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The algebra of local and rigid symmetries of N= 16 supergravity in three and two dimensions is considered. The conserved 
currents of the non-compact rigid Es and E9 symmetries are explicitly given. On the physical states, the associated charges are 
found to commute with all local symmetries and, in particular, with the Whceler-DeWin hamiltonian. The solutions of the latter 
are therefore infinitely degenerate. This analysis sheds some new light on the significance of non-compact symmetries in extended 
supergravities. Furthermore, I argue that E 9 plays the role of a "'solution-generating group" for the Wheeler-DeWitt equation of 
N= 16 supergravity in two dimensions, which should thus be completely integrable. 

Among the attempts to quantizc gravity, the 
Wheeler-DeWit t  ( W D W )  equation is perhaps the 
most promising with respect to a possible "pre-geo- 
metric" formulation o f  quantum gravity [ 1 ]. None- 
theless, it has so far not proved as fruitful in promot- 
ing our understanding of  quantum gravity as one 
might have hoped. Even if one puts aside the diver- 
gence problems of  pure quantum gravity, solutions 
are either rather formal and thus difficult to interpret 
[2] ,  or can be obtained only under very restricted 
circumstances (such as the assumption that the evo- 
lution of  the universe can be understood in terms of  
its radius and, say, a spatially constant scalar field, 
see e.g. ref. [ 3 ] ). There is widespread agreement that 
these difficulties cannot be overcome without bring- 
ing additional elements into the picture, for instance 
by embedding gravity into superstring theory. In this 
paper, the W D W  equation is considered in the con- 
text o f  three- and two-dimensional extended super- 
gravities, and for the sake of  definiteness, I will re- 
strict attention to the maximally extended N = 1 6  
theories. The main emphasis here will be placed on 
the algebraic structure o f  local and rigid symmetries 
and their possible interpretation. A crucial difference 
between simple and extended supergravities is the 
presence of  non-compact  rigid symmetries in the ex- 
tended theories [4] .  As will be shown below, these 
commute with all local symmetries on the physical 

subspace defined by the constraints. In particular, 
they commute  with the WDW hamiltonian, thus im- 
plying an infinite degeneracy of  the WDW eigen- 
states. Of  course, this presupposes the absence of  
negative norm states in the physical Hilbert space, 
which is far from evident as it is already quite diffi- 
cult to construct a suitable Hilbert space of  WDW 
wave functionals [ 2 ]. Assuming that this problem can 
be resolved, it follows that, if one solution of  the 
W D W  hamiltonian is known, infinitely many others 
can be generated from it through symmetry" transfor- 
mations. This is also true for extended supergravities 
in higher dimensions. 

Another new element is the proposal to study the 
W D W  equation for supergravity theories in less than 
four dimensions, where gravity (or pure supergrav- 
ity ) has no physical degrees of  freedom. This may ap- 
pear rather non-sensical at first sight since the W D W  
equation is then a statement about "supermatter"  
rather than gravity. Nonetheless, the "supermatter"  
here just corresponds to the transverse degrees of  
freedom of the higher-dimensional supergravity from 
which it originates. Consequently, one may learn 
something about the hidden symmetries of  extended 
supergravities in higher dimensions by integrating the 
W D W  equation in lower dimensions~ Below three di- 
mensions, the hidden symmetries become infinite di- 
mensional. The N =  16 theory in two dimensions was 
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shown in ref. [5] to be integrable in the sense that 
there exists a linear system for its equations of mo- 
tion. As will bc shown below, its invariance under 
rigid E 9 is also reflected in the existence of a con- 
served  E 9 current. The eigenstates of the WDW ham- 
iltonian now form representations of the algebra gen- 
erated by the associated charges, and this should lead 
to an even larger degeneracy of the WDW cigen- 
states. It is then an almost obvious conjecture that 
the N =  16 theory is quantum-integrable ,  with E9 (or 
some descendant thereof) playing the role of  a "so- 
lution-gcnerating group" ibr the WDW equation. 

The prominent role of non-compact symmetries in 
disentangling the non-linearitics of  extended super- 
gravity is well known, yet beyond this technical as- 
pect, few attempts have been made to understand 
their physical significance. In refs. [ 6,7 ], unitary su- 
permultiplets of"one-particle states" and their pos- 
sible phenomenological manifestations were studied. 
In contrast, we are concerned here with the action of 
the non-compact symmetries on the physical states. 
These must be solutions of the WDW equation, and 
should rather be thought of as "multi-particle states" 
which encode all the information about the theory, 
even in situations where no asymptotic statcs can be 
defined (e.g. in the presence of non-trivial gravita- 
tional excitations). Whether the "one-particle states" 
of ref. [6] correspond to observable states in any 
sens e remains, of  course, a difficult dynamical prob- 
lem. A proper understanding of this issue and of the 
true physical significance of the non-compact sym- 
metries is intimately tied to the interpretation of the 
WDW equation itsclf and beyond the scope of this 
paper. 

Three-dimensional supergravity was constructed in 
ref. [8], and I will here only briefly summarize the 
essential and pertinent results. The conventions and 
notation are the same as in rcf. [8 ], except for some 
minor additions to be indicated below. The physical 
fields of the three-dimensional N =  16 theory consti- 
tute an irreducible N=  16 supermultiplet with 128 
bosons and 128 fermions transforming as inequiva- 
lent fundamcntal spinor representations of SO (16). 
In addition, the theory contains a dreibein V~, and 
16 gravitino fields ~u~, which do not correspond to 
physical degrees of freedom. The actual construction 
of the theory is greatly facilitated by exploiting the 
rigid non-compact E8 invariance of the theory. As in 

ref. [8], the 248 generators of E8 are split into 120 
generators X~J=-) (Jz  and 128 generators Y'~ in ac- 
cordance with the decomposition 248~120@128 of 
E8 under its SO ( 16 ) subgroup, where the indices I, J, 
. . . .  1 ..... 16 andA, B . . . . .  1 .... , 128 (or/ i , /} ,  ...=1, 
.... 128) label the vector representation and the fun- 
damental spinor (or conjugate spinor) representa- 
tion of SO( 16 ), respectively. The rigid E8 invariance 
of the theoff can be linearly realized in the usual 
manncr by introducing a local SO(16) invariance. 
Consequently, the scalars "F(x) are properly de- 
scribed as elements of  the coset space Est + 8)/SO (16), 
and the "composite" SO(16) gaugc field Q I J ( x )  is 
obtained from the Es Lie algebra decomposition 

"~/'-- 10  u " ~ " =  2h~.gl [ ) I J  y I d . 4 _  - - - -  la Y'~ • ( 1 ) 

The supersymmetu transformations are given by 

,, i(I . . . .  I J V  u = / ~Uu, 

J~/t n D ~1 l i . 7 ~ J ~ F l J . . .  
= I~ - -  ~ , Z gltwA, 

JX ~ = ~ i ; , u C p A F ~  , 

(2) 

(3) 

(4) 

(5) 

where P~ denotes the supercovariant extension of 
PJ (see ref. [ 8 ] for details). The derivative D u is co- 
variant with respect to all local symmetries; for 
instance, 

D ~ C =  (0 u + t . . . . .  a b ~ I . . t _  I ' l l J t J  ~ , ~ , y  ,~ ,-~eu~ • (6) 

The equations of motion read 

Dr( ,A -I  ~ ~ I l u--~lvyu~ Z FAA) 

1 ~ t t t 'p lDl  I I I J F ' I J  D B  .A- I ;4"~I~I- ' IJ .+PIJ  D B  
.~- ~ ~ .t.,iLy,+tt.t AB~t p ~ ~ i l l /  J A.t A B a p  , ( 7 )  

¢ ' "  D ' ~  ~ l j . , u . .A  ~a r'+ = 2 ~  + ~ - . "  A ~ ,  ( 8 )  

where the hat indicates the supercovariant curl, and 

- -  ~ u  .u 1 ~A 1 iY u D~,Z A= ½7 ~' ~ P u F ' A 4  - ½ (ZZ)Z A 

+ 2~ (~'TUFUz)F]~~Y,,Z s .  ( 9 )  

(I omit Einstein's equation as it will not be needed.) 
The Es invariance of N=  16 supergravity implies 

the existence of an associated conserved current. To 
construct it, we proceed from the known form of this 
current in non-linear ~-models, which is ~ #~o #---1 
[9,10]. Requiring that the corresponding current 
contain this piece in the limit of vanishing fermion 
fields, one finds 
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laup - 1 J I " - I~ l J  I J  1 + ( ~  ~J~'p+~lZ'./ F z ) X  ] ~ ' -  (10)  

To verify that this current is indeed conserved [i.e. 
0~,( VJ ~) =0 ,  where Vmdet  V~], one has to make use 
of  ( 1 ) and the equations of  motion given above. Note 
that the expression for the conserved current con- 
tains no quartic or higher order terms in the fer- 
mions. This is in contrast with the expressions for the 
W D W  hamil tonian and the supersymmetry  genera- 
tors. The absence of  higher order fermionic terms in 
the E8 current is, of  course, in accord with one's  ex- 
pectation that the non-compact  symmetry  acts line- 
arly on the fermions. The associated E8 charges 

~= ~ VJ° d2x= ~ ~IJXIJ+ ~AY A ( 1 1 )  

are conserved if the fields satisfy their respective 
equations of  mot ion and vanish at spatial infinity or 
are appropriately periodic. 

From its definition, the invariance of  2? under gen- 
eral coordinate transformations in two dimensions as 
well as under local SO( 16 ) is manifest.  Inserting the 
supersymmetry  variat ions given above and making 
use of  the equations of  mot ion once more,  it is not 
difficult to show that ( taking into account higher or- 
der fermionic terms)  

6( VJ u) = 0~( VM ~')  , (12) 

where 

M u ,  = ~,,-( g l y l a . v f ( J  FIA.~  y A  + 2e u , l ,~  esX~S) S~- 1. 

(13)  

Therefore, the E8 charges are supersymmetr ic  (i.e. 
, ~  = 0) under the same conditions that ensure their 
conservation. 

The generalization of  these results to higher di- 
mensions is very straightforward, requiring little more 
than notational changes. Even if the rigid symmetry  
is not an invariance of  the lagrangian but only of  the 
equations of  motion,  the existence of  an associated 
conserved current can be ascertained on very general 
grounds [ 10 ]. To extend the above considerations to 
two dimensions is, however, more difficult, mainly 
because the symmetry  becomes infinite-dimensional 
in this case (a general discussion o fboson ic  non-lin- 
ear a-model in flat space can be found in ref. [9] ). 

From refs. [5,11 ], we expect that, for N =  16 super- 
gravity, the E8 symmetry  is enlarged to its affine ex- 
tension E9, at least as far as the existence of  con- 
served currents is concerned. This is indeed the case, 
as I will now demonstrate.  The fundamental  field of  
N =  16 supergravity in two dimensions is the matrix 
"~; which depends not only on the space- t ime coor- 
dinates, but also on a spectral parameter  t [5 ]. This 
matrix contains all the on-shell information about the 
theo~ .  Employing the notation, conventions and 
gauge conditions of  ref. [ 11 ], the conserved E 9 cur-  

r en t  of  d = 2 ,  N = I 6  supergravity can be parame- 
trized as follows: 

pJU=pK(  t) ~ ( t ) {  yA{b, ( t ) P  u~' + b, ( t)~u~P~ 

+ FIa~ [ ic3 ( t ) ~t~ y"za  + ig3 ( t ) tg~ y37nZA ] } 

+ ½XlJ[¢ t ( t )  (iz~yUFIJz + 8Ur//737//~/J) 

+ (l ( l ) ( i~./3~'uFIJZ+ 8~12 yu~tJ) 

+ ic2( t ) ~ )'uq/J + igR( t ) ~)~273yuq/~ ] } '~'-  ~ ( t ) . 
(14) 

As explained in refs. [5,11 ], the scalar field p is a 
remnant  of  the dreibein V~ and satisfies the equa- 
tion 0U0up= 0. The dependence on the conformal fac- 
tor )t has been absorbed through a rescaling of  the 
fields. The various coefficient functions appearing in 
(14)  depend on the spectral parameter  t and are de- 
fined by 

2t 
b , ( t ) =  11+12-/2' fT,( t)= 1 - t  2 '  

1 l + 6 t 2 + t  4 t ( l + t  2) 
c 1 ( t ) - 2  ( l - t 2 )  2 ' g l ( t ) = 2  ( l _ t 2 )  2, 

t2( 6+  20t2 +6 t  4) 
c2(t)  = - 16 ( 1 _ t 2 ) 4  , 

t ( l + t  2)(1 + 1 4 t 2 + D )  
~ 2 ( t ) = - 1 6  (1_12)4  

t(1 + 4 t 2 + # )  
C3(t) = 8  ( 1 _ t 2 ) 3  ' 

(1 + t  2 ) ( I  + 2 2 t 2 + t  4) 
c3(t)---- ( l__t2) 3 (15) 

It is one of  the peculiar features of  the two-dimen- 
sional integrable models, which are descendants of  
(possibly matter-coupled)  gravity theories in higher 
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dimensions, that thc spectral parameter depends non- 
trivially on the space-time coordinates [ 12 ]. More 
precisely, we have t=t(x, w), where w is the free in- 
tegration constant in the equation defining t: 

1 +t  2 2t tp-lOuP = ~ Out- ~ ~u. O"t" (16) 

The overall coefficient in (14) contains the factor K, 
which is a non-local function of the spectral parame- 
ter t, and is defined by ~j 

4 K-'OvK= ~_~ ~a~Ovt. (17) 

The integrability of this differential equation follows 
from 

which itself is a consequence of (16). As before, cur- 
rent conservation, i.e. Ou(p.J ~') =0,  is implied by the 
equations of motion, at least up to and including 
terms quadratic in the fermionic fields (the details of 
this somewhat lengthy calculation will bc given else- 
where). As for higher order fermionic contributions, 
I have so far only verified the consistency of the 
()7Z)2 sector. Note that the Es current is re-obtained 
for t=0 .  The lengthy expression (14) can be consid- 
erably simplified by use of relations between the 
coefficients appearing in the linear system [ l l ] and 
in ( 15 ), such as 

d 2 
dta'(t)= ~ ? , ( t ) ,  
d 2 
~ d ~ ( t ) =  -(-s-~ct(t), etc. (19) 

where a~ (t) and al ( t ) are defined by [ 5,11 ] 

2t-" t( 1 + t  2) 
a l ( t ) =  ( l _ t 2 )  ~ , ~ , ( t ) -  ( 1 _ / 2 )  2 . (20) 

Furthermore, the following formula: 

#~ l f t  depends on only one of the light-cone coordinates x + or 
x - ,  K becomes local. Explicitly, one finds K ( x  ÷ ) =  [( I - t ) /  
( 1 + 0 ]  2 and K ( x - ) = [ ( l + t ) / ( l - t ) l  2. 0bserve that i n a  
fiat space lheory, where t does not depend on x, we would have 

K = I .  

t +  2 . 0f I~,O~,Jf=(t- '  O,, ~-- f i~O t) o t , (21) 

valid for any function f ( x ,  t(x, w) ), is useful. After 
some algebra, (14) reduces to ~2 

(22) 

It is obvious from this result that the E 9 charges 

~(w)= ; p(x)J°(x, t(x, w) ) dx l 

= ~. w - " ~  (23) 
n =  - - o o  

can be represented as the difference of two boundary 
terms. As before, the SO ( 16 ) invariance of flu, and 
hence of 3 (w) ,  is manifest. The expression (23) is 
also very, convenient to analyze the behavior of the 
E 9 current under the "superconformal" transforma- 
tions considered in ref. [11 ]. Using the result for 
~ " - ' 6 ~ g i v e n  there (eq. (3.12) of ref. [ I 1 ] ) ,  it is 
not difficult to show that the variation of .~(w) is 
again the difference of two boundary terms. To check 
the quartic fcrmionic terms, which have been ig- 
nored in this calculation, will be very tedious as the 
spectral parameter t must also be varied [ 11 ]. 

Much of this analysis can be repeated in the ham- 
iltonian framework (for the hamiltonian formula- 
tion of N =  1 supergravity in four dimensions, see reg. 
[ 13,14] ), and I will now briefly indicate how to do 
this for the three-dimensional theory, postponing a 
more detailed discussion to a later paper. In particu- 
lar, higher order fermionic terms will be disregarded 
in most of  the remainder. It is convenient to make 
use of local SO( 1, 2) invariance to parametrize the 
dreibein as follows (see e.g. ref. [ 15] ): 

V,']= e~ , / '  (24) 

where i, j . . . . .  1, 2 and a,  fl . . . . .  1, 2 are curved and 
fiat spatial indices, respectively, and e7 is the spatial 
zweibein; I will also use the positiw, definite spatial 
metric ha=-eTej,~. By means of a general coordi- 

~z For the bosonic non-linear a-model in flat space, this simple 
expression for the current is due to M. Niedermaier. 
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nate transformation the lapse and shift functions can 
be taken to be N =  1 and N'~=0; then V=e=x /~ .  For 
the gravitino, a convenient gauge choice is V~=0. 
Before inserting these gauge choices, however, we 
must keep in mind that the variables N, N '~, ~'D and 
Q~S do not have time derivatives in the action, and 
their variation thus leads to constraints. One must 
therefore first perform the variations and use the 
gauge conditions only afterwards. In this way one ob- 
tains the WDW hamiltonian (or rather hamiltonian 
density ) 

8 ~  
"~-- fiN - ~ e R ( 2 ) + 4 e - l ( H Z - H ' J H a )  

.[ A A )iA A + 4e(PoPo +1 Pi -2i~qiDiz 

-,4~ i~ j I A I . +2Z 77 ~'~P~ FaA +...) • (25) 

Here R (2) denotes the spatial curvature, and the dots 
stand for higher order fermionic terms. H U is the ca- 
nonical momentum associated with the spatial met- 
ric h~j, and H=- h~jH 'j. The generators of spatial coor- 
dinate transformations read 

8Y 
- 2e~ v/) DAuk f f J g i =  - 8N i _2DOHa_I  jJ,-i t 

+ ½ e ( t ' g P f - ' ~ °  -.a • o ~ ~ ,, ~ZY Dd(+Z ~y ~ujF~P~ ) .  (26) 

Finally, the generators of space-dependent super- 
symmetry transformations arc given by 

j z  =_ 8.~ - e t  i J D i ' ~ 1  + 1 ..,.,,u..O,,..4 I-'Z . p~'A 

= - et o [ c~ + ¼ ¢o,~,ay~,a + 2e - 1 ( h , k H _  H~k) ~ e  ° ] ~/.l 

+ 2eF.~(Z Po -~iY°z'~P]) +.. . ,  (27) 

where the SO(16) covariant derivative .9, has been 
split off, and the spin connection has been written out 
explicitly in terms of its spatial part and the canoni- 
cal momentum. I omit the explicit expression for the 
generator of  spatial Lorentz transformationswhich is 
straightforward to derive. 

To proceed further, we need the canonical (Dirac) 
brackets 

{ q/r(X), q)Sty) } = e - ' % 6 ' s 0  (2)(x--y)  (28) 

and 

{):n(x) ,Yi~(y)}=e-qT°~;~k6(2)(x-y)  , (29) 

where spinor indices have been suppressed and the 
variables x, y parametrize the spacelike hypersurface 
(all brackets are understood to be equal time brack- 
ets). Furthermore, 

{ha(x) ' Hk;(y) } _ 6fffit)~(2)(x--y) ( 30 ) 

and 

{H°(x),  x/-ezA(y)}={H'J(x) ,  x/e e ~ ( y ) }  

= 0 .  (31) 

For the matter bosons, it is also convenient to choose 
the variables such that they commute with the fer- 
mionic ones and with H a. As P~ does not, we define 

~ A  - -  ~ A  - I ~ . i A I . Po = e ( t  o +~i7o7 Z F,,tA) , (32) 

which commutes with the fermionic fields and with 
//;L Observe that use of the new quantity pA also sim- 
plifies some of the previous expressions such as (26). 
The relevant brackets are now given by 

{/~A (X), "I/(y)}=--2(~¢'~YA)~(2)(x--y), (33) 

{P~(x), P g ( y ) }  

= F ~ ( O t s +  ¼ief( ' /°[qJz+etiJ~] ) 

×~(2) (x- -y)  (34) 

from which all other brackets can be deduced. (34) 
contains the canonical generators ¢ts of SO ( 16 ) gauge 
transformations, which satisfy 

{(hiS(X), ~bm'(y) } 

= 43 V'KZ0JIKI (x)~(2) (x - -y )  . (35) 

As a useful check on these brackets, one can verify 
that, modulo the constraints, the equations of mo- 
tion are recovered from 

O o q ~ ( x ) = { ~ o ( x ) , f d 2 y . ~ ( y ) } ,  (36) 

where ~0 stands for any of the fields. Likewise, the su- 
persymmetry transformations with time-indepen- 
dent parameter U(x)  can be obtained from 

~ , ~ o ( x ) = { ( o ( x ) , f d 2 y ~ ' ( y ) S m ( y )  } . (37) 

There is a subtlety, however, when this formula is ap- 
plied to P~, because, from ( 5 ), M'~ = Do (UZ ~ F ~ ) ,  
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which contains a time derivative and hence cannot 
be obtained without use of the equations of  motion. 

Given these brackets, it is now possible to investi- 
gate the algebra of local and rigid symmetries. We are 
here primarily interested in those paris of  the algebra 
involving 3. Neglecting possible contributions from 
higher order fermionic terms, one finds 

{Sfl(x), ~2}= - 2 (  ¢~XIJ~ ~-' )SPJ(x)  

- ( U  FKL ) m  ( ~ .yA ~.-  1 )Z;~OKL(X) , ( 38 ) 

3}=~F~iz~P, ( ~ " Y n ~ ' - ' ) O " ( X )  (39) { ¢ , ( x ) ,  ~ , H  

and 

{ .Zt (x) ,  ~}  , r~ J  , ,~ ,  : 2  a A B .  O~"[~'YB~ p -  ) O I J ( x )  . (40) 

This shows that, on the constraint surface .~ = 4~= 
~zJ=.~x=0, .~ indeed commutes with all local sym- 
metries. Commutators similar to (38) between local 
supersymmetry' transformations and rigid symme- 
tries have already been cvaluated in refs. [6,7,16]. 
The connection with these results is easily estab- 
lished by expanding "~ in terms ofthe scalar fields in 
the "unitary" gauge. The non-vanishing result of this 
computation was interpreted as evidence for the ex- 
istence of a "spectrum generating" supergroup, with 
an infinite tower of new supercharges constructed out 
of .c/and products of the scalar fields. However, the 
above result suggests a different interpretation, be- 
cause (38 ) - (40 )  only fail to vanish offshell. On the 
mass-shell, the rigid non-compact symmetries do 
commute with supersymmctry, and the ncw supcr- 
charges defined in this manner should therefore be 
regarded merely as generators of off-shell symmetries. 

In the quantum theory', the constraints become op- 
erator constraints on thc physical states of  the theory. 
The bosonic physical state conditions are (including 
the WDW equation) 

, ~ ( x ) ~ P = ~ ' ( x ) g J = O ~ J ( x ) ~ = O  , (41) 

where ty is the WDW wave functional ("wave func- 
tion of the universe"). I have here blithely ignored 
ordering problems, assuming that possible quantum 
divergences of the theory are sufficiently softened (it 
is probably here that maximal symmetry is needed). 
Furthermore, sincc the commutator of two local su- 
persymmetry variations contains all the other sym- 
metries with field-dependent parameters [ 17], one 
cannot a priori exclude ordering problems and 

anomalies in the quantum algebra of constraints as 
well; again, maximal symmetry may be necessary' here 
to ensure a safe passage to the quantum theory. Pend- 
ing a more detailed investigation of this issue, let us 
assume that no such complications arise for the N= 16 
theory'. Then all of the above conditions are implied 
by 

,~1(x) ~v=0. (42) 

This is the "square-root" of the WDW equation. It is 
at this point that local supersymmetry is crucial; in a 
rigidly supersymmetric theory', such as a supersym- 
metric non-linear a-model in flat space, we would also 
have {.~, cj} ~ H, but acting with 5 /on  a state would 
just give another state and not an equation with dy- 
namical content. From ( 38 ) - (40) ,  it is now obvious 
that 3 commutes with all local generators on the 
physical states. Consequently, if Tis a solution of the 
WDW equation then ~ tP is another, and thus all so- 
lutions form multiplets ores .  There exist well-devel- 
oped methods to construct unitary representations of 
non-compact Es, see e.g. ref. [ 7 ]. 

While it is straightforward to verify that the E8 
charges .~ satisfy' thc expected commutation relations 
on the physical states, the algebra of the E9 charges 
(23) has so far not been evaluated. The explicit ap- 
pearance of the matrix ~" in (14) implies that the 
higher charges will be non-local, because ~ -  being 
the solution of a linear system - is given by a path- 
ordered exponential. Even in the much simpler case 
of the principal chiral model in flat space, the com- 
putation of Poisson brackets of non-local charges is 
marred by technical complications and ambiguities 
[ 18 ]. In particular, one finds that the commutator of 
two non-local charges contains new charges made out 
of products of the basic charges, and that the non- 
local charges close into a Yang-Baxter type algebra 
rather than an affine Kfic-Moody algebra. For this 
reason, it is far from clear whether the generators (23) 
will simply close into an E9 Kar-Moody algebra. 
Rather, there is the intriguing possibility that the re- 
sulting algebraic structure extends beyond E9 and 
could even be related to E~o, whose realization in this 
context was conjectured long ago [ 19 ]. To find out, 
one must, of course, first come to grips with the tech- 
nical problem of calculating the relevant Poisson 
brackets (or commutators).  Finally, whatever the 
outcome of these calculations will be, the emerging 
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algcbraic  s t ruc ture  m a y  lead to a c o m p l e t e  classifica- 

t ion o f  the " o b s e r v a b l e s "  associa ted  with  the  W D W  

equa t ion  o f  N =  16 supergravi ty ,  and thus  to the res- 

o lu t ion  o f  one  o f  the  ou t s t and ing  p rob lems  o f  quan-  

tum gravi ty  [ 2 ], at least in this special  case. 

I am  grateful  to I. McAr thu r ,  B. de Wit ,  M. 

N i e d e r m a i e r  and A. Sagnot t i  for  s t imula t ing  discus- 

s ions related to this work. 
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