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We study the relation between the one-loop partition function of supersymmetric four-dimensional heterotic string theories and 
the level-one characters of exceptional groups. This is used to derive identities among 0-functions which show that the one-loop 
partition functions vanish identically. It is also shown that the exceptional groups provide the KaY-Moody characters of the 
underlying conformal field theories. 

The appearance of ( N =  1, 2, 4) space-time supersymmetries in four-dimensional heterotic string theories 
[ 1-7 ] requires [ 8-12 ] the existence of internal N =  2, 4 superconformal field theories [ 13 ]. These contain, 
besides the super-Virasoro algebra, also the infinite dimensional U ( 1 ) and SU (2) KaY-Moody algebras respec- 
tively, which are essential for the construction of the highest weight states within the supersymmetric string 
theories. 

As shown in refs. [ 5,14,12 ], the relevant KaY-Moody currents of the superconformal algebras are generated 
by the exceptional groups E6, ET, E8 which, in addition, provide a link between the external Lorentz transfor- 
mation properties of any string state and the unitary representations of the internal superconformal algebra in a 
well defined way, such that the resulting spectrum is space-time supersymmetric. Thus, the weights of these 
exceptional groups appear in any four-dimensional supersymmetric string construction as right-moving bosonic 
momenta building a euclidian covariant lattice [ 15-17,5 ]. It follows also that E6, E7 and Es play the role of  the 
left-moving gauge group when considering models with identical left-moving world-sheet supersymmetries. 

In this letter we show that the one-loop partition function of heterotic strings contains the (modified) level- 
one KaY-Moody characters of the exceptional groups. The connection between the partition functions and the 
characters of the exceptional groups were also independently formulated in refs. [ 18,19 ]. In ref. [ 19 ] the van- 
ishing of the one-loop partition functions was shown using group theoretical properties of  the exceptional groups 
namely the inner automorphism of the exceptional algebras, called "ghost triality". The analysis in ref. [ 19 ] 
extends, under some assumption, to the partition function at arbitrary genus g. We prove directly, using 0- 
function identities or results from the theory of modular forms, that the (modified) level-one characters of  the 
exceptional groups identically vanish. In addition, we further analyze the relation between the characters of the 
exceptional groups and the characters of the N =  2 superconformal algebra showing in particular how the U ( 1 ) 
part, contained in the decomposition of the E 6 characters, is related to the characters of the N =  2 superconformal 
algebra. This will elucidate that the U ( 1 ) Ka6-Moody subalgebra, which is contained in the internal N =  2, c=  9 
superconformal field theory, builds by itself an N= 2, c=  1 superconformal theory in the discrete series, after 
projecting onto an (N=  1 ) space-time supersymmetric spectrum. The corresponding c=  1 characters are given 
by level-six classical theta functions. 

Let us recall te main aspects of the relation of the exceptional groups E6, E7 and E8 and N =  1, 2, 4 space-time 
supersymmetry [ 5,20,14,12]. First consider only the right-moving degrees of freedom of a four-dimensional 
heterotic string theory which consist of external free world-sheet fermions q/~'(z) (It is a four-dimensional space- 
time index), the superconformal ghost system and an internal superconformal field theory with central charge 
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c= 9. Let us decompose the exceptional groups into D5 times its centralizer in E6, E7, Es: 

E 6 c D s ® U ( 1 ) ,  E T C D s ® A I ® U ( 1 ) ,  E s c D s ® D 3 .  (1) 

D5 describes the external D2-Lorentz and superconformal ghost properties. The second part is identical to the 
KaY-Moody currents of the internal c= 9 superconformal field theory. Specifically, for N =  1 space-time super- 
symmetry, the U ( 1 ) factor belongs to the KaY-Moody current of the c= 9, N= 2 superconforma! algebra gener- 
ated by 

J(z)=-ix/3OH(z), T~(z)=exp[+i]x~H(z)]T~(z), T(z)=-½[OH(z)]2+T(z), (2) 

where the tilded fields are conformal fields of a c= 8 conformal field theory. Similarly, E 7 leads to a c= 3, N= 2 
superconformal algebra with a U ( 1 ) Ka6-Moody current at level two plus an N= 4, ¢= 6 superconformal alge- 
bra with level one SU(2) KaY-Moody current (see ref. [12] for details). Finally, E8 leads to internal SO(6) 
currents. The Cartan subalgebra of SO (6) corresponds to three abelian U ( 1 ) currents of three N =  2, c = 3 su- 
perconformal algebras. 

The importance of the exceptional groups consists not only in providing the relevant world-sheet KaY-Moody 
currents, but the quantized charges of the superconformal fields under these symmetries, as required for a su- 
persymmetric spectrum, are determined by the representations of the exceptional groups. In addition, they link 
the internal fields to the representations of the external Lorentz group in a well defined way. This entails that 
the representations and partition functions of the superconformal field theories inherit important properties 
from the level-one characters of the exceptional groups; this is what we will demonstrate in the following. 

To obtain the physical light-cone states, which have fixed superconformal ghost charge and also fixed longi- 
tudinal components in the Lorentz group D2, the following procedure [2 l, 17,5 ] is in order. First decompose D5 
to D ~ ® D4 where D ~ stands for the physical transverse degrees of freedom and D4 for the unphysical longitudinal 
and ghost degrees of freedom. Then states which are characterized by D5 weight vectors ~= (~.('), 2(4) ) are 
physical if ~ ~4) _- ( ½, ½, ½, _ ½ ) for space-time fermions and ~ (4) _- (0, 0, 0, - 1 ) for space-time bosons. The 
truncation to the physical degrees of freedom Ds-~ D~ becomes, in terms of D5 characters, 

Ds--+D~" (0'(01 r) ' ]  s ), 0~(01r) (3) 
\ q(t) 2-- ' -  (-1 rl(Z) ' 

where we have taken the statistics of space-time fermions into account. It is important to note that this replace- 
ment does not change the modular transformation properties. Performing this truncation on the level-one char- 
acters of the exceptional groups [22 ] we obtain 

1 ¢ = 2  P(E6~O-- q2(z ) - - - [ 0 3 ( 0 1 3 z ) 0 3 ( 0 1 r ) - 0 4 ( 0 1 3 r ) 0 4 ( 0 1 r ) - 0 2 ( 0 1 3 r ) 0 2 ( 0 1 z ) ] ,  

_ 1 z)+O[2g3](Oi3r)03(Oi . 2/3 P]'E~, r /2 ( r ){ - -0[1~61(013r )0(01  z ) - e x p ( - 2 m / 3 ) 0 1 1 / 2 ] ( 0 1 3 Q 0 4 ( 0 l Q  } , 

_ 1 1 / 3  " 0 '  
P'~E6~ r f ( r ) { - O [ 5 0 6 ] ( O I 3 r ) O z ( O l r ) + O E l o 3 1 ( O l 3 r ) O 3 ( O l z ) + e x p ( - ~ z i / 3 ) O E 1 / 2 1 t  13z)O4(Olr)}, 

1 
P'~~-q~o- t/3(z) - - -  { - 0 2 ( 0 1 2 0  [02(01 r) 12+03(0120 ( [03(010 ]2_ [04(01 z) 12)}, 

1 
P'(~i~),_ r/3(z) ---{-03(OI2r)[O2(OIr)]2+Oz(OI2z)([O3(OIr)]2+ [ 0 4 ( 0 1 z ) ] 2 ) } ,  (4) 
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1 
P]E4~° -- ~/4 (r)  { -- [02(0l Z) ]4+ [03(0 I r) ]4_ [04(0l r) 14}, (4 cont 'd) 

where the superscripts correspond to the central charges of the associated Virasoro algebras and the subscript 
distinguishes between different conjugacy classes. Now, because of space-time supersymmetry, these characters 
are supposed to vanish identically. For E7 and E8 this is easily seen to vanish using well-known 0-function iden- 
tities. To show that the EL '= z) characters vanish is more involved. Let us first notice that the characters of a 
given conjugacy class of any group are given by Zq z2 where the sum extends over all weights in the conjugacy 
class• Since the weight vectors of the conjugacy classes of two complex conjugate representations are related by 
2 ~ - 2  their characters are equal. In particular P~Ef)j =P~Ef~. We will now show that Fo(z) - q 2  (T)P]E2)O(Z) 

c = 2  and F~ (r)  - q 2 (z) [P(E~) ~ (Z) + P~Ef)~ (r)  ] vanish. We will follow ref. [ 23 ]. Consider the subgroup Fo (3) of the 
modular group, defined by F0 (3) = { (~ ~) I c -  0 rood 3}. It is a subgroup of index 3, generated by T =  (~ ij ) and 
W3= (3 ~ o) (note that W= TSTwhere S= (o -~) ). Also, 3 W3(r)  = W(3z) = 3z/(3~+ 1 ). Then, with the help of 
the modular transformation rules of the 0-functions we easily show that 

Foa(Tz)=v(T)Fo.l(r) ,  Fo. , (W3z)=v(W3)(3r+l)Fo. , (z ) ,  

where v(T) =exp(2~rix) = - 1 (0~<x< 1 ), v( W 3) = - 1; i.e. Fo.~ are modular forms of Fo(3) of  weight 1 with 
multiplier system v(T) and v( W 3 ) .  If  the space of forms of weight k of  a subgroup F of index It of the modular 
group with multiplier system v is denoted by {1, k, v}, then one can show (cf. ref. [ 23 ] ) that dim{F, k, v} ~< max{0, 
1 - ~ +  kit~ 12 } where for our purposes it suffices to know that ~>~ x = ½. We then easily find that dim{Fo (3), 1, 
v} =0,  i.e. Fo(r) =F~ (r)  =0.  

In the following we will concentrate on the N =  1 supersymmetric heterotic string theories which are the most 
interesting from a phenomenological point of view. 

The most general partition function of an N =  1, d=  4 supersymmetric heterotic string theory has the following 
structure: 

1 1 
Z ( r , f )  I m z  [rl(r) l 4P~Dl)i(z)P~~'92)j(r)e~=22('f)aijl' (5) 

with P~BI)~ ( i=0 ,  V, S, C) being the characters of the transverse Lorentz group SO(2),  p~N92)j the characters 
of the internal N =  2, c=  9 superconformal field theory, p~=2z the characters of the left-moving part of the het- 
erotic string and a0~ some integers satisfying the constraints of modular invariance and spin-statistics. Many 
models are known for which the a,jk can be given explicitly. As was shown in refs. [ 14,12 ], locality of the oper- 
ator product with the gravitino vertex restricts the physical states to fall into one of the conjugacy classes of  the 
exceptional groups. Furthermore, starting from one D~ × U ( 1 ) conjugacy class within a specific E6 conjugacy 
class we can reach all the other conjugacy classes by the action of the supercharge (gravitino vertex operator) 
which is equivalent to the action of the spectral flow. Using this information, the partition function can now be 
rewritten in terms of the E6 characters: 

1 1 - -  4 p c = 2  pc=8 c=22 - , 
Z(z, r ) ~  I m z  Ir/(z) l ~Eo),(r) tx=z)j(z)P/ ('r)aij! (6) 

(i = 0, 1, i ), where P'~8__2 ~j are the characters of the N =  2 superconformal field theory without the free boson H. 
The  E6 characters build a representation of the modular group with the following transformation properties. 

For the T transformation (z--+z+ 1 ), P{~f), ~ ,.=2 "- T i j P ( E 6 )  i and the S transformation ( r ~  - l / r ) ,  ,~c=2 . . . .  2 l -  (E6)i-"~ ~i j l"  (E6)j 

we obtain 

(i 0 00) l(1 1 1 / 
• , - -  1 exp(2rfi/3) e x p ( -  2rfi/3) (7) T=exp(m/6)  exp(zti/3) S=  

0 exp(zfi/3) x/3 1 e x p ( - 2 z d / 3 )  exp(2ni /3)  / 
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Note that these transformations are (except for the dependence on the central charge) identical to the modular 
transformations of the level-one representations of SU (3). Therefore, tensoring P~~2)i ,= 2 and P(sut3)), in a diago- 
nal way one gets a modular invariant expression, namely nothing else than P]~4 m. 

Let us define the classical level-m 0-functions 

0 ...... (z, z, u) = e x p ( - 2 ~ t i m u )  ~ e x p ( 2 7 t i z m j 2 + 2 ~ t i j z )  . (8) 
j~Z+ll/2m 

They are the characters of  the A I ~ ) KaY-Moody algebra at level m. With this definition we can rewrite the E6 
characters in the following way: 

,=2 q _ ~ )  [ 2 . . 0 , ) ,  P(E~)o = 00,6(2.)0(I)(2.) ']-06,6(T)0(I)(2.)--03,6(2.)0(I)(2.)--09,6( ) ~ 12 . ) ] ,  

2 
c=2 [04,6(2.)0(vl)(~() -]- 010,6 (2.) 0(I ) (3. ") -- 07,6 (2.) 0(Sl ) (2 ") --01 6 (2.)0~: 1 )(2") ] P(E~)I-  //2(2.) , , 

2 c=2 P(E,), - q2(2.) [08, 6(2.)0(V1 ) (2.) '}02.6(2.)0(01 )(2.) -011,6(2.)0s('1 )(2.) - 0 5 ,  6(2.)0&1) (2.) ] , (9 )  

where all theta functions are evaluated at z =  u=  0. We see that each term is the product of a level-six theta 
function referring to the U( 1 ) part and a theta function corresponding to one of the four D~ conjugacy classes. 

Let us now analyze the representations and the superconformal structure of E 6 m o r e  carefully. Eg =2 decom- 
poses into D~ ......... ® U (  1 ) conjugacy classes as follows: 

0-~ (o, , / 3 )  + (v, o) + (s, ½vc3) + (c ,  - ½ , f i ) .  (lO) 

The second entry, c~, is related to the U(  1 ) charge Q of any state by Q=x/3c~. Specifically, the (0, x/3) conju- 
gacy class contains the massive holomorphic three-form field which has to be present in any N =  1 supersym- 
metric string theory just like the gravitino field which belongs to (S, ½xfl3), (C, - ½x/3) and *he graviton, 
dilaton and antisymmetric tensor field which are contained in (V, 0) (see ref. [ 14] for details). Secondly we 
have 

1-* (0, - ~ x ~ ) +  (V, + ~ x ~ ) +  (S, - ~ x / 3 ) +  (C, ~ x ~ ) ,  ( l l )  

and its complex conjugate. These conjugacy classes contain the massless chiral matter fermions with Q=  - 1 
and massless matter scalars with Q=  1. The remaining two conjugacy classes contain only massive vectors and 
spinors. 

We note that for states in the R sector (space-t ime fermions) Q is a half integer whereas it is integer for NS 
states (space-t ime bosons). Inspection of the last two equations shows that 2Q is determined modulo 12, i.e. 
U(1)  possesses 12 conjugacy classes which build a representation of the modular group. If  we define 
c~= ~x/3(q+ 12k) (k~7/, q = 0  .... , 11 ) the characters are 

Pro('= ~ ~ ))v = T r  exp [ 2ni2. ( Lo - ,~ ) + 2 n i z J o  ] , ( 12 ) 

c~ 2 xf~c ~ ). With the definition of the 0-functions in eq. (8) where the eigenvalues of Lo and Jo are (h, Q) = (~ , 
we easily get 

1 
,'=l _ _ _ _ O q , 6 ( r ,  6z, O) " (13) P ( u ( l ) ) q -  rl(2.) 

This means that the U(  1 ) characters are level-six theta functions. (r/(r) is the contribution from the oscilla- 
tors. ) This result was already anticipated by eq. (9) and our discussion at the beginning of this section. 

These 0-functions are also the characters of  the N =  2, c=  1 superconformal field theory which is in the unitary 
discrete series with c < 3. To see this, let us demonstrate that the U ( 1 ) part of E6 generates the complete c=  l, 
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N =  2 superconformal  field theory [ 24 ] The ene rgy -momen tum tensor is given by T(z )  = - l [ 0H(z )  ] 2, the two 
supercurrents are G + (z)  = ( 1 /2x/3)  exp[ + i x /3H(z )  ] and the U(  1 ) current is given by J '  (z) = - i x f ~ 0 H ( z ) .  
The highest weight states (pr imary  conformal fields) have the form ¢ ( z ) =  exp[ ic~H(z) ]  with conformal  di- 
mension h = oe 2/2 and U (1)  charge c~/x/3. Unitar i ty constrains oe to be f rom a finite set of  discrete numbers.  
The descendant fields are obtained by acting with J' (z), T(z)  and G -+ (z) on ¢(z )  which means in particular 
that fields whose values of  a differ by x/3 belong to the same conjugacy class. 

Specifically, for the highest weight states in the NS sector the allowed values for (h, oe ) are (0, 0 ), ( ~, + t x/~ ) 
1 and in the R sector they are ( ~ ,  _+ gx/3) ,  ( 3, Ix /3 ) .  For a general state c~ is 

a=~x/3(q '+6k)  ( q ' = 0 , . . . , 5 ,  k~27). (14)  

The corresponding conformal  characters P~,l=2) q, have the following form: 

1 
1 exp [ 2nir½j 2 + 2niz( 1 /x /3 ) j ]  = - ~  O</2.3/2 (r, z, 0) .  ( 1 5 ) P~'~,l=2)q.- rl(.E) j~..5(q~+6k)/6 

Clearly, these are not identical to the characters coming from E6 decomposi t ion (see eq. (13)  ). The reason for 
this is that the characters eq. (15) do not t ransform into each other under modular  t ransformation,  i.e. they do 
not form a representation of  the modular  group. 

To cure this defect one has to introduce a fermion number  projection ( - 1 )F such that  the supercurrent G + 
has F = -  1. This projection splits each conformal  block into two sectors. Specifically, define the following 
characters: 

/ 3 ,=~  1 ~ 
( N = 2 ) q '  - -  ~1(2") Oq'/2"3/2(r' Z, 0 )  , ~n,m('/', Z, 0 ) =  J~  exp[2nimr(j+n/2m)2+27tizj] exp(Ttij) . (16) 

Then one obtains the parti t ion functions which represent the trace over  states with either even or odd fermion 
number  as 

p ,= l  I / o , = ,  .a_Pc=, x ~ T )  0q. 6 (./-, 2z, 0) ( N = 2 ) e  ~ 2 I,* ( N = 2 ) q '  ~ * ( N = 2 ) q '  / ~ 

p,=~ _ ~ 1 
( N = 2 ) o -  l ( e { ~ , / 2 ) q .  _ec(.zl2)q, ) = - ~  0 q , + 6 , 6 ( r ,  2 z ,  0 )  . (17) 

Now, these characters build indeed a representation of  the modular  group and moreover  are identical to those 
which arise f rom the U ( 1 ) subgroup of  E 6 (a f te r  rescaling of  the U ( 1 ) charge Q).  

In conclusion, any c =  9, N =  2 superconformal algebra contains, after performing the necessary projections 
which lead to a space- t ime supersymmetr ic  spectrum, a c =  1, N =  2 superconformal subalgebra with the U ( 1 ) 
K a e - M o o d y  current generated by the exceptional group E6. The physical reason is that due to space- t ime su- 
persymmetry  the supercurrents G + (z) of  the c =  1 superconformal subalgebra are always present as conformal  
fields since they correspond to the holomorphic  three-form fields. G -+ (z)  are of  course not identical to the 
supercurrents Tff (z)  of  the internal N =  2, c =  9 superconformal field theory. It is obvious f rom our discussion 
that the organization of  states under the c =  1, N =  2 superconformal algebra is implicit in the decomposi t ion of  
the E 6 conjugacy classes to D~ × U ( 1 ). However,  the E 6 decomposi t ion contains more information since it cor- 
relates the space- t ime and internal charges of  any state. 
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