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Mean curvature evolution of entire graphs 

By KLAUS ECKERand GERHARDHUISKEN 

We consider immersions 

F :  M" + R"+l  

of n-dimensional hypersurfaces in R n + l .  We say that M n  moves by mean 
curvature if there is a one-parameter family F, = F ( . ,  t )  of immersions with 
corresponding images M ,  = F , ( M )  such that 

is satisfied for some initial data Fo. Here H ( p ,  t )  is the mean curvature vector of 
the hypersurface M ,  at F ( p ,  t ) .  

Mean curvature flow was first studied by Brakke [ l ] ,in the context of 
geometric measure theory. Smooth compact surfaces moving by their mean 
curvature were investigated in [ 5 ] ,  [ 6 ] .  

Here we shall assume that M can be written as an entire graph; i.e. there 
exists a vector o E Rn+',  lo\= 1, such that for a choice of unit normal v for M 
we have 

( v , a) > 0 

everywhere on M .  Then the system 

which up to tangential diffeomorphisms is equivalent to ( I ) , corresponds to the 
quasilinear equation 

Here 1 denotes the normal component of a vector, *: is the graph representa- 
tion for M ,  with respect to the hyperplane defined by w and D indicates 
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differentiation in this hyperplane. In the graphical setting it is therefore possible 
to deal with problem (1) entirely from the viewpoint of partial differential 
equations. However, due to the geometric nature of equation (1) it turns out to 
be much more convenient to derive estimates directly from calculations on the 
hypersurfaces; see Sections 2, 3 and 4 below. 

Our first result says that any polynomial growth rate for the height and the 
gradient of the initial surface M, is preserved during the evolution. We then 
show in Section 4 that in the case of Lipschitz initial data with linear growth, 
equation (1) has a smooth solution for all times. This result follows from a priori 
estimates for the curvature and higher derivatives of the curvature on M,, which 
are global in space direction and interior in time direction. In Section 5 we study 
the asymptotic behaviour of these solutions as t + co.We prove that our family 
of surfaces asymptotically approaches a selfsimilar solution of (I), provided the 
initial graph was "straight" at infinity in the sense that for some 6 > 0, C < oo, 

More precisely, we show that after appropriate rescaling, the surfaces converge 
to a solution of the equation 

which characterizes expanding selfsimilar solutions of (1). This result should be 
compared with Theorem 3.5 in [6], where it was shown that singularities of the 
mean curvature flow behave asymptotically like contracting selfsimilar solutions 
of (I), characterized by the equation 

While equation (4) has many non-trivial solutions, we show in the appendix that 
the only entire graphs satisfying equation (5) are planes. 

Finally we prove in Section 6 that condition (3) is indeed necessary for 
asymptotic convergence. We give an example of a slowly oscillating initial 
surface violating (3) which does not converge asymptotically. 

1. The monotonicity formula 

In the following we shall not distinguish between the image F(p, t )  of a 
point p E M and its coordinate vector x = x(p, t). For a fixed point (x,, to) E 
~ n 1 +we define the "backward heat kernel" p = p(x, t )  by 
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such that 

Here and in the following, A = A ,  denotes the Laplace-Beltrami operator on M,. 
It was shown in [6], Theorem 3.1, that this implies the monotonicity formula 

where d p ,  is the measure on M ,  and r = to - t. Proceeding as in [6] we obtain 
more generally for a function f = f(x, t )  on M that 

All integrals are finite and integration by parts is permitted for the surfaces and 
functions we are going to consider in the sequel. 

1.1 COROLLARY.Suppose the function f = f(x, t ) satisfies the inequality 

for some vector field a, where v denotes the tangential gradient on M .  If 
a,  = sup,, [,, 1 a 1 < oo for s m e  t, > 0, then 

supf I supf 
Mt Mo 

for all t E [0, tl]. 

Proof: Let k = supMof and define fk = max( f - k, 0). Then we derive 
from (8) 

Using Young's inequality we obtain, in the weak sense, that 

We may now employ (7) with fk2 instead of f and choose to > t ,  x, arbitrary in 
the definition of p to conclude 

which yields the desired result. 
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2. A priori height estimates 

We define the height of M with respect to the hyperplane orthogonal to w 

by 

u = (x, w) 

and observe from (1) that 

In terms of a local orthonormal frame {ei ) , i s  on M we then have the formula 

ou = (e,, w)e,. 

Notice that the function cl mentioned in the introduction denotes the height of 
M over a fixed point f in the hyperplane, whereas u ( p ,  t )  denotes the height of 
F(p, t ) for a fixed p E M. It immediately follows from (9) and Corollary 1.1 that 
u stays uniformly bounded, if it is uniformly bounded at time t = 0. To deal 
with the case of polynomial growth, we need a technical lemma. 

2.1 LEMMAi). The function TJ,= TJ ,(x, t ) defined by 

satisfies 

ii) The function TJ,q2(x,t ) defined by = 

satisfies for arbitrary p 

Proof: We have in view of (1) 


d 

-77, = 2(x,H) + 2n 
dt 

and the first identity then follows from 

ATJ, = ei(2(x, e,)) = 2(x, H) + 2n 
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Since by (9) 

we have, using (i), 

which implies the second identity. 

Now let M, be a smooth solution of (1 )  which grows at most polynomidy. 
We show that u( . ,t )  satisfies the same polynomial growth estimate as u(. ,0). 
Note that the nonnegative function 1xI2 - u2 measures distance in the hyper-
plane orthogonal to a. 

2.2 PROPOSITION.I f  for some c, < oo, p 2 0, the inequality 

is satisfied on M,, then f m  all t > 0, 

u 2  5 cO(l+ 1 x 1 ~- u 2  + ( e n  + 4 ( p  - 1 ) ) t ) ' .  

Proof: From Lemma 2.1 we compute for 

q = q ( x ,  t )  = 1 + 1x12 - u2+ ( 2 n  + 4 ( p  - 1 ) ) t  

the evolution equation 

- 2p?7-P-1u 2 1vu l2  - 4 ( p  - l ) p q - ~ - ~ u ~  

- 4 p q - p - l u v u .  v q .  

Using Young's inequality we obtain 

1 4 p q - p - 1 u v u .  v q l  1 2q-p1vul2 + 2p2u2q-p-21vq12. 

Now observe that v i u  = (e, ,  a) implies 

v i q  = 2 ( e i , x  - ( x ,  a)a) 

which yields 

I vq I2  5 4 7 .  
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Thus we derive 

and the result follows from Corollary 1.1. 

3. A priori gradient estimates 

To ensure that M, stays a graph for all times we have to estimate ( v ,a) 

from below or equivalently 

0 = ( v ,  a)-' 

from above. Let A = { h i j )be the second fundamental form. 

3.1 	LEMMA.The quantity v satisfies the evolution equation 

Proof: From [5],Lemma 3.3, we know that ( d / d t ) v  = vH. Therefore 

On the other hand 

Av 	 = e , ( -  0 2 ( v , v ,  a)) = e i ( -  u2(hi le l ,  a)) 

= - v 2 ( v H ,W )  + v1A12 + 2 v - 1 1 ~ v 1 2  

and the conclusion follows. 

3.2 	COROLLARY. = 0, it remains bounded by the I f  v is bounded at time t 
same constant. 

3.3 Remark. For the equation on Rn 

which describes mean curvature flow in en+,direction, a corresponding result is 
obtained in [2] from interior gradient estimates. 

We can also derive polynomial estimates for v similar to those derived in 
Section 2. 
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3.4 PROPOSITION.If for some c,  < oo, p 2 0, 

u I c,(l + 1x12 - u 2 )
P 

at time t = 0, then for t > 0 the inequality 

u(x,  t )  I c l ( l  + 1 x 1 ~- u2 + 2nt)' 

hokls. 

Proof: From Lemma 2.1 and Lemma 3.1 we compute 

- p ( p  + l)ulvq212q;P-2- 2 puq2-p-11vu12 

- 2pq;p-lvu . v q 2 .  

We estimate 

1 2 - 21 2 p q ; ~ - 1 v u v q 2 JI 20- 1vu 1 q2 + i ~ ~ u 7 1 i ~ - ~ 1 ~ 1 7 2 1  

and the conclusion follows since p 2 0. 

4. Curvature estimates and longtime existence 

From now on we shall only consider the case of linear growth; i.e. we 
assume that for some fixed constant c,  2 1 the inequality 

holds everywhere on M,. Corollary 3.2 then ensures that (10) remains valid for 
a l l t > O .  

To guarantee longtime existence of a solution for the mean curvature flow, 
it is crucial to obtain a priori bounds for the second fundamental form on M,. In 
Theorem 4.4 we derive uniform estimates for the curvature and all derivatives of 
the curvature which are interior in time and allow us to prove existence of a 
longtime smooth solution to the flow for Lipschitz initial data. Notice that these 
estimates do not follow from the standard quasilinear theory since u may be 
unbounded. 

4.1 LEMMA.The curvature satisfies the inequality 
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Proof: From [5], Corollary 3.5, we have the evolution equation 

I - 2 1 ~I A Il 2  + 2 1 ~ 1 ~ .  

Together with the identity 

derived from Lemma 3.1 this yields 

Using Young's inequality we then estimate 

which implies the result. 

4.2 COROLLARY.If Mt is a smooth solution of (1) with bounded gradient 
and bounded curvature on each M,, then there is the a priori estimate 

s u p ~ ~ 1 ^ u 2I suP~A1^v2. 
Mt Mo 

Proof: Notice that 

The result then follows from Lemma 4.1 and Corollary 1.1 with a = - 20-I v v .  

Using the uniform estimate on IA12 we can now proceed exactly as in [6], 
Proposition 2.3, to estimate all derivatives of A in terms of their initial data. 

4.3 PROPOSITION.If M, is a smooth solution of (1) such that v, IA12, 
I VA 1 2, . . ., 1 V "A 1 ^ are bounded on each M,, then we have for all t 2 0 the 
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a priori estimate 

sup I V  "A1 I C ( m )  
Mt 

where C ( m )  only depends on m ,  n ,  c ,  and s u p M o l ~ J A l  for 0 I j I m.  

We now derive estimates interior in time for the curvature and all its 
derivatives. 

4.4 PROPOSITION.Let M, be a smooth solution of (1) satisfying (10).Then 
f m  each m 2 0 there is a constant C ( m )  depending only on c,, n and m such 
that 

(11) t m + 1 1 ~ m A 1 2I C ( m )  

holds uniformly on M,. 

Proof. To establish the case m = 0 we compute from Lemma 3.1 and 
Lemma 4.1 

2 - 2 0 - ~ V V  ~ ( 2 t J ~ ) ~ u ~- + 0 2 ) .  

Again Corollary 1.1 yields that the estimate 

2tlAl2u2+ o2 I C: 

holds uniformly on M,. We now proceed by induction on m in a way similar to 
that in [6],Proposition 2.3. From [5] ,Theorem 7.1 we have for arbitrary 1 2 0 
the inequality 

Suppose (11) is established up to ( m  - I ) .  Then we estimate 

with constants C depending only on 1, n and c,. Thus we obtain for all 1 I m 



K. ECKER AND G. HUISKEN 

the inequality 

In a first step we may then choose k ,  so large that 

We can then successively select k ,, k,, .. .,k, +, such that finally 

+ . . +k,t(AI2 + k,+,v2) 5 0 .  

Here we used again the evolution equation for v2  and the fact that u 2 1. 
Proposition 4.4 then follows from Corollary 1.1. 

Having obtained decay estimates in t we are now able to show also that 
initial spatial decay behaviour is maintained during the evolution. We will make 
use of this fact in Section 6. 

4.5 PROPOSITION.Let M ,  be a m o t h  solution of (1)  satisfying (10) and 
the additional assumption 

(12) 
-m- 1

1vmAl2(xs)5 c 2 ( m ) ( l+ 1 x 1 ~ )  , m 2 0 

at time t = 0. Then for all t > 0, 

where p = P(cl)  > 0 and Cm = Cm(n,m ,  c,, c2(0),..., c2(m)).  

Proof: Let us prove (13) for m = 0 , l  only. From there we can proceed by 
induction in a way similar to that in the proof of Proposition 4.4. 

Let g = IA I2v2q+ where q is an arbitrary nonnegative function and 
L > 0will be determined later. Using Lemma 4.1 we compute as in the proof of 
Proposition 4.4 for the case m = 0: 

where b = - 2 ( v P 1 v v+ q- v q). Note that we estimated the vector a = 
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- 20-I vv  from Lemma 4.1 using the inequality u - ' I ~ u  1 i IAlu, estimate 
(11) for m = 0 and the fact that C(0) = c,2/2. We now define 

where p > 0 will be chosen later. We obviously have the inequalities 

and 

Ivq1 5 2 / p + 2 f i .  

In view of Lemma 2.l.i), TJ also satisfies 

Therefore we conclude for large enough P = P(c,), 

If we now choose L large depending on P and cl and define k = supMog+ 9~c ,2 ,  
we achieve 

where we also used the estimate ~ ( x ,  t ) I c, again. 
Let gk = max(g - k, 0). Since gk. (g  - k) = g:, we obtain the result 

using Corollary 1.1 with f = g:. 
In order to prove (13) for m = 1,we compute as in Proposition 4.4: 

I c ( ~ ) ~ A ~ ~ v ~ I v A ~ ~+ 81~771~1vA1~.  

Since I V q 1 i 4 q and I A 1 2q i CO (recall that v 2 1) we estimate 

Similarly we derive 
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Since by Lemma 3.1 and the fact that v 2 1 one has 

it is now easy to see that 

for large enough positive constants K and L depending on n and Co. The 
proposition then follows from Corollary 1.1. 

Using Proposition 4.4 we can prove existence of a longtime solution for 
Lipschitz initial data. 

4.6 THEOREM.If the initial hypersurface Mo is Lipschitz continuous and 
satisfies 

sup v 5 c,, 
M n  

then the mean curvature flow problem (1)  has a longtime solution which is 
m o t h  for all t > 0 and satisfies the a priori estimates in Corollary 3.2 and 
Proposition 4.4. 

Proof: Suppose first that the initial hypersurface is smooth with supMoIv mAI 
bounded for all m 2 0. In view of the bound on v the linearization of (2') is a 
uniformly parabolic equation and the implicit function theorem guarantees the 
existence of a unique smooth solution on some short time interval. Our uniform 
a priori estimates then ensure that this solution extends to all t > 0. For 
Lipschitz initial data the result follows by approximation in view of our interior 
estimates in Proposition 4.4. 

5. Asymptotic behaviour 

In this section we study the behaviour of solutions M ,  of the mean 
curvature flow system (1) for large times t in the case of linear growth. For 
simplicity we shall additionally assume that the initial surface M o  has bounded 
curvature. We saw in Proposition 4.4 that the surfaces M ,  "flatten out7' as 
t + m, and if they do not diverge to m (e.g. if u is bounded), then they must 
converge to a plane. However, in general the surfaces will move out to infinity at 
speed proportional to tP1 l2such that Proposition 4.4 does not yield any 
information about their global shape. 

To study the global shape of M ,  for t -+ co we will now rescale the surfaces 
in such a way that they do not diverge to infinity and at the same time retain a 
bound on their curvature. 
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Similarly, as in [6], we define 

1 
P(s )  = JrnF(t)  

where the new time variable s is given by s = log(2t + l),0 Is < ca.The 
normalized equation then becomes 

and the estimates from Proposition 2.2, Corollary 3.2, Corollary 4.2 and Proposi- 
tion 4.4 translate to 

fi2(i, S) I co(l+ 1 %  l 2  - C2(%,s)) ,  

v"(i, s )  l c,, 

I A " ~ ~ ( % ,s )  l c,, 

with constants depending only on the initial bounds for the respective quantities 
on M,. 

For the rescaled surfaces M, = p(. ,  s)(M) we then establish the following 
result concerning asymptotic convergence. 

5.1 THEOREM.Suppose M, satisfies the linear growth condition (10) and 
has bounded curvature. If in addition the estimate 

is valid on M, for some constants c, < CQ, 6 > 0, then the solution M, of the 
normalized equation (14) converges for s -+ ca to a limiting su$ace M, satisfy-
ing the equation 

We will see in the last section that condition (3) is indeed necessary. 

5.2 Remarks. i) The result follows from the estimate 

(a+ ( i ,  i))$' (H + (x, v)),v2 
(15) SUP -< e-pSsup

1, (1 + ali12)l-' Mo (1+ alx12)1-E 

which we derive for all E < 6 with some constants a > 0, /3 > 0 depending only 
on E, n, C, and c,. This implies, in particular, exponentially fast convergence on 
compact subsets, a result much stronger than the corresponding result in [6] 
concerning asymptotic behaviour of singularities. 



466 K. ECKER AND G .  HUISKEN 

ii) In view of the interior estimates in Proposition 4.4 the conclusion of 
Theorem 5.1 remains valid for Lipschitz initial data provided condition (3) is 
satisfied for some to > 0. 

iii) Any initial surface Mo given by Fo: Mn -+ Rn+l satisfying (4) gives rise 
to an expanding selfsimilar solution of the mean curvature flow in the sense that 

~ ( t )= d2 t+ lFo  

satisfies 

Theorem 5.1 therefore says that M ,  becomes asymptotically selfsimilar. Nontriv- 
ial examples of surfaces satisfying (4) can be constructed in arbitrary dimensions 
by choosing for instance a rotationally symmetric cone g in Rn+l as initial 
surface for the evolution. From the maximum principle applied to the evolution 
equation for H we obtain a family of surfaces lying above g for all times. Thus 
the limiting hypersurface M, for the rescaled flow obtained from Theorem 5.1is 
nonlinear. Moreover, from Proposition 4.5 one can see that M, satisfies the 
estimate 

and is therefore strongly asymptotic to %. 
In the onedimensional case an example for "curves of constant shape7' 

evolving from a comer was numerically obtained by Brakke in [I],Fig. 3. It is an 
open problem to understand and possibly classify solutions of equation (4). We 
show in the appendix that the equation (5) characterizing contracting selfsimilar 
solutions of the mean curvature flow has only trivial solutions in the class of 
entire graphs. 

We begm the proof of the theorem with the following lemma. 

5.2 LEMMA.The quantity (x, v) satisfies the evolution equation 

Proof: From the equation (d/dt)v = V H we compute 
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while 

We can now show that up to a time-dependent factor condition (3) is preserved 
for all s > 0. 

5.4 LEMMA.Suppose Mo satisfies the assumptions of Theorem 5.1. Then on 
M , ~we have the estimate 

( i ,  i ) ,5 c ( s ) ( l  + li12)l-' 

with a constant depending on s and c,. 

Proof: Since the constant in the estimate is allowed to depend on time it is 
sufficient to look at the unnormalized flow. From Lemma 5.3 we infer 

where from now on we denote all constants depending only on c, and s by C. 
We now write f = (x, v), multiply the above equation by a test function p and 
estimate 

Choosing p = 77:-' where 77, = 1 + 1x1, + 2nt we derive from Lemma 2.l.i), 
since 0 < 6 11, 

Furthermore, 

p - 2 1 ~ p 1 2  = (1 - ~ ) ~ q ; ~ 1 ~ ~ 1 ~5 4(1 - s ) ~ ~ ; '1 4  

since I v 7'1 I 4 77 Altogether we conclude 

such that by Corollary 1.1, f 2p can at most grow exponentially in time. This 
implies the result. 
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5.5 LEMMA.The normalized quantity I? + (2, f )  satisfies the eoolution 
equation 

(: 


Proof: From [5], Lemma 9.1, and Lemma 5.3 we compute the identities 

A- ) (2, f )  = 1A"l2(Z, f )  - 2I? - (2, f ) .  
-

This yields (16). 

Proof of Theorem 5.1. From (16) we infer 

The normalized gradient u" satisfies the equation 

We may then proceed exactly as in the proof of Lemma 4.1 to obtain for 
f = the inequality (I? + (Z, ~ ) ) ~ u " ~  

Multiplying by a test function p we compute 

Now let 0 < E < 6 and define p(f, s) = q",-l(Z)eP"ith q,(%) = 1 + a 1 Z 1 
where a ,  p are small positive constants to be determined later. Then the 
normalized equation (14) implies 



(: 
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and therefore 

(18) - ljp< ( P  + 211 - i ) ( a n+ 1))p.  

Moreover, 

' (19) - 2 p 5 l v 5  v f 2  - 2 v p  a v f 2  

= - 2 ( c 1 v 5+ p - l ~ p ). V (f2p)  

+ 2 1 ~ p 1 ~ f ~ p - l  vp+ 2 f 2 5 - l b v 5  


and we obtain from I V  I 4aqa the estimate 


Combining now (17), (18) and (19) and using the fact that 1 ~ 5 1I 1AlC2 we 
derive for g = f 2P the inequality 

where a = - 2 ( t Y 1V C  + 6- v F )  and c depends on c,, c, and n. Choosing 
then a,  /? suitably small depending on E and c we see that 

for all s 2 0. Lemma 5.4 ensures that g vanishes at infinity which enables 
us to apply the parabolic maximum principle to conclude that g is uniformly 
bounded by its initial data. This proves estimate (15)and completes the proof of 
Theorem 5.1. 

6. A counterexample 

In this section we want to show that the result of Theorem 5.1 is optimal. 
The main observation underlying the following arguments is that in case the 
mean curvature decays at infinity the normalized equation (14) primarily de- 
scribes a "blowdown" of the initial surface. Hence for initial surfaces which 
slowly oscillate at infinity and violate condition (3) ,  one would not expect 
asymptotic convergence as described in Section 5. We have the following explicit 
examples. 

6.1 PROPOSITION.If M ,  is the graph of the function 

lil sinlog 121, 121 2 1
a()(?)= u,(1i1) = 

smooth, 121 I 1, 

u~lzerei denotes coordinates in Rn, then the normalized surfaces do not 
converge to a solution of the limiting equation (4).  
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The proposition is a special case of the following lemma from which a large 
number of further examples can be obtained. 

6.2 LEMMA.Suppose M ,  satisfies the assumptions of  Proposition 4.5 for 
m = 0 , l  and suppose there exists a sequence of  points p, E M n  such that 
Ix(p,,O)l -) cc (x(p,,O), v ) ~  y l ~ ( p k , 0 ) 1 2  someand = for y > 0. Then there 
exists a sequence of times s, f n  which ( H  + (2,5)) does not conoerge to zero. 

Proof: Let us assume for simplicity that y = 1/2.  Rescaling estimate (13) 
we immediately infer that for all s > 0 ,  

if 121 2 C = C ( n ,p). We now derive by direct calculation from (14) 

as well as 

2 
(21 )  i ( p ,  s )  e p 2 s l l i p , ~ ) 2- a c7.  

Now let p, be the sequence of points which for all k 2 1 satisfy the relation 

Let us choose a sequence of times s, such that 

with some fixed 0 < E < + to be determined. It follows from (20) and (21) that 
for s I s,, 

and therefore 

Furthermore we see from (21) that 

c7(EP1- 1 )  5 s,) / 2 
5 c7(Ep1-k 1 ) .  



MEAN CURVATURE EVOLUTION 

In view of the a priori estimate 

for 121 2 c (n ,  P ) ,  we may choose e > 0 so small that the quantity 
(fi+ ( j i ,  5 ) ) 2 ( p , ,s k )  is uniformly bounded from below. This completes the 
proof of Lemma 6.2. 

Appendix 

We show that in the case of entire graphs the only contracting selfsimilar 
solutions of the mean curvature flow are hyperplanes. 

PROPOSITION.If M is an entire graph of at most polynomial growth 
satisfying the equation 

(22) H = ( x ,  v), 
then M is a plane. 

Proof. From (22) we easily compute V ,H = ( x ,  e,)hi, and hence 

We multiply this equation by p = exp(- 1x 1 2 / 2 )which after integration by parts 
leads to 

thus implying the result. 
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