] and some of the theories were constructed 
explicitly [32]. The supersymmetry algebra is verified in analogy to the heterotic 
case. The symmetry currents A (z)  will now contain linear combinations of internal 
left- and right-moving Kac-Moody  currents and also the left- and right-moving 
space-time helicity generators. This is so because the symmetry generators must 
transform the left-moving and right-moving supercharges into each other and 
therefore the right-moving Ramond sector into the left-moving Ramond sector and 
vice versa. Therefore the non-commuting generators necessarily involve the internal 
and also the space-time spin fields and some of the commuting generators must 
measure the left- and right-moving space-time helicities. 

Let us consider specific cases. First for N = 2 type II (specifically, we are 
considering type II B) there is one left-moving and one right-moving supercharge 
each: 

Q l = ~  dz z ~ /2Q, ( z )=~  dZ z-~/2e;*,,z,/Ze;,~/2,mz) ' 
21ri 2~ri 

d2 5 1/2e;*l(~)/2e;~CS/2)'v(~). (3.32) 
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Then the corresponding SU(2) generators are derived as follows: 

dz 1 a ' =  1 
7 

1 1 . [ m+= f~-2Q Q2 = / T f " f d Z z  1/2Dl/zX~fxd5 g--1/2/-).[~) 
~ 2  ~ y  2vri ~: ' ' J  ~Y 2vri ~ ~ : ~ 2 \  f , 

dz dY 
, 2  1 . (3.33) 

We see that A 3 contains the internal U(1)L, U(1)R Kac-Moody currents as well as 
the space-time helicity currents. So the isospin of every massless state in the 
canonical ghost picture is given by ¼(~1 + Q - ? ' i  - Q) where ~1 (~1) are the left 
(right) helicities and Q (Q) the left (right)-moving internal U(1) charges. The 
non-commuting SU(2) generators A + are given as the product of the left- and 
right-moving supercharges which act independently on the holomorphic and anti- 
holomorphic sectors of the theory. A -+ do not originate from a Kac-Moody algebra 
in the usual sense. There is no holomorphic mode expansion for these currents 
where the modes generate an infinite dimensional Kac-Moody algebra. This behav- 
ior is very different from the heterotic case. Analogously, the intrinsic helicity 
generator is given by 

A (Z, Z) = li  O~I(Z ) 4- lv~-i aM(z) 4- ~i ~ l ( Z )  4- l~r3-i a l l (2)  (3.34) 

and it is trivial to check that the supercharges Q1,2 have intrinsic helicity 5- 
We can now construct the SO(6) symmetry currents for the N = 4, type II theory 

where two supercharges are left-moving and two are right-moving in exactly the 
same way. The result for the three commuting currents is 

A1(-7, z) = Ii  adpl(Z) + l i aH ' ( z )  - 1i 0d, bl(-7 ) - 1i 0H'( ,z) ,  

A2( ~, z) = i lv~  OH(z) + i lv~  OH( 5), 

A3(5, z) = i lv~  OH(z) - ilv/2-OH( 2). (3.35) 

The non-commuting generators are given by the generators of SU(2)L and SU(2)R 
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and products of left- and right-moving supercharges like 

A,3= ~ { ~ i z - t / 2 Q l ( z ) } { ~  d~i y-1/2Q~,(2)}. (3.36) 

We see that this SO(6) contains SO(4) = SU(2)e × SU(2)R as regular subgroup. 
Similarly, all the other models with N = 3, 5, 6, 8 can be treated. 

3.3. CLASSIFICATION OF MASSIVE STATES AND CENTRAL CHARGES 

The generators A constructed so far do not act properly on the massive 
states - they do not commute with L-+. One must add an additional part which has 
only action on the massive states. To do so let us again consider the supercharges. 
Now also the second helicity components are relevant and perform a supersymme- 
try transformation on the massive states. Let us use the following notation: 

Q ;  = 0 A, Q ~ =  Q~. 

The supersymmetry algebra between the 0 looks like 

(3.37) 

=0,  (3.38) 

where M 2 is the invariant mass of any state. Because of the existence of the ~A, the 
Clifford algebra is now enlarged; QA and (~A build an SO(4N) Clifford algebra (on 
states without central charges - see next paragraph). The maximal subalgebra which 
commutes with SO(3)L . . . .  tz is U Sp(2N). Therefore U Sp(2N) classifies all massive 
states (without central charge). Consider again the S U ( N ) ×  U(1) subgroup of 
U Sp(2N) with generators Ato t = A + A. The A are obtained by replacing Q by (~ 
in eq. (3.23). To get an idea what these currents look like we need the expression for 
~A. It is clear from our previous discussion that the ~A correspond to the second 
versions of the supercharges obtained from Q'~ by the picture changing operation 
with the space-time and internal supercurrent. Thus we are using the following 
expression: 

d z  
QA = ~  2~r---~ Z1 /2{ - - l  eiq'l(Z)/2~'A(z) ON (2)  "-1- e-irkl(Z)/2~,A(z)}. (3.39) 

The first term originates from the action of the space-time supercurrent, the second 
term arises due to the action of the internal supercurrent. ~A(z) is defined as 

1 
TF':'t(Z)~'A(W) -- (Z -- W) 1/2•A(w) + "'" " (3.40) 
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Consider first the simplest case of N = 1 supersymmetry. Here we derive from eq. 
(3.40) that 2~A(z) = ei(v/3/6)H(Z)TF(Z ). Then using the n = 2 superconformal algebra 
(3.5) we derive that 

1 1 
Q(z)O*(w)  = + { - ¼ i  aq)l(w ) +i¼vf3aH(w))} 

( z - w )  3 ( z - w )  2 

1 
+ (z------~ { - ~ 02q)l(w) + ½V~- 02H(w) 

+ ¼ ( - - O X  + O X - ( w ) - ½ 0 ( p 2 ( w ) ' +  T i n t ( w ) ) ) .  (3.41) 

Upon contour integration over z and w one obtains the supersymmetry algebra with 
i 2 1 L) 

- ~ ( L o -  2 • 

To construct the U(1) generator A, A tot must act on Q in such a way that Q and 
Q have the same U(1) charge. Inspection of eq. (3.39) shows that ~(z )  must carry 

5 1 units of U(1) charge which implies that 7~F(Z) must have U(I) charge 2. 
Now write irF+(Z) as in sect. 2 and the current A(z) can be defined as 

k z 
= ¼ Y'~ dz'd~t ( 5M(Z')O~t(z)} (3.42) fi~(z) M=I{ f . 

This operator measures the U(1) charge of 7~F+(Z) and therefore also of Q in the 
correct way. 

For the case of heterotic strings with N = 2,4 space-time supersymmetry, an 
analogous construction immediately leads to the Lorentz-invariant SU(2) resp. 
SO(6) currents already shown in eqs. (3.17) and (2.15). Furthermore the U(1) 
currents are similar to the one in eq. (3.42). 

Finally let us briefly consider the Lorentz-invariant completion of the symmetry 
currents in the type II theories. Arguments analogous to the heterotic case lead to 
the following SU(2) currents for N = 2: 

k z _ 

- - ~  ¼'M~__I ( 5 -' ~+ -- f d'tOM('')Oh('))5 ~ ~ f dz O~t (5')0M (5) , 

[ 2~ri 27ri ' 

~ _ =  f ~  d z [  27ri zl/2Q~'~ (z)}{~2@/51/2Q2(5)} . (3.43) 

Similar expressions are obtained for N = 4 type II. 
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So far we have discussed the supersymmetry algebra as its acts on massive states 
without central charge. However in the presence of central charge operators Q A and 
OA generate a smaller SO(2N) Clifford algebra whose maximal subalgebra is 
Sp(N)  × SO(3)Lorentz. Therefore Sp(N) classifies all states which carry non-vanish- 
ing central charge. As already discussed, the dimension one central charge operators 
zAB(z) are nothing else than the internal compactified momenta aYM(Z ) -- the 
central charge of a massive state is just its momentum eigenvalue in the compacti- 
fled torus direction. Since the existence of central charges originates from a 
holomorphic torus compactification and is based on a non-vanishing operator 
product  expansion between the supercharge currents, it is clear that heterotic and 
type II strings with the same number of supersymmetries have a different number of 
central charges and therefore also a totally different organization of the massive 
supermultiplets. As a first example consider N = 2 heterotic versus N = 2 type II 
theories. For  the heterotic models Z AB is given by two internal bosonic field 
0Y1,2(z) which corresponds to the holomorphic torus compactification of two 
dimensions. It follows that the symmetry group SO(2) gets broken for massive states 
with internal momenta which are of the form [p) = e ~p" r(z)10). To see this consider 
the SO(2) generator A MN, 

AMN--~dZ (½YM(z) OYN(Z)--½YN(z)OYM(Z)}. (3.44) 
2~ri 

Acting with this operator on the state IP) we will encounter a logarithmic z-depen- 
dence in the operator product between AMN(z) and e ~prt~). This implies that this 
state does not transform as a SO(2) representation and shows that SO(2) is broken 
since [P) defines a specific direction in SO(2); it acts like a symmetry breaking 
vacuum expectation value. On the other hand the type II, N = 2 theories do not 
involve any torus compactification and there is no central charge operator since Qa 
and Q2 trivially commute. 

Next consider the N = 4 heterotic theory. Here there are six central charge 
operators corresponding to six holomorphic coordinates on a torus. Now again, a 
state with internal momentum, I P ) =  eip'rl0) creates logarithms in the operator 
product  with the SO(6) generators in eq. (2.15). Therefore these generators do not 
classify states with non-vanishing central charge and SO(6) gets broken. However, 
the state [p) can always be rotated into the state [P l, 0 5) by a SO(6) transformation. 
It implies that SO(6) is broken to SO(5) - Sp(4). However for massive states with 
different central charges the SO(6) vectors [p) define different directions in SO(6) 
leading to an in general different embedding of SO(5) into SO(6). In other words, 
there is no unique SO(5) which classifies all massive states. However remember that 
from the world-sheet point of view the $0(6) Kac -Moody  symmetry still classifies 
the whole string spectrum. On the other hand, this classification is meaningless from 
the space-time point of view because it is not Lorentz-invariant. 
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4. Massless supermultiplets and manifolds of massless scalars 

In this section we will consider the transformation properties of the massless 
states - especially of the massless scalars - under the derived symmetries (therefore 
only the generators of subsect. 3.2 are now relevant). This consideration provides 
some important  information about the effective action of these fields, i.e. about the 
manifold which is parametrized by the massless scalars. Therefore the discussion is 
also relevant for the structure of the moduli space of the Calabi-Yau and K 3 
manifolds. We are here dealing with examples where the local structure of the 
manifold of the scalar fields is described by a non-compact coset manifold G / H .  
The linearly realized symmetry group H (H transformations leave the spectrum 
invariant) describes the invariance group of the string spectrum. Therefore H always 
contains the world-sheet Kac -Moody  symmetries of the string theory and also the 
replication symmetry of identical massless supermultiplets. Furthermore, as dis- 
cussed in subsects. 3.2 and 3.3 H can be enlarged for type II theories because of the 
enlarged space-time supersymmetry algebra. We will see how for the type II cases 
the manifolds of the Ramond-Ramond (R-R)  scalars and the manifolds of the 
Neveu-Schwarz-Neveu-Schwarz  (NS-NS) scalars are contained in G / H .  The 
latter fields are the moduli of the spatial manifold the string is compactified on; 
they are also present in the corresponding heterotic string theory which is compacti- 
fled on the same internal manifold. It follows that the isotropy group of the 
N S - N S )  field's coset space is entirely built by the Kac -Moody  symmetries plus the 
family replication symmetry of the corresponding string theory. 

Let us start to consider the manifold of the four-dimensional dilaton D and 
antisymmetric tensor field B~ which build after duality transforming B~ a complex 
scalar field commonly denoted by S. This field parametrizes a K~ihler manifold of 
complex dimension one (which can however be embedded into a larger space as we 
will see later). It builds the universal sector of any string theory with N = 0,1 
supersymmetry. The manifold of the S-field can be derived by considering a torus 
compactification from four to two dimensions. Now the graviton, dilaton and 
antisymmetric tensor field are internal fields and parametrize the manifold 

SO(2, 2) 
M = (4.1) 

SO(2)I" X SO(2)R ' 

where for the case of type II strings the left- and right-moving SO(2) currents are 
given by 0qh(z ), 0qh(£). Now it is important to realize that M is in fact a product 
manifold, 

SU(1,1) SU(1,1) 
M - x (4.2) 

U(1)L+R U(1)L-R ' 

where U(I)L+R is the space-time helicity with current JL+R(,~, Z) = 0 ~ I ( Z  ) -}- ~t~l(Z ) 
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and U(1)L_ R the "anti-helicity" with JL_R(f, Z)=  OeOl(Z)- 0~l(f ) .  Clearly, the 
graviton lives on the first part of eq. (4.2) whereas S parametrizes the second part. 
B~,, and D are charged only under the anti-helicity current. From this point of view 
it should be clear that some of the symmetry generators which classify the massless 
(and also the massive) states contain the space-time anti-helicity currents, especially 
in those cases where the dilaton and B,, are in common representations with other 
(R-R)  scalars. If on the other hand D and B,~ decouple from the remaining 
massless spectrum as e.g. in the N = 1 heterotic case, the symmetry generators 
contain only the internal currents. 

Let us now consider the N = 2, type II theories with one left-moving and one 
fight-moving supercharge. The corresponding internal degrees of freedom are given 
by a (2, 2) superconformal field theory which can be thought of as a compactifica- 
tion on a six-dimensional Calabi-Yau manifold. The universal sector (the universal 
sector always corresponds to the identity operator of the conformal field theory) 
consists of a supergravity multiplet 

A . )  - (1, 2_, 1) (4.3) 

and a complex hypermultiplet 

(~., @i) _ (1_,2), (4.4) 

where we have given the SU(2) quantum numbers with respect to the generators 
(3.33). (The spectrum and the SU(2) charges can for example be derived using the 
exceptional group decomposition [23].) The four scalar fields in the complex 
hypermultiplet are the S-field and two (R-R) scalars which build a complex SU(2) 
doublet. Therefore the SU(2) currents (3.33) contain the space-time helicity current. 
The coset manifold which is parametrized by these four scalars contains SU(2)× 
U(1) as isotropy group and is given by the quaternionic manifold [4] 

SU(2 ,1 )  
M = (4.5) 

SU(2) × U(1) 

M contains as submanifold (SU(1,1)/U(1)) s and also a different SU(1,1)/U(1) 
which is parametrized by the (R-R) scalars (M however does not factorize into 
these submanifolds). Seen from a slightly different point of view, setting the (R-R)  
fields to zero breaks N = 2 supersymmetry to N = 1 and SU(2) to U(1) which just 
corresponds to the heterotic string compactification on the Calabi-Yau manifold. 
We can also add n additional hypermultiplets of the form (4.4) building the matter 
sector. In type II A (B) theories these are associated to the harmonic (2,1) ((1,1)) 
forms on the Calabi-Yau manifolds. The space M which is parametrized by the 
4n + 4 scalars (we also count the four scalars of the universal sector) has in general 
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a complicated form and depends on the couplings between the various fields which 
is described by a holomorphic function f ( z i )  (i = 1 . . . . .  n) [8]. However note that 
the coset (4.5) is always a submanifold of the general space M. Only for very special 
choices of the holomorphic function f ( z i )  the space M has still a coset structure [4]. 
For  example, take as the simplest case the minimal coupling for the (2,1) forms in 
the type II A theories: f ( z i ) =  1 -  ~7=1z~. Then the corresponding quaternionic 
manifold is 

SU(2, n + 1) 

M = SU(2) X SU(n + 1) × U(1) " (4.6) 

Setting again all (R-R)  fields to zero the remaining (NS-NS)  fields parametrize the 
K~ihler manifold 

SU l,°) 
M = U(1) X SU(n)  X U(1) s 

This is exactly what the so-called c-map achieves [4]. It maps the quaternionic 
manifold of the hypermultiplets in the type II A theory onto the K~ihler manifold of 
the vector multiplets in the type I I B  theory respectively of the gauge singlet chiral 
multiplets in the heterotic theory by setting all (R-R)  fields to zero. The first part in 
eq. (4.7) is just the moduli space of the underlying Calabi-Yau manifold which is 
associated to the deformations of the complex structure. The U(1) factor in the first 
part  of eq. (4.7) is a linear combination of the internal U(1)L X U(1)R K ac -Mo o d y  
currents. For the general case, where the holomorphic function is not of that simple 
form and the associated space has no coset structure, all moduli are nevertheless 
characterized either by the vector-like or axial linear combination of U(1)e × U(1)R 
since the left- and fight-moving U(1) charges must be either equal or opposite 
(depending on whether we deal with type I I B  or A). Therefore this specific U(1) 
combination appears in the moduli space of every Calabi-Yau manifold and is 
always contained in the holonomy group of the moduli space even for those cases 
which do not have a coset structure. Furthermore the c-map still applies in the 
general case - it maps the quaternionic space of the hypermultiplets to the k~ihlerian 
subspace which is associated to the (NS-NS)  scalar fields. The reason is that the 
existence of the c-map has its origin in the enlarged N = 2 space-time supersymme- 
try which in turn enlarges the world-sheet symmetries to SU(2). 

Now let us switch to the case of heterotic N = 2 theories assuming that we are 
dealing with a compactification on the K 3 surface with (4, 4) world-sheet supersym- 
merry times a two-dimensional torus T 2. Now the universal sector consists of a 
gravity multiplet, already shown in eq. (4.3), and a vector multiplet 

(A~, X i, S )  - (1__,2_, 1_), (4.8) 
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where the SU(2) quantum numbers are now with respect to the generators (3.30). 
The two vectors in the gravity and vector multiplet originate from the holomorphic 
torus compactification of two dimensions. The dilaton and B,~ are SU(2) singlets 
and decouple from the states which transform non-trivially under SU(2). Therefore 
they parametrize the manifold SU(1,1)/U(1). In addition to these multiplets there 
are also matter multiplets which are in general model dependent. For compactifica- 
tion on K 3 )< W 2 there are two further vector multiplets of the form (4.8). The two 
vectors are two missing U(1) gauge bosons which one expects from the compactifi- 
cation on the two-dimensional torus T 2. The four appearing scalar fields are just the 
internal metric degrees of freedom of T 2 plus the internal dilaton and antisymmetric 
tensor field which are called T. These four scalars parametrize the moduli space 
of T2, 

S0(2,2) 
M = (4.9) 

SO(2) × S0(2) ' 

where the SO(2) currents are given by OH'(z) and 0H'(~). Finally there arise 20 
complex N = 2 hypermultiplets of the form of eq. (4.4). Their 80 scalar fields 
parametrize the moduli space of K 3 [3]: 

SO(20,4) 
M = (4.10) 

S0(20) × S0(4) " 

We see that all the states are classified under SO(4) = SU(2)L X SU(2)R where the 
SU(2)R is unavoidable because of N = 2  space-time supersymmetry. However 
SU(2) L only arises because we are considering a symmetric (4, 4) compactification. 
In summary, the complete manifold of all the scalars is given by 

M = 
S0(20,4) ) 

X 
SO(20) X S0(4) K, 

SU(1,1) 
U(1) ) g,, x 

SU(1,1) SU(1,1) 
U(1) ) r × ( U ( 1 )  )s" 

(4.11) 

Now let us turn to the N = 4, type II theory, again compactified on K 3 × T 2. The 
relevant SO(6) x SO(2) symmetry currents are given in eqs. (3.35) and (3.36). The 
universal sector is built by a gravity multiplet 

, AE,;  x , , r )  (1,1,4,6,4_,1),  (4.12) 

where the numbers in parenthesis are the SU(4)--SO(6) quantum numbers, plus 
two vector multiplets 

2(A~, )q, ~[ iJ ] )  -- 2(1_,4_,6_). (4.13) 
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The two vector multiplets contain four (NS-NS)  scalars, namely the S-field and the 
internal metric of T 2 plus eight (R-R)  scalars. It is perhaps surprising that the 
T-field (the internal dilaton and antisymmetric tensor) appears in the gravity 
multiplet and parametrize the coset SU(1,1)/U(1) (they are SO(6) singlets), where 
on the other hand the space-time dilaton and B,~, the S-field, mix with the (R-R)  
scalars under SO(6) transformations and therefore is a member of the vector 
multiplets. Altogether the 12 scalars of the vector multiplets are coordinates on the 
coset space 

SO(6,2) 
M = (4.14) 

SO(6) x SO(Z) " 

We can also determine the transformation properties of the various fields under the 
SO(4) = SU(2)e X SU(2)R subgroup of SO(6). The four (NS-NS)  scalars are singlets 
under SO(4) where the eight (R-R)  fields transform like 2 - (_2,1_) resp. 2 - (!,  2). It 
follows that the (NS-NS)  fields themselves build the manifold (SU(1,1)/U(1))  x 
(SU(1,1) /U(1))  where the (R-R)  fields lie on SU(2 ,2 ) / (SU(2)x  SU(2)x  U(1)). 
Both of these spaces are submanifolds of (4.14). However note that eq. (4.14) is of 
course not a product manifold of the (NS-NS) and (R-R)  spaces. 

We can also consider the complete theory including also the matter sector. It 
consist of 20 vector multiplets of the form of eq. (4.13). Thus combining the 
universal with the matter multiplets the total number of 132 scalars parametrize 

SO(22,6) 

M = SO(22) x SO(6) " (4.15) 

However there is an important difference between the scalars in the universal and 
the matter sector. For the latter case, each vector multiplet contains four (NS-NS)  
scalars which transform like 4 -  (2, 2) under SO(4)= SU(2)L X SU(2)R plus two 
( R - R )  scalars which are SO(4) singlets. From this fact we derive that 84 (NS-NS)  
scalars parametrize (so 204 ) 

= X U(1) X U(1) (4.16) M SO(20) X SO(4) K, S gu 

This, together with the manifold of the T-fields and neglecting the S-field is just the 
moduli space of K 3 × T 2. On the other hand the (R-R)  fields are coordinates on 

SO(20,2) SO(Z,4) 
M = × (4.17) 

SO(20) X SO(2) SO(2) X SO(4) " 

Now we clearly recognize the relation between the N = 2 heterotic string and the 
N = 4 type II string both obtained by compactification o n  K 3 × T 2. Setting all 
( R - R )  fields of the type II theory to zero one breaks not only SO(6) to SO(4)= 
SU(2)L × SO(2)R but also N = 4 supersymmetry to N = 2. The (NS-NS)  scalars are 
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common to both types of theories. From the field theory point of view we 
understand that the appearance of the SO(4) factor in the moduli space of the 
heterotic theory, although not being enforced by the N = 2 supersymmetry algebra, 
has its origin in the fact that the same background also allows for an N = 4 
supergravity theory which inevitably implies the SO(4) symmetry. 

Finally, turn to the N = 4 heterotic theory obtained as compactification on a 
six-dimensional torus. The universal sector contains just the gravity multiplet 

i A[iJ] ~ki, S )  (1__,!,4,6.6_,4,!)" (4.18) (G~, ,A~, ,+~,  , , 

We see that in contrast to the N = 4 type II theory the space-time dilaton and B~, 
field is in the universal gravity multiplet and is inert under SO(6) transformations 
parametrizing the coset SU(1,1)/U(1). The matter sector is described by 22 vector 
multiplets with 132 scalars parametrizing the moduli space of the torus compactifi- 
cation (4.15). Comparing the N = 4 heterotic and type II theory we learn that the S 
and T fields are exactly interchanged. It follows that in the heterotic models the 
SO(6) singlet S couples in the field theory lagrangian to all other vector multiplets 
whereas in the type II case the T field has non-vanishing coupling to all the vectors. 

At the end let us briefly mention the N = 8 type II string theory which is just a 
trivial torus compactification from ten dimensions. The SU(8) symmetry currents 
can be easily constructed by the methods of subsect. 3.2. This theory contains 38 
(NS-NS) scalars including the S-field and 32 (R-R) scalars in the universal gravity 
multiplet. Altogether these fields parametrize the coset space [33] 

M = ET( + 7)/$U(8). (4.19) 

This space contains as (NS-NS) submanifold the moduli space of the six-torus 
times the S-field manifold, 

SO(6,6) (SU(X,1) ) 

M = SO(6) × SO(6) × U(1----~ s (4.20) 

and for the 32 (R-R) fields the coset space [32] 

SU(4,4) 
M = (4.21) 

SU(4) X SU(4) X U(1) " 

5. Summary 

This paper explains the connection between the string world-sheet symmetries 
and the space-time symmetries which classify the string spectrum in theories with 
(extended) space-time supersymmetry. This relation is true for the whole string 
theory and not only for its low energy sector. Specifically, we have identified those 
symmetry generators which transform the space-time supersymmetry charges into 
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each  other .  Th i s  leads  to the d e t e r m i n a t i o n  of the coset  m a n i f o l d s  which  are 

p a r a m e t r i z e d  b y  the scalars of  the  un ive r sa l  sector  of  the  s t r ing theory.  F u r t h e r m o r e ,  

it  w o u l d  also be  in t e res t ing  to expl ic i t ly  der ive  those s y m m e t r y  genera to r s  f rom the 

s t r ing  wor ld - shee t  degrees of  f r e ed o m which  are c o n n e c t e d  to the  r ep l i ca t ion  

s y m m e t r y  of  the  m a t t e r  mul t ip le t s  which  c o n t a i n  the  m o d u l i  of  the  u n d e r l y i n g  

s u p e r c o n f o r m a l  field theory.  T h e n  the  comple t e  l inear  real ized s y m m e t r y  H,  which  

c o r r e s p o n d s  in  genera l  to the h o l o n o m y  group  of the m o d u l i  space, w o u l d  be  s h o w n  

to have  i ts  d i rec t  or ig in  in  the t w o - d i m e n s i o n a l  s u p e r c o n f o r m a l  field theory.  

W e  wish  to t h a n k  B. Schel lekens  for m a n y  va luab l e  d iscuss ions .  
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