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The effect of £R curvature coupling terms in the equation of motion of a massless scalar field are
considered on a cosmic-string background. Realistic two- and four-dimensional models of a string,
where the space-time curvature is spread over a region of nonzero size r,, are constructed. In two
and four dimensions, the nonzero £ term modifies the behavior within a region centered about the
string, whose radius is proportional to r,; however, the constant of proportionality may be exponen-
tially large. For the standard idealized string (a conical space-time) which has no intrinsic length

scale, the effects of nonzero & do not appear.

1. MOTIVATION

In the space-time around a cosmic string,1 the curva-
ture is concentrated in a region around the string, and
vanishes outside the string. Indeed, for the standard
idealized model of a string, the space-time is conical, be-
ing flat everywhere apart from a &-function singularity in
the curvature on the tip of the cone. Although the curva-
ture is concentrated on the string, its effects are felt far
away, for example, in the focusing of geodesics. This pa-
per is concerned with the effects of the curvature on the
behavior of a quantum field in the cosmic-string space-

time. The usual equation of motion of a massless scalar
field

(O—€&R)p=0 (1)

contains a coupling to the scalar curvature R, whose
strength is determined by the dimensionless coupling
constant £. It is not evident whether the effects of this
coupling term on the quantum theory are limited to a re-
gion around the string itself, or whether they alter the be-
havior of the fields at large distances from the string.
Many of the standard treatments of quantum fields
around an idealized cosmic string?~’ deal primarily with
the case £=0, “since the support of R is a set of measure
0.” In a number of these papers, it is assumed, for exam-
ple, that the two-point function is independent of £. (A
nice summary of existing work on quantum field theory
around cosmic strings can be found in Ref. 8.)

A simple way to see the dependence on £ is to consider
the Born expansion of the Feynman two-point function,
which obeys the equation of motion

(O—E&R)G (x,y;&)=—0b(x,y) . (2)

Differentiating this equation with respect to &, multiply-
ing by G (x,z;§), and integrating over x one obtains

d _ . .
d—é_G(y,z;g)——fdx G(y,x;6)R (x)G (x,z;§) , (3)
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where the integral is over the volume of space-time. Re-
peatedly differentiating Eq. (3) with respect to £, and set-
ting £=0, one obtains the Born expansion

G(y,z;§)=G(y,z;0)——§fdx G (y,x;0)R (x)G (x,z;0)
+§2fdx fdx’G(y,x;O)R (x)G(x,x";0)
XR(x")G(x',z;0)— --- . (4)

This equation can be interpreted as expressing the ampli-
tude for scattering from y to z as a sum over all paths
that scatter n times off the curvature, where the
coefficient of £” represents the amplitude for n scatterings
taking place.’

The standard model for a cosmic-string space-time is
the conical metric

ds*=dt*+dz*+dr*+ride¢*,
where the angular range is ¢ €[0,a). Throughout this
paper we shall work with a positive-definite metric; this
presents no problems as the space-time is static. The
standard two-point function for a massless scalar field on
this space is?
K sinhky
82 rr'sinhn(coshkn—coskAd) ’

(5)

where k=27 /a, and

At 4+ Az +r2 477 ©6)
2rr’ ’

coshn=

with At =t —t’ and likewise for ¢ and z. We remain in-
tentionally vague at this stage about the value(s) of & for
which Eq. (5) holds.

Evidence that G (x,x';£) is not independent of £ may
be obtained by inserting G into Eq. (3). The scalar curva-
ture is given by

R =2(k—1)8(r +0)/r ,

where the argument of the & function is infinitesimally in-
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cremented to remove the end-point ambiguity. One ob-
tains

-

4 G xx)=— k1) —TL—
rr'sinhn

dg 472
The left-hand side is nonzero because the standard two-
point function does not vanish at the tip of the cone,
where r =0.

Further evidence that G depends upon £ may be ob-
tained as follows. Consider a small cylindrical four-
volume of radius € centered above the string. Place the
point y outside this volume, and integrate the left-hand
side of Eq. (2) over the volume. Integrating the [JG term
by parts, one obtains a boundary term proportional to €.
The £RG term integrates to give an e-independent term.
Sending € to zero one obtains the relation

EG(r=0;r";At,Az,Ad)=0 .

Thus one is forced to conclude that the two-point func-
tion given by (5) could only be correct for £=0, and that
the two-point function must vanish at the origin if § does
not vanish. Note that (d/d§)G(r=0;r';At,Az,Ad) is
infinite. [Note furthermore that this argument implies
that G (x,x';£) is not an analytic function of & at £=0
and thus that the expansion in powers of & given in (4)
may not be trustworthy.]

In the preceding argument, we assume that the gra-
dient of G in the vicinity of the string singularity diverges
more slowly than 1/e. That this is indeed the case may
be seen either by differentiating the expression for G
directly, or else by examining the mode-sum form of the
two-point function (23).

If the two-point function depends upon &, then certain
physical quantities obtained from G will also depend
upon . Using Eq. (5) as the two-point function for £=0
in Eq. (3) we obtain, for example,

1 1
(9| =——Zkk—1—=,
dg ¥ £=0 4-7T2 r2
where the expectation value of the field operator squared

has been calculated by the standard Hadamard method.'°

II. REALISTIC MODELS FOR THE SPACE-TIME
OF A COSMIC STRING

The idealized model of a cosmic-string space-time, in
which the curvature is concentrated at the tip of a cone,
is correct when one is far from a local string. However
the string has a characteristic core radius given by
ro=~1/M, where M is the mass scale that charac-
terizes the symmetry-breaking scale at which the string
is formed.'! For grand-unified-theory-(GUT-) scale
strings one has ry~1073° cm. The curvature of an
infinite straight cosmic string is actually spread out over
a cylindrical region whose radius is of the order of r,. On
these length scales the tip of the conical singularity is not
a point, but rather is a smooth cap.'?

The metric of a conical space-time with a smooth cap
can be written in the form

ds’=dt>+dz*+PX(r)dr*+rid¢? , )
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where the range of the angular coordinate is ¢ €[0,a).
The function P (r) has the property that

lim P(r)=a/2m=1/k and

lim P(r)=1.
r/r0—>0

r/roaoc

The first condition states that there is no conical singular-
ity at r =0, and the second condition means that for large
r the cone has a deficit angle (27 —a). The function P
should be a smooth monotonic function, and the condi-
tion that the curvature be concentrated in a region of ra-
dius r, about the string implies that all of the derivatives
of P(r) should be small outside that region.
The curvature in this space-time is given by

Raped =2R (@parpidicray) » (8a)

Rabz%R (¢a¢b+rarb) ’ (8b)

R =3£*(3r-) , (8¢)
r P

where a prime denotes d /dr, and we have introduced the
obvious orthonormal tetrad. The Gauss-Bonnet theorem
is easily verified, since the curvature integrated over a
two-dimensional surface t =z =0 s

JRV™Pg d*x= [ RPrd¢dr=2a(—1/P)§
:477"_2a )

independent of the form of P (r).
The wave operator in the space-time is given by

a?.

9 1 3 1
a2 az2

Ue 2 32

In this paper we shall consider two models correspond-
ing to particular choices of the function P. In the
flower-pot (F) model, the curvature of space-time is con-
centrated on a ring of radius r,. This corresponds to the
choice of P

B

P(r)= 2w TR

1, r>ryte, (10)
for €/r, infinitesimal. The function P(r) is assumed to
vary smoothly in the region |r —ry| <e. In the limit as
€—0  the scalar curvature R approaches
20k —1)8(r—ry)/rP.

In the “ballpoint pen” (B) model, the space-time is flat
for r > ry, and the curvature is constant in the interior re-
gion r <r,. This model, proposed independently by
Hiscock and Gott,'? corresponds to replacing the conical
singularity by a smooth spherical cap which is tangent to
the cone at r =r;. For this model one has

)2 —1,2

_2(1—K2)+K2 , r<ry, (11)
P(r)=3 | "o

I, rzr,. (12)

The scalar curvature vanishes for r >r; and has a con-
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a) Flower-pot

b) Ballpoint Pen

FIG. 1. These diagrams show two-dimensional projections of
two models of a cosmic-string space-time. The axis of rotation-
al symmetry is the vertical line about which the polar angle ¢ is
measured. (a) In the “flower-pot” (F) model, the curvature is a
6 function, concentrated on a ring of radius r,. (b) In the
“ballpoint pen” (B) model, the curvature is smoothly distribut-
ed on part of a sphere, whose radius is chosen so that it is
tangent to the cone on a ring of radius r,.

stant value R =2(k*—1)/r} for r <r,. These two models

of the space-time around a cosmic string are shown in
Fig. 1.

III. GREEN FUNCTIONS ON FOUR-DIMENSIONAL
MODELS

We begin by expressing the four-dimensional 6 func-
tion as the Fourier sum

» do

eimAr-"C’C dk lkAz

— 277'

ol 1 MS(r-*r')
X 1 inkAd
nzm ¢ rP(r)

S8(x,x")=

- 21T

(13)

Using standard methods to expand the two-point func-
tion for the elliptic boundary-value problem (O—&R)G
= —§ one obtains the expression

G(x’xr):f_;_weiwlllf ;jk ikAz
T m
—e inKA(zS\I,(iukn)( r

X 3 WGy (14)

n=-—o0

xIK,,‘( )Im(X/K)
C(x,n, &)=

“‘XIKM( )IW X /K) 2§'

where r . =min(r,r’) and r, =max(r,r'). The functions
W _(r) are regular as r—0 and the functions ¥ (r) fall
off as r— 0. Acting on the expression for G with the
wave operator (9), one obtains the equation satisfied by ¥
(note that for notational simplicity we drop the wkn su-
perscript that labels W):

W2k 28 P

rP dr P dr r? r p?

—o(r—r’)
rP '

oW _(r W, (r,)= (15)
If we multiply this equation by rP(r) and integrate from
r=r'—e€ to r =r'+e€ we obtain the Wronskian normali-
zation condition

d r=r'+e
—1= I’Jd W _(r W (r,) o
=V (¥ _(r)—Y_ (V. (r)= —Pr) (16

This condition determines the normalization of the prod-
uct W _(r)¥_(r). Note that if r is greater than r;, then
P(r)=1.

In the case of the “flower pot,” the function ¥ _ is
determined by choosing the solution of Eq. (15) which is
well behaved at » =0 and integrating it out. The {R term
in the equation of motion is nonzero only in the
infinitesimal region |r —ry| <e. In the limit as € van-
ishes, the effect of this £R term can be seen by integrating

the equation for W _ through the point » =r;. One ob-
tains the relation
d r=r0+e
r
—WY_ 25— =0 17
P dr e ],=,046 a7

which implies that the mode function W _ has a discon-
tinuity in its slope at r =ry,.

The solutions of Eq. (15) are Bessel functions. Since
the Bessel function I (x) vanishes as x —0 and blows up
as x — o, and the Bessel function K, (x) falls off ex-
ponentially as x — « and blows up as x —0, one obtains
as solutions for the “interior” mode functions

I, (sr/k) forr<ry,

V_(r)=
< Al (sr)+BK , (sr) forr>ry, (18)

where s’=w?+ k2. The ratio of the constants C =B/ A
is determined by the jump condition (17) to be
C(sry,n,§), where
— D (X, (x /K)
(19)

xKK],,‘( )I‘,,\(X/K)_XK

;‘n‘(x IM‘(X/K)+2§ K

DK 1 (M (x /K)

The solutions for the “exterior’” mode functions are determined by the condition that they fall off when » — . Togeth-

er with the normalization condition (16) this yields

\P>(r)=%KK|,,‘(sr) for r >ry .

(20)



2672 BRUCE ALLEN AND ADRIAN C. OTTEWILL 42

The two-point function on the four-dimensional flower pot is now given by the expression

do ;
ela)At

Gplx,x")= f .

f%e”‘“ b ée"”MKK‘n,(sg)[1K|,,i(sr<)+C(sr0,n,§)1<x;,,1(sr<)]. 21)

n=-—ow

Note that in this expression it is assumed that both r and r' are greater than r,. The only dependence upon £ and r,
here is through the function C. The two-point function of the conical space-time with £=0 can be obtained from this
expression by setting C =0.

To understand the effects of the coupling to curvature, we consider C for small r,. For this purpose it is convenient
to use the relation that 7J,(z)= fgexp(iz cosf)d 6, and to change variables to v =7 _s. One thus obtains

VAt +Az2y

<

rs
v—

el .
2 emKAdSKKlnJ

n=-—owx

(L (0)+C (pv,m, K 1 (0)] (22)

where p=r,/r .. Because the factor of K, (v) falls off exponentially quickly for v > k|n|, one can expand this expres-
sion for small p to explore the behavior of the two-point function far away from the cosmic string. Expanding
C(pv,n, &) for small values of p one finds that
28(k—1) 1
kln|+E&k—1) T(kln|+1)(k|n|)
28(k—1)
2&(k—1lin(pv /2)—1

Thus for small p, corresponding to r and ' both much greater than r(, one recovers the usual two-point function on the
ideal cone with £=0:

—(pv /2)2«lnl
C(pv,n, &)~

for n+0 ,

for n =0 .

vV Ar?+Az?

<

K (o). (23)

|
«|nl

1 o < i
Gelx,x")= dv 3 "y
clx,x") 3 fo vdv e 0

2rar”, .

rs
v
r<

This result proves that in the limit as r, becomes very small for fixed values of r and r’, the two-point function on the
flower pot approaches the two-point function for £=0 on the ideal cone. Note, however, that the value of the two-point
function when one point is on the curvature singularity (i.e., » =r; and r’ > r) does depend strongly upon the value of &,
in agreement with what the Born expansion would suggest.

In the case r;—0 it is now easy to obtain the simple form (5) for the two-point function which we gave in the Intro-
duction. Using formula 6.578.11 from Ref. 13 one obtains

ry — 1 * < ink. A2 A2
Gelx,x )——m o vdvnzz_we A‘i’JO(u\/Atz+Azz)K,d,,‘(vr>)I,(,,,i(vr<)
1 1

e -
2 (emKAd)*hln\n)

=—o0

4ra r.r_sinhn |

_ 1 Kk sinhkn

872 rr'sinhn(coshkn —coskA¢)

(24)

It is also straightforward to construct the two-point function on the ballpoint pen model, in which a spherical cap is
pasted onto the end of the cone. For convenience, it is useful to define another radial coordinate € on the cap, which is
given by

sinf=—V1—1/x . 25)
Yo

The two-point function has an expansion given by (14), where the inner-mode function obeys the equation (for r <r)

rgs? n? | 4 d
21 X e sino a0 M0 e |¥<01=0, (26)

where s?=w?+ k2. The solutions to this equation are the Legendre functions P!"l(cosB) and Q" (cosh), where

2.2

rgs

vivt+1l)=—2&—
§ K2—1

The first solution is nonsingular as r—0 and the second solution is singular. We choose the solution that is well
behaved as r —0,
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_ P! (cosB) for r <r, ,
< | AL, (sn+BK

nl(s7) for r>rq .
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(27)

The constants 4 and B are now determined by the requirement that WV . and its derivative be continuous at r =r;. This

implies that the ratio C =B/ A4 is given by C (sry,n,£), where

V=1, ()P (1 /K) = xT [y ()P (1 /)

C(x,n, &)=

The two-point function is now given by Eq. (21) with this
new coefficient function C. As before, the only depen-
dence upon § and r is through C. Again, we can exam-
ine the limit r,—O0 for nonzero values of £. One finds
that as ry/r . vanishes, the coefficient function C also
vanishes, showing that the two-point function is affected
by the curvature coupling term only for » of the order of
Fo-

IV. GREEN FUNCTIONS ON TWO-DIMENSIONAL
MODELS

In the two-dimensional case, the metric is given by the
final two terms of Eq. (7), and the wave operator is given
by the final two terms of Eq. (9). The two-dimensional &
function has an expansion identical to that given in Eq.
(13) without the integrals over w and k. The two-point

In
r
— for r <rqy,
ro

kin| —«kinl

4 +B

o
A +BIn(r/r,) for r >ry and n =0 .

r
ro

A

—VIE— 1K ()P (1 /10 +xK (g (x)PY (1 /6)

for r >ry and n7#0 ,

(28)
=
function takes the form
’ < 1 ink. wkn wkn
Gxx)= 3 e Adlokn)(p ygplokn)(p ) (29)

The mode functions obey Eq. (15) as in the four-
dimensional case, with w=k =0. However, there is an
additional difficulty in two dimensions in that the two-
point function of a massless field in two dimensions has
an infrared divergence. The simplest way to avoid this
problem in our context is to impose an additional bound-
ary condition on a large cylinder of radius » =a, and to
demand that the field and two-point function vanish on
that cylinder.

We shall deal only with the simpler flower-pot model.
Demanding that W _ be regular as »—0, and that ¥
vanish on the outer boundary at » =a, one obtains

(30)

The continuity of W at r =r, implies that 4 +B =1 for n70 and that 4 =1 for n =0. The jump condition (17) fixes
the remaining freedom in 4 and B. One finds that their ratio is

£(1—k)
c=8 _ lnl+e—1)
4 28(k—1) for n=0.

for n+#0 ,

(31

The outer-mode function, which vanishes at r =a is given by

klnl 1 -1 —«ln|
- _
Fo

n(r/a) for r >ry and n =0,

2 x|n|
To
aZ

rrg

aZ

1

— |1+ C
2 Ak|n|

for r >r, and n70 ,

1 (32)

A [Cln(ro/a)—l]l

where the normalization condition (16) has been used.
The two-point function on the two-dimensional flower pot then becomes
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26(k—Dn(r . /ry)+1
Gplx,x')=—— £ < In(a/r.)

2r 2&(k—1)In(a/ry)+1
2¢|nl 1 =1
r<
Fs

where r and r’ are assumed to be greater than r,, and the prime means that the n =0 term is to be omitted from the
sum.

For r and r' fixed, the limit as r,—0 reduces to the £=0 two-point function for the ideal two-dimensional cone. In
this way the two-dimensional case is clearly analogous to the four-dimensional case discussed earlier. One obtains

. 2 K nl x|n|
emKA¢ ro

w 47| n|

To

+C

, (33)

+ 3

n=-—

2

r.r, a

. kln k|n
K a = e”“(Ad’ < rsr«
—o= 1li =—In|— |+ ! - 2 . (34)
Gre=o r}:ToGF 2 r. ngw 41r|n| r. a’ '
This sum can be evaluated to yield
K ror 2k
1-2 | —5= | coskAd+ |—5= }
. 1 a
GF,§=0= rllmo GF= z;ln , 2K P , 2K . (35)
0—
— | =2 coskA¢+ —= ]
a a a

The limit as a — « now gives the standard form of the £=0 two-point function on a cone, complete with an infrared
divergence due to the zero mode,

. . 1 " K " K
lim Gge—o= rLITO G,,~=—Eln[r2> —2(r,r_)coskAp+r ]+;ln(a) . (36)

a— o

a-—oc

The limit as a — o for § nonzero differs from this. In that limit one obtains

kln|

. 2 «lnl
K r< 1 ©  inkad 3 0
i =—iln|— |+—F— |+ ! — +C|———— , (37)
alLH:oGF 2 | o 28(k—1) nzm 41r|n| re ror
which can also be summed to yield
r2 K 2 2k
1—2 : coskAd+ ;: ]
K r. 1 1 rsr¢ >t <
li =—|In |— +—1
vl LS O A vp sl I e
1—2 |— | coskAd+
r> >
1 rs (k—1) k—1) 5|
0 K emA¢ 0 2F1 1,1 g ;2 § ;elKAd)
47 k—&(k—1) ror. K ror.
r K rz K
+e’““‘l Fy 11—y L i |10 ]H (38)
ror. K ror.

V. THE BORN EXPANSION

Our conclusion from the previous sections has been that a curvature coupling term only affects the behavior of the
two-point function in the region near the string itself. This was in contrast to our expectation from the Born expansion
calculated in Sec. I. Here we examine the discrepancy.

First let us show the relationship between our two-point function for the four-dimensional flower pot for general &
and the Born expansion. Starting with the Born expansion it is easy to see that the coefficient £V is

do , dk o 1 - ,
[—2(K—1)]Nf —Ee' A’f Py "Aznsz_x ;e'"“‘d’[w"((ro)]“‘[w‘i(ro)]“ WO (mw2(r), (39)
where W% and W% denote the solutions corresponding to £=0. The simple nature of this expansion arises from the 8-
function nature of the curvature which enables all radial integrations to be performed immediately. The ¢, z, and ¢ in-
tegrations are all trivial.
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On the other hand, we may obtain a power series in £ for our flower-pot two-point function (21) by examining the
Taylor series for C(sry,n,£). We have

By —28(k— 1)1, (sro)] |, (7o /K)
Ao +2E(k— DK (570 | (sro /)

C(&)=Cl(sry,n, &)= (40)

where 4, and B, denote the coefficients 4 and B of Eq. (18) for £=0 and we have suppressed the dependence on s and

n for notational simplicity. Thus,

C(E)=[C(0)=28 A5 Iy (sro) (sro/K)] 3 [—26(k— DIV Ag 'K 1) (570) IV 1 (570 /)Y

N=0

=C0)+ A% 3 [—2&k— DI Ag 'K (sr) 1Y 7y (srg /0N T, (41)

N=0

where in moving to the second form we have used the
continuity of ¥% at r =r,. Equation (41) is equivalent to
Eq. (39) on noting that \l'°<(r0)=1|,,|(sr0 /k) and recalling
Eq. (20). Unfortunately, the corresponding calculation in
two dimensions is complicated by the infrared divergence
which gives rise to factors of C in the denominator; how-
ever, there is no reason to doubt that the expansion is
perfectly valid here also.

Let us now turn to the case of the idealized cone.
Dealing with the two-dimensional case first for simplici-
ty, we note that, by Eq. (35),

. K r
G(r ~O;r;A¢)——-2—7;ln P (42)
Thus one finds
2 ’
[ GRG="S5 (k=D |~ |In '—l. (43)
2 a

However, if one calculates the next term in the Born ex-
pansion, one obtains the meaningless expression

K3 r
ffGRGRG=—2—(K—1)21n(o>1n = |in

rl
s a

Indeed, all the higher terms may be calculated and
summed to yield the formal expression

G(x,x;6)=G(x,x";0)

+_1_ K*(k—1)E
2 —_
2t L ke DE o)
o

r

In In

r
a a

(44)

An exactly analogous situation arises when one at-

tempts to calculate higher terms in the four-dimensional

Born expansion. In this case again it is only the axisym-

metric terms that contribute because for other terms

WO (7) vanishes on the axis. From Eq. (39) the coefficient
of Vis

[_z(K_l)]Nf_‘;_:eiwAtI ‘Ei_j_;_eikAz

><é[KO(O)]N*‘KO(sr)KO(sr') ,

which yields the finite expression given in Sec. I when

r
N =1 but is infinite for N = 2. Summing the series we get
G(x,x";6)=G(x,x";0)

R P 7
472 14+2(k—1)EK,(0) rr'sinhny

(45)

VI. EXPECTATION VALUE ($?) FOR
THE FLOWER-POT MODEL

For the ideal conical string space-time, the renormal-
ized expectation value ($?). may be easily found. Be-
cause the curvature vanishes (except at the isolated coni-
cal tip), the renormalization may be effected by subtract-
ing the flat-space (k=1) two-point function:

() ¢c= lim [Gelx,x;56)—Ge(x,x";31)]

__ 1 lim 1 ksinhkn  sinhy
87%r? n—o sinhny | coshkn—1 coshnp—1
_ kr—1
48mr?

It is interesting to calculate the same expectation value
for one of the more realistic string models presented in
this paper; we shall investigate the flower-pot model. In
that model, the renormalized expectation value of {§?)
is

() p=[Grlx,x";6)—Gc(x,x";1)]
=[Gplx,x";6k)—Gc(x,x";k)]
+[Ge(x,x";6)—Gelx,x";1)],

where square brackets mean “‘take the coincidence” limit,
ie, [Q(x,x)]=lim, . Q(x,x").

The second term in square brackets above is just
($*)c. From Eq. (22) one can see that the first term in
square brackets above is given by

[Gr(x,x";k)—Gel(x,x";k)]

—_K fowvdv S K}, ()Clorg/rn,é),

4m2r?

n=-—oo

where C is defined following Eq. (22). We now define a
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dimensionless radial variable x by x =r/r, and consider
the dimensionless radial function W(x) defined by

_ <@2>p_<¢2>c
(D¢

:Kg‘l vadv S K2, C/x,nE) . (46)

Y(x)

n=—o

The function W(x) provides a fractional measure of the
amount by which the renormalized expectation value
(@?) differs between the ideal conical model and the
more realistic flower-pot model of a cosmic string:

<¢2>p:<¢2>cl1+\p(x)] .

Our earlier results imply that ¥ must vanish at large
radii, so that lim, , , W(x)=0. It is interesting to note,
however, that W(x) vanishes very slowly for increasing x.
Denoting by ¥, (x) the nth term of Eq. (46), one has

Yix)= 3 WY,(x).

n=-—oc

One can estimate the rate at which ¥, vanishes for large
x by making use of formula 6.576.3 from Ref. 13, and the
small-s expansion for C(s,n,§) given immediately before
Eq. (23). One finds that as x — « the functions ¥, (x)
vanish as

x—o0, W, (x)<x " and Wy(x)=1/In(x) .

It is Wy(x) that is responsible for the logarithmically slow
fall off of W(x) for large x.

We have numerically evaluated the function ¥(x) for a
conformally coupled field (§ =) for several values of the
angular deficit. The results shown in Figs. 2 and 3 were
obtained from Eq. (46) by summing the terms
—20=<n <20, and integrating over the region 0 =v = 80.

As can be seen from Fig. 2, the fall off of W is indeed

~=100/99

In(x)

FIG. 2. Shown is a plot of the function ¥(x) defined in Eq.
(46), which relates (@ ?) on the “flower-pot” model to (§?)¢
on an ideal cone: {§?2)=(§?)c[1+W¥(x)]. The scalar field is
conformally coupled (§=1), and the parameter « is related to
the angular deficit of the cone. The horizontal axis shows the
natural logarithm of the dimensionless radial variable x =r /r.
It can be seen that W(x) vanishes logarithmically slowly for
large x.

BRUCE ALLEN AND ADRIAN C. OTTEWILL 42

0.03 0.04 0.05

FIG. 3. This figure provides a detail of Fig. 2 for radii near
the core of the cosmic string.

very slow, and as the angle of the cone approaches 27 one
needs to get exponentially far away from the cone before
(@?)r approaches ($?2) .. For a realistic cosmic string,
corresponding to symmetry breaking at the GUT energy
scale of 10'® GeV, the radius r, of the string would be ap-
proximately 107%° cm, and the parameter k~1+10"°.
It is clear from Fig. 2 that at a distance of
exp(150)r,=10°° cm (greater than the present Hubble ra-
dius of the universe) the expectation value (@) still
differs from (§?). of an ideal conical string by more
than 90%. Thus it is fair to say that the ideal cosmic
string is not an accurate model of a realistic cosmic
string, even quite far away from the core of the string. Of
course at this enormous distance, {$*) is unobservably
small, so the difference is of strictly academic interest.

Figure 3 shows the function W(x) for small values of x,
near the core of the string. In this case, it seems likely
that the limit xk— 1 exists; however, it is not clear if our
numerical scheme has converged to that limit or not. For
this reason, the results of Fig. 3 should be viewed with a
skeptical eye.

VII. CONCLUSION

While Eqgs. (44) and (45) are suggestive, for example, all
space-time dependence is explicit, it is far from clear
whether they can be given any real meaning. Indeed, it is
not even clear whether the equation

(O—&R)p=0

has any meaning for nonzero £ when R has a distribu-
tional character. Rather than pursue this mathematical
question we prefer to take the view that real cosmic
strings possess an intrinsic length scale and in this case
we have argued by example that the effects of the curva-
ture coupling are restricted to a neighborhood of the
string. Thus, for fixed r and r’ one has

limOGF(r;r’;Al,Az,A¢)= lim Gg(r;r';At,Az,Ad)
— ro—0

70 0
=Gc(r;r';At,Az,Ad) .

Note, however, that this is not true if one point remains



on the region where the curvature of the string is found:

lim Gp(ry;r';At,Az,Ad)= limOGB(ro;r‘;At,Az,Ad))
r()a() ro—

#G(0;r';At,Az,A0) .

It is these latter expressions that are important for the
Born expansion.

The effects of any curvature coupling appear to be
confined to a region whose size is proportional to size r
(with an exponentially large proportionality factor). For
this reason, the effects of curvature coupling for the ideal-
ized cone disappear, since there is no natural length scale
for the effect. However, we repeat that this statement
may simply not make sense, because the meaning of the
wave equation in the presence of a curvature singularity
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is unclear. One extension of this work might be to study
particle production during the formation of a realistic
cosmic string, extending the work of Parker and Mendell
and Hiscock." The latter authors considered the effect
of curvature coupling before and on the transition hyper-
surface, but as they used an idealzed string model, they
did not consider the effects in the final cosmic string
background.
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