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Assuming that the duality symmetry present for heterotic orbifold compactifications extends to the blow-up orbifold, we derive 
conditions for the Kiihler potential for the moduli and for the cubic Yukawa couplings among the matter fields. This is done, 
perturbatively in the blowing up procedure, on the level of the low energy effective action. The analysis is based on constraints 
from N= 2 space-time supersymmetry which are due to the relation between heterotic and type II theories compactified on the 
same internal space. 

The classif ication o f  all possible string compact i f i -  
cat ions is still an open problem. Related to it is the 
problem of  the modul i  space o f  a given string com- 
pact if icat ion.  Its local structure is only known for a 
few simple cases, such as compact i f ica t ion on a torus 
or  an orbifold. Discrete string symmetr ies  (dual i ty  
symmetr ies )  do however  modi fy  the global structure 
of  the modul i  space. Again, this is known explicit ly 
only for the above ment ioned  special compact if ica-  
tions. 

Different  points  in modul i  space correspond to dif- 
ferent deformat ions  of  a given compact i fying mani-  
fold. Modul i  appear  in the string spectrum as mass- 
less modes  without  internal  winding or  m o m e n t u m  
excitations.  As such they stay massless under  defor- 
mat ions  of  the compact  manifold  and only mix among 
themselves under  dual i ty  t ransformat ions  which are 
s imply discrete coordinate  t ransformat ions  on the 
modul i  space. In conformal field theory language they 
are exactly marginal  operators,  i.e. have conformal  
d imens ion  ( h , / ~ ) =  (1, l )  always and are, in (2,2)  
compact i f icat ions  to which we restrict  our  a t tent ion 
in this paper ,  highest  components  o f  Chiral p r imary  
fields o f  the lef t-moving N =  2 superconformal  alge- 
bra. In the sigma model  language the modul i  corre- 
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spond to different  values of  the background parame-  
ters, such as the background metric,  ant i -symmetr ic  
tensor or Wilson lines [ 1 ]. Finally, when viewed from 
the low-energy field theory, they are massless scalars 
with vanishing potential ,  i.e. unde te rmined  vacuum 
expectat ion values. Different  VEVs of  the modul i  
dist inguish different string vacua corresponding to 
different  background parameters  o f  the s igma-model  
or  different shapes of  the internal  manifold.  It is the 
low-energy field theory aspect on which we will con- 
centrate here. 

As shown in refs. [2,3],  dual i ty  or  target space 
modula r  invar iance severely restricts the mat ter  cou- 
plings o f  the low-energy action. In  par t icular  it relates 
the modul i  dependence o f  the superpotent ial  to the 
theory o f  modula r  forms of the appropr ia te  modula r  
group. Fo r  all except the simplest  cases the full mod-  
ular  group is not  known. Nevertheless  we can der ive 
restr ict ions on the parameters  o f  the theory by  re- 
quiring a symmetry  under dual i ty  t ransformations.  
We will demonst ra te  this here for the case of  blown 
up orbifolds. 

I t  was shown in refs. [ 4 - 9  ] that  for heterotic (2,2) 
compact i f icat ions  the Kahler  potent ia l  for the ( 1,1 ) 
and  (2,1 ) modul i  decomposes  into two independent  
pieces, i.e. K=K(~,1) +K(2,1 ) and that  they can be de- 
r ived from hoiomorphic  functions F o f  the respective 
modul i  v ia  

K =  - In Y, 
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where 

Y= ~ ( 0 i + ~  i) (Fi + f f i )  - 2 ( F + f f ) .  ( 1 ) 
i 

Oi are the moduli and we have defined Fi= OF/Oq~ ~. 
(We have dropped the subscript relating to the par- 
ticular type of moduli.) 

This is the form of the coupling of the scalars of 
vector multiplets in N =  2 supergravity theory. In- 
deed, any type II theory, possessing N =  2 space-time 
supersymmetry, can be mapped to an N =  1 space- 
time supersymmetric heterotic theory with the same 
internal (2,2) superconformal field theory plus a 
level-one E8 × SO (10) Kac-Moody algebra [ 10,11 ]. 
In the heterotic theories the moduli are the scalar 
components of chiral superfields of  the space-time 
supersymmetry whereas in type II theories they are 
the (NS, NS) scalars ofhyper- and vector-multiplets. 
In type IIA theories the (1,1) moduli which para- 
metrize the deformations of  the K~hler structure be- 
long to vector multiplets whereas the (2,1 ) moduli 
corresponding to deformations of  the complex struc- 
ture belong to hypermultiplets. In type IIB theories 
the situation is reversed. Since the particular form of 
the moduli space does not depend on whether we deal 
with a heterotic or type II theory the required consis- 
tency with N =  2 space-time supersymmetry implies 
that the geometry of the moduli space is described by 
a special K~ihler manifold whose Riemann tensor sat- 
isfies the additional constraint 

R j f k r = G i j ~ k r + G i l G k f - - e 2 K C i k m C j T a G  mn . (2) 

In a special coordinate system, the Kh'hler poten- 
tial that satisfies this constraint is of  the form of eq. 
(1),  and the symmetric three-index holomorphic 
tensor C0k is the third derivative of  F: =C~jk=Fok. 
However, to compare the field theory couplings with 
string S-matrix elements one has to perform holo- 
morphic field redefinitions for which eq. ( 1 ) in gen- 
eral does not hold. A different solution to eq. (2) is 
given by choosing a holonormal coordinate system as 
derived in ref . [  7 ]. I t  may be possible that the string 
basis for the holomorphic fields corresponds to this 
coordinate system rather than to the one of eq. ( 1 ) 
given by N =  2 supergravity. 

As we will see below, for the discussion of duality 
symmetries of the heterotic theories it is useful to un- 
derstand the particular form of the Kahler potential 

as given in eq. ( 1 ) in the context of N = 2  supergrav- 
ity theories. We will briefly review the relevant as- 
pects [ 12,13]. 

In the N =  2 superconformal tensor calculus one 
describes the coupling of n physical vector multiplets 
by first introducing (n + 1 ) vector multiplets whose 
scalar components we denote by x I, I =  O, 1, ..., n. The 
vector component of  the extra multiplet (the com- 
pensating multiplet) is the spin-one field of  the N =  2 
supergravity multiplet; its scalar component is non- 
physical and can be eliminated by a suitable gauge 
choice for the gauged SO(2) which rotates the two 
supercharges into each other. The physical scalar 
fields can be defined as the inhomogeneous (projec- 
tive ) coordinates ( i = 1, ..., n) 

{•1}= ~ ={1,0 i} .  (3) 

In terms of the homogeneous coordinates the K~ihler 
potential for the physical fields is 

K . { r - , x l + t : , x x ' ~  =-,n\ ), (4) 

where F (x) is a homogeneous function of degree two 
related to F b y  F(x)  = (x°)ZF(O). I f  we write 

_3s ½iFL) ' 

it is easy to see that the Kghler potential is invarlant, 
up to a Kghler transformation, under 

x I - - - ~ B I x J - [  - ½ i D l J f  y , 

½iF, ~ C,sxJ + ½ i A / F  s , (5)  

where the matrices S =  (~ a D) are required to leave the 
symplectic metric invariant up to a real resealing. 
These transformations are the holomorphic field re- 
definitions compatible with the special form of the 
K~hler potential as given in eq. ( 1 ) if  

OF(x) ½i OF(y) (6) 
G s x J +  ½ i A /  Ox ~ - @ 1  , 

with 

y t = B ~ x S  + ½iDU OF(x) (7) 
Ox J , 

for some function F(y) .  Integrability of eq. (6), i.e. 
the requirement that F-H= ozr-/OySOy J is symmetric 
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is guaranteed if A, B, C, D are real constant matrices. 
The symplectic condition then implies that 

B T C  - C T B  = 0 ,  

DTA--ATD=O , 

BTA--CTD=oz~ , (8) 

where ot is a real constant. One can then also show 
that F is again homogeneous of degree two. 

The discussion has to be modified if F is not just 
homogeneous but a polynomial of degree two. For our 
purposes it will be enough to consider the simplest 
case F =  ~ Zj (x  I) 2 for which FjocX J. We then get the 
condition that the matrix B+ ~iD must be unitary and 
in addition that B + I i D = A - 4 i C .  Integrability is 
automatic. 

The above transformations are a symmetry of the 
theory if F-= F. They are referred to as duality trans- 
formations. Here we will discuss them for the case of 
blown-up orbifolds. Our discussion is, however, more 
general. It describes the deviation of any model from 
a special point at which the moduli space is known. 
We choose local coordinates in moduli space such that 
this special point is characterized by vanishing vac- 
uum expectation values of some of the moduli. Our 
procedure is then an expansion around this special 
point in powers of non-vanishing expectation values 
of these moduli. 

For orhifolds we have to distinguish between mod- 
uli in the untwisted and twisted sectors, which we will 
denote by T o and Ca respectively. Strictly speaking, 
the twisted moduli are not moduli of the orbifold but 
rather of the conformal field theory of which the or- 
bifold is a particular point characterized by vanish- 
ing VEVs of the twisted moduli, i.e. (Cd) = 0 in the 
orbifold limit. 

To simplify the discussion we will restrict our- 
selves to the case of one modulus only for each the 
untwisted and the twisted sectors and drop all charged 
matter fields. The untwisted modulus, t = R 2 + ib cor- 
responds to the ( 1,1 ) form whose real part describes 
the breathing mode of the internal compact space and 
whose imaginary part is the internal axion. This com- 
plex field is always present in (2,2) compactifica- 
tions as they lead to N =  1 space-time supersymmet- 
ric theories which always admit a globally defined 
K~ihler form. Crepresents a generic twisted modulus. 

We know from ref. [ 7 ] that to lowest order in the 

twisted moduli the function Fis given by 

F - i  (x]) 3- -~- ¼ (X2) 2= (x°)2(t3--1C 2) (9) 
- -  X 0 

which leads to 

y =  ( /+  F)3-- CC.  (10) 

We also know [ 3 ] that it is invariant under the dual- 
ity transformations 

a t -  ib C 
t~  i c t + d '  C--, (ict+d)~ 3, (11) 

with a d - b c  = 1. What are these duality transforma- 
tions in terms of the homogeneous coordinates? We 
define t=  x I / i x  ° and C= x2 / i x  °. One then finds that 
the matrices A, B, C and D are 

 a33ac 
A =  I, 

k 0 

B= 

0 

[ d  3 3cd 2 001 
bd 2bcd + ad 2 , 

\ 0 0 1) 

0ab2 i) 
00 / 

D= It - ~ ( b c 2 + 2 a c d )  • (12) 

\ 0 0 O) 

The Yukawa couplings of the charged matter fields 
are given by the third derivatives of the holomorphic 
function F with respect to the moduli. ( Compare also 
with the discussion at the end of the paper.) To re- 
cover the Yukawa couplings in the twisted sector we 
have to know F to  more than just the quadratic order 
in the twisted moduli. The cubic terms are in fact 
known from direct string calculations [ 14,15 ]. They 
were shown in refs. [ 16,3] to be modular forms. We 
will not assume any particular form for them but de- 
rive restrictions from the requirement that the dual- 
ity symmetry extends beyond the orbifold point. As 
pointed out in ref. [ 3 ], if we include the term cubic 
in the twisted moduli in the holomorphic function F, 
the transformations eq. ( 11 ) are only a symmetry to 
lowest order in the twisted moduli. For a consistent 
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expansion in the twisted moduli we also have to 
modify the transformation rules. Since the matrices 
A, B, C and D are field independent, they are fixed 
by the lowest order transformations, i.e. they are as 
given in eq. (12). The higher order corrections to eq. 
( 11 ) arise from the higher order terms in F. We make 
the general ansatz 

i (x l )3  ~ (X2) n+3 
= ~ +¼(x2)  2 -  2.. f . ( t )  

( i x ° ~  rt=0 

tl=O / 

= (x°)2F,  (13) 

which leads to 

Y=(t+F)3-CC+ ~ [ f '~( t+i)+(n+l  )f~]C n+3 

+ ~ [ f ' ( t + f ) + ( n + l ) L ] C  ~+3 

+ ~ (n+3)f~C~+2C+ ~ (n+3)LCn+2c.  
(14) 

The transformation rules for the inhomogeneous co- 
ordinates t and C are now 

y~ 
t-,F= iy o 

= (~20t--ac2 ~~ ( n +  1 )fn Cn+3 
x 

+ (iac?-~ic) ~ f n f n + 3 ) ( C  3) -1,  

y2 
C--,C= iy o =C(F3)  - j  , (15) 

whereas Y transforms as 

y__, YiF31-2 (16) 

Here we have introduced the notation 

7=ict+d, a = a t - i b  

and 

/'3--=~ 3-i¢3 2 (/I-t- 1 )fnCn+3-c2~ ~ f ' n C  n+3 . 

The requirement that the transformations induced 
by the matrices A, B, C, D are still symmetries of the 
theory restricts the functionsf~. Eq. (6) translates to 

IC+ ~ (n+3)fn(t)C "+z 

( ) = F  3 1~+ 2 (n+3)fn(T) ~n+2 , 

3a27+ 3iaac ~ (n+  1 )f~(t)C n+3 

t t C n+3 +(3iaca+a) ~ f n (  ) 

=/'3(3~'2 + ~ f~(~ ' )~n+3)  , 
t 

- a 3 - a 3  2 (n+l)f~(t) C"+3-a2a ~ f ' ( t )  Cn+3 

= F 3 (  - T 3 -  2 (n+  1)f,(t') ~"+3 

- E f ' ( t ' ) t 'C"+3) .  (17) 
/ 

It is a straightforward but tedious calculation to de- 
rive the following conditions for the first fewfn: 

(at-iq 
fo  k i c - S - g 2 ]  = ? f o ( t ) ,  

(at-ib) 
fl \ i c ~ ]  =~'6fl(t) ' 

( a t - i b ]  
f2 \ict+d,I =~gf2(t) ' 

f3 t 'at-  ib'~ 

-I- ~9 ( i c 3 f  2 +c27fof'o - ½icy2f; 2) ( t ) ,  

f4 \ ict+ d] =?lsf4(t) 

+ ~lZ(4iC3fofl + 2c2~f;fl +c2~fof'l 

- ~ icTZf 'of'~ ) ( t ) , 

( a t - i b )  
f5 \ict+d./ = 7 ' % ( 0  

+ y lS (6ic 3fofz + 4ic3f 2 + 2c 2~,f~ f ,  + 3c 27f ~f2 

+c2~fofi ~ i c v R f l  2 -  ~. ~ , , . - ~1c)' ~Cof2)  ( t )  

(18) 

fo.~.2 are modular functions of weight 3, 6 and 9 re- 
spectively, f3.4.5 are determined, up to a homogene- 
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ous piece with weight 12, 15 and 18 respectively, in 

terms offo.l.Z: 

f 3  ~ 1 1  ¢" ['try ¢ t t  120 UOJ0 - -  5f o f o ) ,  
1 tit t t t  

f4 =T~(fofl  -- 8 fo f l  ) , 

+ w - ~ f ~  - 4 f l f l )  19) ~y6(fof~ - l l f  of~) . ( 

What particular modular functions we choose de- 
pends on the model. Note that the above transfor- 
mation rules seem to imply that non-vanishingfo (t) 
demands all f3~(t) to be non-zero, too, whereas 
f3 n + ~ (t), f3, + 2 ( t )  are allowed to vanish identically. 
One should emphasize that for blown-up orbifolds, 
i.e. ( C )  ~ 0, the K~ihler potential is only invariant 
(up to K~ihler transformations) under transforma- 
tions eq. (15) with integer parameters since the con- 
ditions eq. ( 18 ) cannot be satisfied for arbitrary pa- 
rameters. The continuous SU ( 1, 1 ) symmetry is thus 
broken for ( C )  ~ 0 and the (t, C) moduli space pos- 
sesses no (continuous) isometries. 

Let us finally discuss the Yukawa couplings for the 
charged untwisted and twisted matter fields. In all 
(2,2) heterotic string compactifications, each K/hhler 
structure modulus is accompanied by one matter field 
which transforms as 27 of E6. ) We will denote these 
fields by At and Ac, suppressing all gauge indices. As 
proven in ref. [7 ], the cubic part of the superpoten- 
tial, within the special coordinate system we are us- 
ing, is given by the third derivative of the holo- 
morphic function F (cf. above): 

Wo~ = Cijk = aiOjakF( t, C) .  (20) 

(The indices represent untwisted as well as twisted 
moduli.) These couplings are the same as the cou- 
plings between two vectors and one moduli scalar of 
the corresponding type lI theory, all being members 
of N = 2  vector multiplets. Here the vectors are 
Ramond-Ramond fields with essentially the same 
vertex operators as the matter fermions in the heter- 
otic theory and the NS-NS moduli scalars corre- 
spond to the charged scalars in the heter0tic 
counterpart. 

Using the explicit form of F as given in eq. (13) 
we obtain the following expression for the part of the 
superpotential cubic in the charged matter fields: 

w ( ( t ) ,  ( C ) ) ~ A  3 

3 

+ ~ Z f~m' ( ( t ) ) (C)m+"A~ A3-m, (21) 
n = 0  m = 0  

wheref  (m) denotes the m derivative. In the orbifold 
limit the only non-vanishing Yukawa couplings are 
those between three twisted or three untwisted fields. 
The coupling between two twisted and one untwisted 
charged field is linear in the blowing-up procedure 
whereas the AcA 2t term is quadratic. 

The fact that the Yukawa couplings between twisted 
and untwisted matter fields are simply derivatives of 
the purely twisted coupling with respect to the un- 
twisted moduli multiplied by powers of the vacuum 
expectation value of the twisted moduli can be veri- 
fied, to lowest non-trivial order in the twisted mod- 
uli, by explicit string calculations. The calculation is 
outlined in ref. [ 17 ] ~ following refs. [ 14,15 ]. 

Let us conclude by summarizing our results. Start- 
ing with the assumption that the duality symmetry 
which is present for orbifold compactificafions ex- 
tends to the blown-up orbifold, we have derived con- 
ditions on the holomorphic function /: from which 
the K~ihler potential for the moduli is derived. At the 
orbifold point the untwisted moduli transform among 
themselves and the twisted moduli as tensors under 
these transformations [cf. eq. ( 11 ) ]. This is modi- 
fied in the blown-up orbifold resulting in eq. (15). 
We derived expressions for the terms of the Yukawa 
couplings cubic in the charged matter fields. Our 
analysis was performed perturbatively in the blow- 
ing-up procedure. If  we were able to sum up the series 
we would get modular functions of the variables t and 
C appropriate for the modular group of a particular 
model characterized by F(t, C). Comparison with 
explicit string calculations indicates that our results, 
which were obtained on the basis of the low energy 
effective field theory, indicate that duality symmetry 
is an exact symmetry of string theories on the blown- 
up orbifold. It is tempting to conclude that this also 
applies to general Calabi-Yau compactifications. 

We acknowledge useful discussions with A. Van 
Proeyen. 

~z We find a slight disagreement with the results in re£ [ 17 ]. 
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