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We show how duahty mvanance of the supergravlty action restricts the Kahler potentml and the superpotentml and connects 
them to the theory of modular forms This has relevance m string-reduced supergrawty for those scalar fields which are moduh of 
the underlying siring compacttficat~on We also d~scuss the restrictions ~mposed on globally supersymmetnc theories 

It is well known [ 1,2 ] that  the spect rum of  a closed 
string, when compact l f ied  on a circle of  radius  R, IS 
lnvaraant under  the discrete dual i ty  t ransformat ion  
R ~  1 / 2 R  In fact, this dual i ty  t ransformat ion  is an 
exact symmet ry  to all orders  in string per turba t ion  
theory,  and the modul l  space of  such compact l f ica-  
t ions can be taken to be R ~ [ 1 / x f l 2 ,  or)  ins tead o f  
R ~  + More generally, the m o d u h  space of  the het- 
eroUc string compact l f ied  on a D-dimens iona l  torus 
has locally the structure of  the coset space SO ( 16 + D, 
D ) / [ S O ( 1 6 + D )  × S O ( D )  ] [3,4] However ,  taking 
into account  the invar iance  of  the spect rum under  
generahzed duali ty t ransformations SO ( 16 + D, D, 7 )  
[ 5 - 7 ]  the m o d u h  space is not  a coset mani fo ld  but  
actually a fundamenta l  region where points  con- 
nected by the discrete SO ( 16 + D, D, 7/) t ransforma-  
t ions are ident i f ied This space is in general not  a 
mani fo ld  but  has orbtfold singulari t ies at points  fixed 
by finite subgroups of  SO( 16+D,  D, 7/) It seems to 
be a general feature that  these special points  corre- 
spond to compact l f ica t lons  with enhanced gauge 
symmetry,  in addi t ion ,  the vacuum energy is extrem- 
ized at isolated f ixed points  [ 5 ] For  D = 6 the result- 
ing effective low energy field theory possesses N =  4 
spacet lme supersymmet ry  The couplings o f  the 22 
massless N = 4  vector  mul t ip le ts  (which contain the 
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132 m o d u h  of  the torus compact t f ica t lon)  to super- 
gravity are uniquely described by a non-l inear  cr- 
model  with under lymg coset SO (22,6)  / [ SO (22)  × 
SO (6)  ] [ 8 ] Recently, it was also shown [ 9,10 ] that  
dual i ty  symmetry  is preserved for orbifold compac-  
tlfiCatlons o f  the heterotlc  string Aside from this spe- 
cific context  of  superstr lng theories on which we 
mainly focus in this note, one may investigate the role 
of  dual i ty  also in a b roader  class of  field theories and 
their  supersymmetr lc  extensions, as d~scussed in ref  
[5] 

To study the impl icat ions  of  the modu la r  lnvan-  
ance for the supergravlty act ion of  massless mat te r  
fields, let us consider  the s tmphf ied  model  of  one 
chlral mul t ip le t  ~ coupled to N- -  1 supergravl ty We 
denote the complex scalar component  of  ~ by 
t = 2 ( R 2 + l b )  [11,12],  where b and R are real In a 
string theory context the paramete r  t could be, for ex- 
ample,  the complex modulus  describing two-dimen-  
sional torus compact i f ica t ions  [5,7] with back- 
ground metr ic  G,~= R 26~s (l, J = 1, 2) and internal  
axion Bj 2 = b [ 11,12 ] More generally, one may think 
o f  t as being the modulus  whose real part  describes 
the overall  scale of  a compact  s~x-manifold the string 
is compactI f ied  on, and whose imaginary  part  is the 
internal  axlon The duahty  t ransformat ions  are now 
simply SL (2, Z) t ransformat ions  of  t 

a t -  ib 
t--* - -  a d - b c  = 1 ( 1 ) 

ict + d ' 
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In terms of  the field Z=lt these are the usual SL(2, 
7/) transformations The corresponding non-hnear  a- 
model is based on the coset space S U ( 1 , 1 ) /  
U ( 1 )  = S L ( 2 ,  I~) /U(  1 ) which is isomorphic to the 
complex upper half-plane Im z~> 0 Dividing the up- 
per half-plane by the action of  the modular  group re- 
stricts the modular  space of  the z-field to the funda- 
mental domain {[zl>~l, 0~<Rez~<½, I m z > 0 }  
w{lzl  > 1, - l < R e z < 0 ,  I m r > 0 }  

The standard supergravity action [ 13 ] of  the t-field 
is completely specified by the Kahler potential K(t,  
/-) = - nlog (t +/-), where the integer n is related to the 
curvature of  SU( 1,1 ) / U (  1 ) ( n = 3  for compactlfi-  
cation on a six-dimensional manifold)  This Kahler 
potential leads to the correct Kahler metric K . =  
O~OrK(t,/-) of  the SU( 1,1 ) / U (  1 ) non-hnear a-model 
with bosomc action 

/7 
S=K, cOutOui-= (t_t_ ~-)20~tOu/- (2) 

Here we have assumed that the superpotentlal o f  the 
t-field vanishes In string theory this is true at least 
perturbatlvely, reflecting the fact that t is a modulus 
of  the underlying compact  six-manifold (For  (2, 2) 
compactlficatlons the t-field superpotentml vanishes 
even after taking into account non-perturbatlve a- 
model corrections In (0, 2) compactlfiCatlons the 
superpotentml may receive non-vanishing contribu- 
tions due to world-sheet lnstantons [ 12,14] ) The 
action eq (2) is trivially lnvanant  under  SL(2, 7/) 
duahty transformations, since it ~s m va na n t  under 
SL (2, R) due to its geometrical interpretation as coset 
non-linear a-model If  we now add a superpotentlal 
W(t ) ,  the question of  SL(2, Z) lnvariance becomes 
non-trivial In a string theory context we might think 
that the origin of  the superpotentlal is due to non- 
perturbatlve string effects which lift the vacuum de- 
generacy of  the background fields It ~s easy to show 
that a non-vamshmg superpotentlal expllotly breaks 
SL(2, Y~) mvariance However, we stall want to de- 
mand mvariance under the duality group SL(2, 7/) 
since we restrict the parameter domain of  lntegratxon 
of  t to the fundamental region This requirement gives 
severe restnctmns on the form of  the superpotentml 
W(t)  and estabhshes a connection to the theory of  
modular  forms [ 15 ] In the following we give some 
examples 

For our first example, let us consider how to lmple- 

ment modular  mvarlance in field theories with global 
supersymmetry Here the Kahler potential K(~, qV) 
and the superpotentlal W(~) are unconnected and 
the non-hnear  a-model action has the form [ 6 ] 

S = f d 4 x d 4 O K ( q ) , O ) - b f d 4 x d 2 O W ( ¢ ) " b h c  (3) 

The chiral superfield ~ transforms under duality 
transformations like its scalar component  t Then the 
transformation of  ItS fermlonlc component  Z is 
X--' O c t + d ) - 2 Z  In order for the globally supersym- 
metric a-model to be SL(2, Z) invanant  we have to 
demand that the Kahler potential be lnvanant  up to 
a Kahler transformation The superpotennal,  being 
holomorphic,  must be modular  lnvanant,  i e 

K( t, i -)- ,K( t, /-) + f (  t) + f (  i-), 

W ( t ) - ~ W ( t )  (4) 

For the superpotential we can take any polynomial of  
the modular  func t lon j (q)  which is given by 

3653 G34(q) 1 
_ + 7 4 4 +  196 884q+ (5) J ( q ) =  7112 t l (q)  12 q 

(A def inmon of  the Elsenstem function G a ( q )  will 
be given below q(q)  ~s the Dedeklnd eta-functmn ) 
q is related to t via q=eZ~l~=e-2"t j ( q )  has a triple 
zero at Z=l and a pole at Z = l ~  

Let us now turn to the more interesting case of  lo- 
cal supersymmetry [13] The Kahler potential and 
the superpotentml are now connected and the matter 
part of  the supergravlty lagranglan is now described 
by a single function 

G( t, /-) = K (  t, /-) +log W(t)  + log  W( t ) (6) 

The component  form of  the action xs 

e-  l Lf =e°  [ 3 - G,( G ~r) - l Gi] 

+ {e a/2 [ - G. - (G,)2+ Gt(Gti-) -1Gi-.]~LZL 

"[-eG/2~,uRa'uUlffvR --e6/2Gt~R ~),~L + h  c } 

+ (terms not involving e c)  (7) 

Here we have only written down the terms which arise 
after adding the superpotentlal (~,u is the gravitmo ) 
The first two terms correspond to the scalar potential 
and the Yukawa couphngs Because of  the appear- 
ance of  e ° m the above lagrangian we have to de- 
mand that G is modular  mvanan t  It is then easy to 
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check that the action eq (7) is lnvarlant under  SL(2, 
Z) transformatxons 

Modular  lnvariance of  G can now be implemented 
in two different ways The first possibility Is that K(t,  
/-) is lnvarlant up to a Kahler transformation which 
now has to be absorbed by the transformation of  the 
superpotentlal W(t) To be specific, let us choose 
again K(t, / - ) = - n l o g ( t + t - )  Then all terms in the 
lagranglan which are not proport ional  to eC, that is 
all those we have not displayed m eq (7) ,  are auto- 
matlcally SL(2, ~)  lnvanant  due to the geometric 
construction of  the non-hnear  a-model On the other 
hand, the terms in eq (7) can never be SL(2, ~)  m- 
variant However, SL(2, Z) lnvarlance can be main- 
tamed if  the super-potential transforms under modu-  
lar transformations hke a modular  function of  weight 
- n, up to a t-independent phase, 1 e if 

W( t)~e'~(~b~d)(lct+ d) -~W(  t) (8) 

Let us study this situation more carefully G, ~s given 
by 

a t ( t , i - ) = -  n _ +  OlogW (9) 
t+  t 0t 

Since G is modular  lnvarlant, Gt, which is non-holo- 
morphlc, must t ransform with weight 2, l e 
Gr~ (lct+d)2Gt 0flog W o n  the other hand is holo- 
morphlc but transforms non-covarlantly under mod- 
ular transformations 

0, log W(t)  

-. (act+d)20, log W( t ) -mc( Ic t+  d) (10) 

Functions with exactly these transformation proper- 
ties are known from the theory o f  modular  forms 
Consider the Elsenstem functions G2k ( r )  [ 15,17 ] 

G2~(z)= Z '  (mr+n)  -2k (11) 
m n ¢ 2 ~  

For k>  1 these are holomorphlc functions o f  modu-  
lar weight 2k For k =  1 however, the sum does not 
converge and a necessary regularlzatlon procedure 
leads to two alternative definitions of  G2 

G 2 ( r ) =  ~ '  hm (mr+n)-21mr+nl  ~, 
m n s ~ O  

G 2 ( r ) = 2 ~ ( 2 ) + 2  ~ ~ (mr+n)  -2 (12) 

The regularIzatlon destroys either holomorphlcl ty or 
modular  covariance t~2 is of  weight two but not hol- 
omorphlc  whereas G2 Is holomorphlc and transforms 
under SL (2, 7/) as 

G2 ( t) -~ (ict+ d)2G2 ( t) - 2mC(lct+d) ( 13 ) 

G2 and G2 are related by 

0 2 ( t ) = G 2 ( t ) -  ~ (14) 
Re t 

This is exactly what we need for the construction of  
the supergravity action Namely, suppose we make 
the identifications 

~2(t)  = 27~ G,(t) 
n 

G2(t) = 2~z 0, log W(t) (15) 
n 

Then we obtain the following expression for the su- 
perpotential W(t)  

W ( t ) = e x p  ~ d r G 2 ( t ' )  = [~ / ( t ) ]  -2n 

=e,,~,/6 [ l+2ne-2~nt+2n(2+n)  e-4~ntq- 1, 

(16) 

which is o f  the type one expects from non-perturba- 
tive string effects Supersymmetry is unbroken for 
Ot(e c'/2) = 0  This occurs at the two orbifold points 
t =  1 and t=e -hi~6 of  the fundamental  region for t 
which are the zeros of  Gt At these points the super- 
potential is finite [since the only zero of  r/(t) is at 
t = o o ]  and the cosmological constant is extremlzed 
In fact, the scalar potential will always be extremlzed 
at these two points [ 5 ] The gravltino mass is given 
by 

1 
e~'(°= (t+t-)~ Ir/(t)1-4n (17) 

Note that this IS the one-loop partition function of  
the bosonic string in 2n transverse dimensions 

Let us now turn to the second possibility to obtain 
a modular  mvarlant  G(t, {) This is given by the 
choice of  separately modular lnvarlant expressions for 
K(t,/-) and W(t)  One possIblhty along these lines is 
to replace in K =  - log (t +/-) n~ _ log V ( V~ R 2n is the 
volume of  the 2n-dimensional internal space) the 
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v o l u m e  V by a m o d u l a r  l n v a n a n t  express ion  which  

behaves  in the  h m l t  R - - . ~  as R 2" and  in the  h m l t  

R ~ 0  as R -2" [6] Fo r  the s imple  case cons ide red  

here,  the ansatz  o f  re f  [ 6 ] gives 

K( t, i - ) = - 2 n  

unde r s t and  the role p layed by duah ty  in theor ies  

based  on C a l a b l - Y a u  or  K~ compac t l f i c a t l ons  

We thank  C Kounnas ,  H Oogur l ,  M Porra t l ,  N 

Selberg and  G Venez iano  for  d iscuss ions  

× l o g  ~ exp - ~ l p + i q t [  2 ( 1 8 )  
L p  qeZ \ 

Othe r  mte res t lng  examples  o f  this k ind  o f  scenar io  

are the no-scale  supergrav l ty  theor ies  [ 18 ] wi th  van-  

1shrug scalar  po ten t i a l  eG( - 3 + G , G .  ~ Gt)  - 0 This  

leads to b roken  s u p e r s y m m e t r y  wi th  van i sh ing  cos- 

molog lca l  cons tan t  i f  the  supe rpo ten t l a l  is a cons t an t  

and  the  Kah le r  po ten t ia l  is chosen  as K(t ,  

/-) = - 3 log [ F ( j  ( t ) )  + i f ( f ( / - )  ) ], where  F is such that  

Re  F >  0 for  t in the  f u n d a m e n t a l  d o m a i n  

In closmg,  we w o u l d  like to m e n t i o n  fu r ther  ex ten-  

s ions o f  this analysis  It  is clearly t r iv ia l  to ex tend  it 

to theor ies  wi th  N chira l  superf ie lds  t, wi th  K a h l e r  

po ten t ia l  G = Y~ ,~= ~ G, (t,, ~)  T h e n  dual i ty  l nva r l ance  

ex tends  to an  i nva r l ance  u n d e r  ( S L ( 2 ,  7/))4, This ,  

e g ,  appl ies  to to ro lda l  c o m p a c t l f i c a n o n  o f  two  dt- 

m e n s l o n s  wi th  N = 2  [5,7]  It  is, however ,  m o r e  in- 

te res t ing  to cons ide r  cases where  the  m o d u h  space 

does  no t  have  this  s imple  p roduc t  s t ruc ture  As dis- 

cussed in refs [6,5 ], for  backg round  f ields 

G = (  g ; ) ,  B = ( _ 0  b b0), ( 1 9 ,  

where  g and  b are  s y m m e m c  n × n matr ices ,  the  rele- 

v a n t  d u a h t y  t r a n s f o r m a t i o n s  are gene ra t ed  by ele- 

men t s  o f  the  symplectxc m o d u l a r  group Sp (2n ,  2v) 

act ing on the  c o m p l e x  m a t r i x  b +  lg There fo re ,  the  

cons t ra in t  o f  m o d u l a r  m v a r l a n c e  o f  the  supergrav i ty  

ac t ion  ~s re la ted to the  theory  o f  m o d u l a r  func t ions  

on R l e m a n n  surfaces  o f  genus n 

We can also imag ine  several  o ther ,  less s t ra ightfor-  

ward  ex tens ions  O n e  in te res t ing  p r o b l e m  is the  m-  

c lu smn  o f  gauge f ields and  the  d i l a ton  mul t lp l e t  and  

the  re la t ion  o f  gauge and  m o d u l a r  m v a n a n c e  in the  

co r r e spond ing  supergrav l ty  theor ies  A n o t h e r  is to 
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