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We show how duality invariance of the supergravity action restricts the Kahler potential and the superpotential and connects
them to the theory of modular forms This has relevance 1n string-induced supergravity for those scalar fields which are moduli of
the underlying string compactification We also discuss the restrictions imposed on globally supersymmetric theories

It1s well known [ 1,2] that the spectrum of a closed
string, when compactified on a circle of radius R, 1s
mnvariant under the discrete duality transformation
R-1/2R In fact, this duality transformation 1s an
exact symmetry to all orders 1n string perturbation
theory, and the moduli space of such compactifica-
tions can be taken to be Re [I/\/i oo) 1nstead of
ReR* More generally, the moduli space of the het-
erotic string compactified on a D-dimensional torus
has locally the structure of the coset space SO(16+ D,
D)/[SO(16+D)xSO(D)] [3,4] However, taking
into account the invanance of the spectrum under
generalized duality transformations SO(16+D, D, Z)
[5-7] the moduli space 1s not a coset manifold but
actually a fundamental region where points con-
nected by the discrete SO(16+D, D, 7Z) transforma-
tions are 1dentified This space 1s 1n general not a
manifold but has orbifold singularities at points fixed
by finite subgroups of SO(16+D, D, 7Z) It seems to
be a general feature that these special points corre-
spond to compactifications with enhanced gauge
symmetry, in addition, the vacuum energy 1s extrem-
1zed at 1solated fixed points [5] For D=6 the result-
ing effective low energy field theory possesses N=4
spacetime supersymmetry The couplings of the 22
massless N=4 vector multiplets (which contain the
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132 moduli of the torus compactification) to super-
gravity are uniquely described by a non-hinear o-
model with underlying coset SO(22,6)/[SO(22) X
SO(6)] [8] Recently, 1t was also shown [9,10] that
duality symmetry 1s preserved for orbifold compac-
tifications of the heterotic string Aside from this spe-
cific context of superstring theories on which we
mainly focus 1n this note, one may investigate the role
of duality also 1n a broader class of field theories and
their supersymmetric extensions, as discussed 1n ref
[51]

To study the implications of the modular invari-
ance for the supergravity action of massless matter
fields, let us consider the simplified model of one
chiral multiplet ¢ coupled to N=1 supergravity We
denote the complex scalar component of ¢ by
t=2(R?*+1b) [11,12], where b and R are real In a
string theory context the parameter ¢ could be, for ex-
ample, the complex modulus describing two-dimen-
sional torus compactifications [5,7] with back-
ground metric G,,=R?%J, (1, j=1, 2) and internal
axion B;,=5 [11,12] More generally, one may think
of t as being the modulus whose real part describes
the overall scale of a compact six-manifold the string
1s compactified on, and whose 1maginary part 1s the
internal axion The duality transformations are now
simply SL(2, Z) transformations of ¢

at—1b

l*m, ad—bc=1 (1)
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In terms of the field T=1¢ these are the usual SL(2,
Z) transformations The corresponding non-hinear o-
model 1s based on the coset space SU(1,1)/
U(1)=SL(2, R)/U(1) which 1s 1somorphic to the
complex upper half-plane Im 70 Dividing the up-
per half-plane by the action of the modular group re-
stricts the modular space of the t-field to the funda-
mental domain {|z]>1, O<Ret<j, Im7>0}
uf|t]>1, —i<Re1<0,Im7>0}

The standard supergravity action [13] of the ¢-field
1s completely specified by the Kahler potential K(z,
)= —nlog(¢+ 1), where the 1nteger n1s related to the
curvature of SU(1,1)/U(1) (n=3 for compactifi-
cation on a six-dimensional manifold) This Kahler
potential leads to the correct Kahler metric K,;;=
8,9:K(¢, ) of the SU(1,1)/U(1) non-linear o-model
with bosonic action

S=K,:0,td4 = (T+nT)2 3,104 2)
Here we have assumed that the superpotential of the
t-field vanishes In string theory this 1s true at least
perturbatively, reflecting the fact that ¢ 1s 2 modulus
of the underlying compact six-manifold (For (2, 2)
compactifications the t-field superpotential vanishes
even after taking into account non-perturbative o-
model corrections In (0, 2) compactifications the
superpotential may receive non-vanishing contribu-
tions due to world-sheet instantons [12,14] ) The
action eq (2) 1s trivially invariant under SL(2, Z)
duality transformations, since 1t 1s 1nvariant under
SL(2, R) due to 1ts geometrical interpretation as coset
non-linear o-model If we now add a superpotential
W(t), the question of SL(2, Z) mvariance becomes
non-trivial In a string theory context we might think
that the origin of the superpotential 1s due to non-
perturbative string effects which lift the vacuum de-
generacy of the background fields It 1s easy to show
that a non-vanishing superpotential explicitly breaks
SL(2, R) invaniance However, we still want to de-
mand invariance under the duality group SL(2, Z)
since we restrict the parameter domain of integration
of ¢ to the fundamental region This requirement gives
severe restrictions on the form of the superpotential
W (t) and establishes a connection to the theory of
modular forms [15] In the following we give some
examples

For our first example, let us consider how to imple-
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ment modular invariance 1n field theories with global
supersymmetry Here the Kahler potential K(g, @)
and the superpotential W (¢) are unconnected and
the non-linear g-model action has the form [6]

S=j d*xd*0K(, 6)+j d*xd?0 W(g)+he (3)

The chiral superfield ¢ transforms under duality
transformations like 1ts scalar component 1 Then the
transformation of its fermionic component y 1s
x— (1ct+d) %y In order for the globally supersym-
metric o-model to be SL(2, Z) invanant we have to
demand that the Kahler potential be invariant up to
a Kahler transformation The superpotential, being
holomorphic, must be modular invariant, 1 e

K(t, =K1, D) +1(0)+ (D),
W(t)—W(1) (4)

For the superpotential we can take any polynomaial of
the modular function j(g) whach 1s given by
653 3

371152 f’;(“;;'l)z = Ll] +744+ 196 884q+ (5)
(A defimtion of the Eisenstein function G4(g) will
be given below #(g) 1s the Dedekind eta-function )
q 1s related to ¢t via g=e*™*=¢~?™ j(q) has a triple
zero at 7=1and a pole at T=1c0

Let us now turn to the more interesting case of lo-
cal supersymmetry [13] The Kahler potential and
the superpotential are now connected and the matter
part of the supergravity lagrangian 1s now described
by a single function

G(t, )=K(1, 1) +log W(t)+log W (1) (6)

J(g)=

The component form of the action 1s
e~ \¥=e%[3~-G,(G,)'GA
+{e9?[ =G, —(G)’+G(Gi) ' Galiix
+e“ 2, m 04 Y,r —e°?G P yxL+hc}
+ (terms not involving e%) (7)

Here we have only written down the terms which arise
after adding the superpotential (y,, 1s the gravitino)

The first two terms correspond to the scalar potential
and the Yukawa couplings Because of the appear-
ance of ¢ 1n the above lagrangian we have to de-
mand that G 1s modular invariant It 1s then easy to
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check that the actioneq (7) 1sinvanant under SL(2,
Z) transformations

Modular invariance of G can now be implemented
1n two different ways The first possibility 1s that K(¢,
{) 1s 1nvariant up to a Kahler transformation which
now has to be absorbed by the transformation of the
superpotential W (¢) To be specific, let us choose
again K(t, 1)=—nlog(t+{) Then all terms 1n the
lagrangian which are not proportional to €€, that 1s
all those we have not displayed ineq (7), are auto-
matically SL(2, R) invariant due to the geometric
construction of the non-linear o-model On the other
hand, the terms in eq (7) can never be SL(2, R) 1n-
variant However, SL(2, Z) invariance can be main-
tained 1f the superpotential transforms under modu-
lar transformations like a modular function of weight
—n, up to a t-independent phase, 1 ¢ 1f

W(t)—e®@bed) (1er+d)~"W(t) (8)

Let us study this situation more carefully G, 1s given
by

n +810gW

Gt =—75+

(9)

Since G 1s modular invanant, G,, which 1s non-holo-
morphic, must transform with weight 2, 1e
Gr— (1ct+d)>G, 9,log W on the other hand 1s holo-
morphic but transforms non-covariantly under mod-
ular transformations

9, log W (1)
— (1ct+d)?0,log W(1) —1nc(ict+d) (10)

Functions with exactly these transformation proper-
ties are known from the theory of modular forms
Consider the Eisenstein functions G5, (1) [15,17]
Gu(t)= Y’ (mt+n)= (11)
mneZ

For k> 1 these are holomorphic functions of modu-
lar weight 2k For k=1 however, the sum does not
converge and a necessary regularization procedure
leads to two alternative definitions of G,

Gy(v)= Y’ hm (mt+n)~*|mt+n| >,

mn s—0

Go(1)=20(2)+2 5 Y (mrtn)-2 (12)

m=1n=—cwo
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The regularization destroys either holomorphicity or
modular covariance G, 1s of weight two but not hol-
omorphic whereas G, 1s holomorphic and transforms
under SL(2, Z) as

G, (1)Y= (1ct+d)*G, () —2mc(ict+d) (13)
G and G, are related by

. T

Gy (1) =G(t)— =— 14
2(1) =G,(1) Re: (14)

This 1s exactly what we need for the construction of

the supergravity action Namely, suppose we make

the identifications

G2(0=2 6,0,

Gz(l)=2—:a,log w(1) (15)

Then we obtain the following expression for the su-
perpotential W(t)

W (1) =exp (% [ ar Gz(t')) = ()]~

=e"/S [142ne~>"+2n(2+n) e '+ |,
(16)

which 1s of the type one expects from non-perturba-
tive string effects Supersymmetry 1s unbroken for
9,(e“/2)y=0 This occurs at the two orbifold points
t=1 and t=e~ ™% of the fundamental region for ¢
which are the zeros of G, At these points the super-
potential 1s finite [since the only zero of n(¢) 1s at
t=0o0] and the cosmological constant 1s extremized
In fact, the scalar potential will always be extremized
at these two points [5] The gravitino mass 1s given
by

6 —

i o1 (17)
Note that this 1s the one-loop partition function of
the bosonic string 1n 27z transverse dimensions

Let us now turn to the second possibility to obtain
a modular nvariant G(¢, ¢) This 1s given by the
choice of separately modular invariant expressions for
K(t, 1) and W(t) One possibility along these lines 1s
toreplace in K= —log(t + )"~ —log V (V'~R?"1s the
volume of the 2n-dimensional internal space) the
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volume ¥ by a modular invaniant expression which
behaves 1n the imit R—oo as R*" and 1n the hmit
R—-0 as R~2" [6] For the simple case considered
here, the ansatz of ref [6] gives

K([, f): —2}’1

/4

Xlog[l’ézexp<— Re7 |p+1qt|*>j| (18)

Other 1nteresting examples of this kind of scenario
are the no-scale supergravity theories [ 18] with van-
1shing scalar potential e¢( -3+ G,G;7' Gy)=0 This
leads to broken supersymmetry with vanishing cos-
mological constant 1f the superpotential 1s a constant
and the Kahler potential 1s chosen as K(z,
1y=—=3log[F((t)) +F(y(1))],where Fis such that
Re F> 0 for ¢ 1n the fundamental domain

In closing, we would like to mention further exten-
stons of this analysis It 1s clearly trivial to extend 1t
to theories with N chiral superfields 7, with Kahler
potential G=> ", G,(t, {,) Then duality invariance
extends to an mvanance under (SL(2, Z))" This,
e g, applies to toroidal compactification of two di-
mensions with N=2 [5,7] It 1s, however, more 1n-
teresting to consider cases where the moduli space
does not have this simple product structure As dis-
cussed in refs [6,5], for background fields

(& 0 { 0 b
=5 &) o=(_s o) 1

where g and b are symmetric n X n matrices, the rele-
vant duality transformations are generated by ele-
ments of the symplectic modular group Sp(2#n, Z)
acting on the complex matrix b+1g Therefore, the
constraint of modular invariance of the supergravity
action 1s related to the theory of modular functions
on Riemann surfaces of genus n

We can also imagine several other, less straightfor-
ward extensions One interesting problem 1s the 1n-
clusion of gauge fields and the dilaton multiplet and
the relation of gauge and modular invariance 1n the
corresponding supergravity theories Another 1s to
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understand the role played by duality in theories
based on Calabi—-Yau or K; compactifications
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