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We give a rigorous proof that the quantum mechanical hamiltorlians of a class of supersym- 
metric matrix models have a continuous spectrum starting at zero. We arc thus led to conclude 
that supermembranes (which can be regarded as a limit of such models) have a continuous mass 
spectrum and, in particular, no mass gap. This result can be understood as a manifestation of the 
instability of the supermembrane against deformations into long stringlike configurations. We also 
comment upon possible implications of this result for supersymmetric Yang-Mil ls  theories. 

1. Introduction 

Supermembranes have been proposed as models of supersymmetric extended 
objects and alternative candidate theories of the fundamental interactions [1] (for 
reviews and further references see ref. [2]; earlier references on membrane theory are 
refs. [3,4]). It is the main purpose of this paper to demonstrate that the mass 
spectrum of these theories is continuous and extends down to zero. Although we 
cannot at present rule out the existence of discrete eigenvalues within the continuum 
or at its lower end, it is quite obvious that this result necessitates a revision of the 
commonly accepted physical interpretation of quantum supermembranes. Our anal- 
ysis is based on a previous paper [5], where it was shown that the supermembrane is 
the large N limit of a supersymmetric quantum mechanical model of N × N 
matrices, and within this regularization our arguments are completely rigorous. 

The potential instability of (super-)membranes is already evident from classical 
considerations. In the light-cone gauge, the mass ~ of the bosonic membrane is 
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0 

Fig. 1. Artist 's view of an initially spherical membrane which moves along a valley of the potential (1.2) 
and ends up as a string. Contrary to the string model, such a degenerate membrane has, however, no 

energy proportional to its length associated with it, and it can therefore be arbitrarily long. 

given by [4] 

where 

f d2o [P# + V(x)l ,  (1.1) 

v(x)  = OrXo OsXb) 2, (1.2) 
and the center-of-mass momentum must, of course, be excluded from P, in eq. 
(1.1). The indices a, b in these expressions label the transverse coordinates in target 
space and r, s the spacelike membrane coordinates o = (ol, o2) (we will mostly 
adhere to the conventions of ref. [5] to which we refer the reader for further details). 
The potential (1.2) is non-negative, but it has valleys through which certain 
membrane coordinates can escape to infinity without increasing the mass. The 
membrane configurations at the bottom of these valleys are degenera te -  the 
coordinates X, depend on only one of the membrane parameters - and a membrane 
moving out along the valley hence develops into a thinly stretched object whose 
mass can be made arbitrarily small (see fig. 1)*. 

For  the bosonic membrane this classical instability is cured by quantum mechan- 
ics (at least in the finite N approximation): any wave function eventually gets stuck 
in the potential valleys because of its finite spread and because the valleys become 
increasingly narrow the further out one gets. Finite-energy wave functions conse- 
quently fall off rapidly and the spectrum of the quantum hamiltonian is purely 

* It is amusing that Dirac's electron theory suffers from a related instability against quadrupolc 
deformations as was shown by P. Gnadig et al. [3]. 
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discrete [6, 7]. This rather welcome effect is, however, lost in the supersymmetric 
extension of the model, as we will show. Namely, the effective potential of the 
bosonic theory now gets additional contributions from the fermionic degrees of 
freedom which tend to cancel the bosonic ones. The wave functions then are no 
longer confined and the spectrum becomes continuous. 

We emphasize that all higher p-branes suffer from such potential instabilities. To 
see this, one simply has to replace the potential (1.2) by the corresponding 
higher-dimensional metric determinant; again this determinant vanishes for configu- 
rations independent of one or more of the space-like p-brane coordinates. On the 
other hand, strings and superstrings have only one space-like coordinate and, apart 
from the center of mass motion, all modes are confined by the harmonic oscillator 
potential E~= l n X  2. 

To illustrate the remarks above, we will now discuss a simple quantum mechani- 
cal model that captures the physical essence of the argument while avoiding the 
technical complications of supermembranes. Consider the supersymmetric hamilto- 
nian 

H =  ½{Q, Q*}, (1.3) 

where the supercharge is given by 

Q =  Q*= - x y  i 3 ~ + 0 ) ,  ) (114) 
i O x -- O>, x y  " 

These operators act on two-component wave functions +(x, y), x and y being the 
coordinates of a particle moving in the plane. Explicitly, the hamiltonian reads 

- A  + x 2 y  2 x + iy ) 
H = (1.5) 

x - i ) :  -- A + x 2 y  2 " 

As in the supermembrane theory, we have H >i-0, and the bosonic potential x2y 2 
does not increase in all directions but stays finite in a neighborhood of the 
coordinate axes. Thus, there are potential valleys along which, at the classical level, 
a particle can escape to infinity. 

It has been known for some time that the associated bosonic hamilton operator 
H B = - A  + x Z y  2 nevertheless has a purely discrete spectrum [7]. One way to see 
this starts from the operator inequality 

/4B >/rxl, (1.6) 

which one obtains by regarding H B as a harmonic oscillator in the variable y at 
fixed x. The rhs of the inequality (1.6) is then simply the ground state energy of this 
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oscillator. It follows from the inequality (1.6) that if one tries to move a wave packet 
to infinity along the potential valley y = 0, the energy to be paid increases indefi- 

nitely irrespective of the shape of the wave packet. Since the bound (1.6) also 
applies when x and y are interchanged and hence H B >/(Ixl + lyl) /2 ,  it is clear 
that the particle is in fact confined and the spectrum of the bosonic hamiltonian is 

therefore discrete. 
An interesting phenomenon now occurs, when we switch on the fermionic parts in 

the hamiltonian H. What happens is that the off-diagonal terms in eq. (1.5) can 
make a negative contribution to the total energy, and it is then possible to construct 
wave packets which can be moved to infinity along one of the potential valleys 
without paying an infinite amount of energy. In other words, whereas the system 
looked like a harmonic oscillator in the vicinity of the potential valleys before, it 
now looks like a supersymmetric harmonic oscillator, and since the ground state 
energy of this oscillator vanishes, it does not give rise to a confining force (the 

bound analogous to the inequality (1.6) becomes trivial). 
To explicitly construct a wave packet which can be pushed to infinity, we make 

the ansatz 

+ , (x ,  y )  = X ( x -  t)%(x, y)@, (1.7) 

where t is a parameter, X(x)  a smooth function with compact support and 

1 ) (1.8) 
 T(-1 " 

The scalar function q%(x, y)  will be determined later on. When t is increased, the 
wave packet, eq. (1.7), is essentially translated in the x direction so that, for t --* oo, 
it moves along the potential valley y = 0 to infinity. In particular, ~Pt(x, y) vanishes 

unless x is of order t. 
The reason for the choice eq. (1.8) of the spinor ~F is that in this way the 

off-diagonal matrix elements in the hamilton operator make a maximal negative 

contribution to the energy of the wave packet, i.e. we have 

~ H ~ F  = H B - x .  (1.9) 

Thus, the fermionic contribution to the expectation value of the energy in the state 
q't will be equal to - t + (9(1) for large t. This is just enough to cancel the bosonic 

zero-point energy associated with the oscillations of the y-coordinate about the 
bo t tom of the potential valley (cf. the inequality (1.6)). We are thus led to choose 

1 2 %(x, y) = 7r-1/4]x]l/4exp(- ~]x]y ), (1.10) 

which is the ground state wave function of the harmonic oscillator - 0  2 + xZy 2. 
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Now it is quite obvious that for e = 0,1,2 we have 

l i m  (•,, H~+,) = f dx x ( x ) * ( -  (1.11) 

and the wave packet so constructed can hence be shifted to infinity without having 
to supply an infinite amount of energy. 

Eq. (1.11) also implies that the spectrum of H is the whole interval [0, •). Indeed, 
let E > 0 be any energy value and c > O. We can then choose X ( X )  such that 

] l x l l  = 1, ] ] ( -a : ,2-  E ) X l l 2 < ~ / 2 ,  (1.12) 

where the norm LL II here refers to the usual norm for square integrable functions on 
the line. It follows that for large enough t, we have 

I1+,11 = 1,  I I ( u  - E ) + , I I  2 < ¢ ,  ( 1 . 1 3 )  

and since e can be chosen arbitrarily small, this proves that E is a spectral value of 

H (see e.g. ref. [8]). 
We mention in passing that an experimental realization of the model (1.5) would 

be an ideal focussing apparatus: when a wave packet moves out to infinity along a 
potential valley (which is the only way it can), the transverse width of the wave 
function is squeezed to zero (the expectation value of y2 is proportional to l / t ) .  

Because of the uncertainty relation, this would normally cost an infinite amount of 
energy, but here this is compensated by an equal amount of energy which comes 
from the orientation of the wave function in spin space. It would be amusing if an 
experimental set-up could be found which realizes the essential features of this little 
supersymmetric model. 

To extend the simple ideas expounded above to the quantized supermembrane 
requires more work, and a large part of this paper will be devoted to rather technical 
details. For this reason, the reader should keep the above model in mind so as not to 
loose track of the thread of the argument. We emphasize at this point that the really 
essential properties of the system are the existence of potential valleys extending to 
infinity and supersymmetry. The latter is needed to guarantee the exact cancellation 
of the energy associated with the fluctuations of the bosonic variables transverse to 
the valley coordinates, and the energy coming from the orientation of the wave 
function in the fermion space. 

In the light-cone gauge, the supermembrane hamiltonian can be written as* 

t p n p  ! ¢  f E y A y B x C y D  - 1.  A B a C 
H = ~ ~ .  oA + 4JABEJCD " ' a " b  a " b  5 i f A B c X a O  ~' 0 . (1.14) 

* The  h a m i l t o n i a n  is related to the mass  opera tor  through dd  2 = 2H.  In  what  follows we use t f  ins tead 
of  ,///,2 as the basic  opera tor  to be analyzed,  because  for the q u a n t u m  mechanical  mat r ix  models  
i n t roduced  below,  H is real ly the hami l ton  opera tor  in a s t andard  notat ion.  
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Supermembrane  theories exist for spacetime dimensions D = 4, 5, 7 and 11 [1], but 
for definiteness we will concentrate on the case D = 11 which is also the most 
interesting in many respects (the extension of our proof of instability to the other 

cases is completely straightforward). The indices a, b . . . .  thus run from 1 to 9. 
Slightly deviating from the conventions of ref. [5], we here use real SO(9) spinors 0 A 
with 16 components  from the outset so that a, fl . . . .  = 1 . . . . .  16. The corresponding 
y-matrices obey {~,~,~,b} =28~b. The indices A, B . . . .  originate from a mode 
expansion of the target-space coordinates in terms of a complete set of functions 

YA( O ), viz. 

X.(o)  = EXAYA(O). (1.15) 
A 

The constants fABC are then the structure constants of the group of area-preserving 
diffeomorphisms of the parameter manifold. For convenience, we shall assume 
throughout this paper that the basis YA is real and orthonormal so that there is no 

distinction between upper and lower basis labels. 
The group of area-preserving diffeomorphisms for spherical membranes [4] as 

well as for toroidal membranes [9] can be regarded as the limit of SU(N)  for 
N ---, oc, and this suggests to regularize the theory by replacing this infinite-dimen- 
sional group by SU(N)  [5]. In what follows we shall adopt this regularisation 

procedure, i.e. from now on the labels A, B . . . .  run from 1 to d i m G  and fABC 
denote the structure constants of G, where G = SU(N)  will be referred to as the 
"gauge group" for reasons to become clear below. While the group SU(N)  is the 

relevant choice in the context of the membrane theory, all our arguments below in 
fact remain valid for an arbitrary compact Lie group G (of finite dimensionality). It 
is, however, important  to appreciate that through the truncation of the number of 
degrees of freedom of the membrane, the hamiltonian (1.14) becomes mathemati-  
cally well-defined. Furthermore, the supersymmetry of the model remains intact. 

The canonical commutation relations of the basic variables are 

(1.16) 

{ 0A, 0~ } = 6,~t~84B. (1.17) 

To appreciate some of the technical complexities involved, the reader should realize 
that the dimensionality of the fermionic Fock space is 28dimG. In particular, the 
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spinor which will play a r61e similar to iF in the discussion above will have this 
many  components.  

The hamiltonian (1.14) is obviously invariant under adjoint transformations of 
Xfl and 0 A by the elements of the gauge group G. In fact, the system looks exactly 
like a supersymmetric Yang-Mil ls  gauge theory of constant gauge potentials and 
Fermi fields. As in this case, the wave functions of the system must satisfy Gauss'  

law, i.e. they must be gauge invariant (in the membrane theory this is a remnant of 
reparametrizat ion invariance). The infinitesimal expression for this constraint reads 

LA+ = 0, (1.18) 

where 

LA = fABc( x B p f -  ½i0~0~ c) (1.19) 

are the generators of the gauge transformations. 
The main result of our paper is summarized by the following theorem. 

Theorem. Let G be a compact Lie group (of finite dimensionality) and H the 
associated Hamil ton operator (1.14). Then, for any energy value E ~ [0, ~ )  and any 
c > 0, there exists a G-invariant wave function ~b such that 

11 11=1 and (1.20) 

In particular, the spectrum of H is continuous and equal to the interval [0, ~ ) .  

As will become clear in the course of the proof of the theorem, the reason for the 
continuity of the spectrum of H is that wave functions can escape to infinity along 
the directions corresponding to a Cartan subalgebra of the Lie algebra of G. In the 
context of the (regularised) supermembrane, this is thus exactly the instability 
alluded to above. In particular, for any finite N, the mass operator has a continuous 
spectrum and there is no gap between the zero mass states and the rest of the 
spectrum. 

The organization of our paper is as follows. In section 2 we set up the necessary 
formalism. We define the Hilbert spaces of gauge-invariant and reduced wave 
functions, respectively, and explain how they are related. For simplicity, we shall 
work out the details only for the gauge group G = SU(N),  but the formulae are 
presented in such a way that their generalization to an arbitrary compact Lie group 
should be rather obvious. Section 3 will be devoted to the construction of the wave 

function ~b and thus to the proof of the theorem above. In the concluding section we 
comment  on the implications of our result. 
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2. Preliminaries 

2.1. SU(N) NOTATIONS 

The Lie algebra g of the group G =  SU(N)  consists of all complex N × N 

matrices X with 

X t = - X ,  t r X = 0 .  (2.1) 

A G-invariant, positive definite scalar product on g is given by 

(X, Y) = - 2 t r ( X Y ) .  (2.2) 

The set k of diagonal matrices X ~ g is a maximal abelian subalgebra of g (also 
referred to as a Cartan subalgebra), and the corresponding subgroup of G will be 

denoted by K. 
The degrees of freedom parallel to k will later play the rSle of the valley 

coordinate x in the discussion of section 1, while the other degrees of freedom (i.e. 
those pointing in the direction of the orthogonal complement k± of k) will be 
confined by harmonic forces in the same way as the variable y. Having this in mind, 
we introduce a basis T A of g such that 

( T A, T~) = 8AB, (2.3) 

T A E k  forA = 1  . . . . .  N - 1 .  (2.4) 

Accordingly, we shall adopt the convention that basis labels i, j . . . .  are summed 
from 1 to N - 1, while capital indices I, J , . . .  from the middle of the alphabet run 
from N to N 2 -  1. We finally note that any element X of g can be written as 
X = XATA with real coefficients X A, and that the structure constants 

/A.c = (rA, [rB, rc])  (2.5) 

are real and totally anti-symmetric in the indices A, B, C. 

2.2. THE HILBERT SPACE 

We here specify in concrete terms the space J~ of wave functions on which the 
hamiltonian (1.14) operates. To this end, we first introduce the fermion Fock space 
~'T. This is a linear space of dimension 2 8dimG, which carries an irreducible 
representation of the Clifford algebra (1.17). As is well known, there is an essentially 
unique scalar product (& ~)F on ~ F  such that 8 7 is a hermitian operator for all A 

and m 
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also carries a unitary representation VF(U ), U e G, of the gauge group G. 

1 
,c o B0c L F =  ~JARC",, ,, (2.6) 

of this representation satisfy the algebra 

[LF, L F] = t/A BcL F. (2.7) 

By definition, they are bounded hermitian operators in ~v -  
The Hilbert space Y of physical states consists of wave functions 

~b(X), X = ( X  1 . . . . .  Xg), X , ~ g ,  (2.8) 

which take values in the fermion Fock space Yv- The scalar product in Jt ~ is given 
by 

dxA(~(X),q~(XI)F . (2.9) 

Thus, o~ is the space of all measurable functions ~ (X) which have finite norm and 
which, furthermore, are G-invariant, i.e. for all U ~ G we have 

+(UXU ~)= VF(U)q,(X ). (2.10) 

For differentiable wave functions this condition is equivalent to (1.18), if we choose 
the Schr6dinger representation 

1 O 
P f  i 0X, A" (2.11) 

for the momentum operators. 
The hamilton operator (1.14) is initially defined as a differential operator on 

rapidly decaying smooth wave functions +(X)  and then extends to a self-adjoint 
operator in . ~  through closure (cf. ref. [8], theorem X.40). It is known that there 
exist conserved supercharge operators Q, acting in . ~  such that 

{ Q~, Q/~ } = 2 6~H. (2.12) 

From this result one deduces that the hamiltonian (1.14) is non-negative. Although 

The infinitesimal generators 
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supersymmetry is crucial for our arguments, we will not need the explicit expres- 
sions for the supercharge operators. 

2.3. G A U G E  FIXING 

The gauge invariance of the wave functions in the Hilbert space of states implies 
that they do not depend on a subset of variables. For the construction of wave 
packets that can be moved to infinity along one of the potential valleys, we have 
found that the presence of these redundant variables leads to some technical 
problems. We have therefore decided to eliminate most of them by fixing the gauge. 
In the way this is done here, the procedure is completely rigorous and does not in 
any way imply a mutilation of the original system. 

The basic idea is that through a group transformation we can always diagonalize 
the matrix )(9, and a gauge invariant wave function ~(X)  is hence completely 
determined when its values are known for all X with X 9 diagonal. To work out this 
idea in detail, we need to introduce some further notations. 

First, let p be the set of all matrices Z of the form 

where X. ~ R and 

[X1 0 ... ) 
0 ~k 2 . . .  00 

Z = i  

0 0 . . .  ~kiN 

(2.13) 

N 

~ k n = 0  , ~1 ~ k 2 ~  . . .  ~ k  N . (2.14) 
n = l  

Obviously, p is a subset of the Cartan subalgebra k whose interior [~ is an open cone 
(~ is a "Weyl chamber"). The essential property of p is that for any given element X 
of the Lie algebra g, there exists a unique Z ~ p such that 

X =  U Z U  1 for s o m e U ~ G .  (2.15) 

Furthermore, if all the eigenvalues of X are pairwise different (in which case X is 
referred to as a regular element), not only Z is uniquely determined, but one can 
also show that the transformation U is unique up to multiplications by an arbitrary 
element of the Cartan subgroup K from the right. In other words, eq. (2.15) defines 
a parametrization of g in terms of Z ~ p and U ~ G / K .  

It is clear from the above that if we have some (complex valued) integrable 
function f ( X ) ,  X ~ g, which is invariant under the action of the gauge group G, a 
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relation of the form 

fH d x A f ( x ) =  C f p ~  i d Z i A ( Z ) f ( Z )  (2.16) 

must hold, where C is a positive constant and A (Z)  the appropriate Faddeev-Popov 
determinant. There are various ways to compute A(Z). For example, introducing 
coordinates on G / K  and using the representation (2.15), one obtains a (non-linear) 
parametrization of g. For symmetry reasons, the associated jacobian is a product of 
two factors, one depending on Z and the other on U. Since f ( X )  is independent of 
U, the integration over G / K  is hence trivial and gives the constant C which is 
essentially the volume of G / K .  The result of this calculation (which has been 
known for a long time [10]) is 

A ( Z )  = det z, (2.17) 

where z;j is the real anti-symmetric matrix defined through 

More explicitly, we have 

[ Z, Tt] = z t jTj .  (2.18) 

k ztj = Z f~tJ, (2.19) 

and the eigenvalues of Z;s are just the (non-zero) roots of the Lie algebra g. Thus, 
for G = S U( N)  one finds 

N 

det z = I-[ ( X - ) t , , )  2. (2.20) 
m % 7l 

Note that det z vanishes when some of the eigenvalues of Z coincide, i.e. at the 
boundary of the Weyl chamber p. Whenever this happens, the matrix Z becomes 
degenerate in the sense that a linear combination of the generators T; commutes 
with it, and the matrix z;j has null vectors. 

In passing we mention that from the representation (2.19) and the general 
properties of the structure constants it follows that the pfaffian of z;j satisfies the 
equation 

0 0 
OZ; OZ ~ (det z) ~/z = 0, (2.21) 

a result that will be useful later on. 
After these lengthy preparations, we are now in a position to explain the gauge 

fixing procedure. Suppose + is any element of the Hilbert space Jr" of states. We 
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then define an associated reduced wave function ~ through 

~ ( X  1 . . . . .  Xg, Z )  = (Cde t  (2.22) 

where Z • p and the constant C is the same as in eq. (2.16). It should be quite clear 
at this point that the reduced wave function ~ contains no less information than ~k 

itself. In fact, recalling eq. (2.10), one quickly verifies that 

¢ ( X ) = ( C d e t z )  1/2VF(U)tfi(U-1XIU . . . . .  U-IXgU, Z ) ,  (2.23) 

where U • G and Z • p are such that X 9 = UZU-1. 
In what follows, the aim is to rewrite everything in terms of reduced wave 

functions. First, we define o@ to be the Hilbert space of wave functions 
~ ( X  1 . . . . .  X8, Z),  X~ • g, Z • p, with values in ~ v ,  which are normalizable with 

respect to the scalar product 

d X :  fp~IidZi(~(X,Z),~p(X,Z)) F, (2.24) 

and which are invariant under the action of the Cartan subgroup K, i.e. for all 

U • K we have 

~(UXU 1, Z)= VF(U)~b( X,Z). (2.25) 

It  follows from the definition (2.22) and the integration rule (2.16) that the reduced 
wave function ~ associated to any + • g f  is an element of o@ and, furthermore, 

that 

(~ ,  q~) = (+ ,  tk). (2.26) 

In other words, the mapping + ~ ~ is unitary. 
A crucial observation now is that if ~ is an arbitrary element of ~ ,  there exists a 

unique wave function tk • Yg' such that ~ is the reduced wave function belonging to 
~, i.e. such that eq. (2.22) holds. This implies, for example, that later on when we 
construct a wave packet analogous to +t in section 1, it is sufficient to specify a 
wave function ~t(X, Z)  and to check that it is normalizable and K-invariant. 

At this point we would like to caution the reader that, although the reconstruction 
of a full wave function + from a reduced wave function ~ always yields an element 
of o~, one does not always get a smooth function when ~ is differentiable. The 
reason for this is that the representation of X 9 in terms of U • G / K  and Z • p is 
only differentiable when Z is in the interior of p, i.e. when X 9 is regular. 
Fortunately,  we do not have to study this problem any further, because later on we 
shall only encounter differentiable wave functions ~ ( X  l . . . . .  X s, Z), which vanish 
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unless Z is in a certain compact subset of P- Thus, the singular boundary points of p 
are avoided and ~ hence corresponds to a differentiable full wave function +. 

Our next task is to evaluate the hamiltonian (1.14) for the reduced wave 
functions. This reduced hamiltonian, which we will denote b y / t ,  is defined by 

Obviously, one has 

/ t f  = H-"~. (2.27) 

( ~ , / 1 ~ )  = ( f ,  H~g,), (2.28) 

for any arbitrary power v. 
The non-trivial part in the computation o f / 4  concerns the evaluation of the terms 

coming from (PgA) 2. Before doing this let us define the matrix w~j, which is the 

inverse of the matrix z,j, viz. 

It is not hard to prove that 

W[jZjK= alK, (2.29) 

w;jflsK = O. (2.30) 

Furthermore,  we introduce the part  of the G-generators that pertains to X A through 

0 
L 9 = --ifAeC X8 OX c , (2.31) 

where here and henceforth we will suppress the index 9, so that X A -= X A and the 
indices a will only run from 1 to 8. With these notations it is easy to show that for 
Z E p and any function f of X one has 

0 X~Z ~x-Tf(  x ) = - iw , jL~ f (  X)Ix=z,  (2.32) 

where X is set equal to Z only after all derivatives are performed. Applying this 
result to the function O f ( X ) / O X  1, using the commutation relation for L 9 and 

O/OX 1, eq. (2.30) and again eq. (2.32), one straightforwardly finds 

0 0 0 
a x '  a x  7 f ( x )  x=z = - ( (wTw)IJLgL9 + w I J f l J k ~ ) f ( X )  X=Z (2.33) 

If we now apply this identity to a wave function ~b ~ ,  the constraint (1.18) can be 
invoked to replace the operator L 9 on the rhs by the operator/~t  defined by 

£,, = L , -  L 9 . (2.34) 
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The  advantage  of this replacement is that /~t does not involve the variables X A and 
is therefore  not  affected by the substitution X = Z. To  sum up, the contr ibut ion of 
P~P9 A to the reduced hamilton operator  is (leaving out an overall factor of ½) 

^ ^ ( 0 ) 0 1 (2.35) 
( w T w ) t j L t L j -  ~ ~ £  - w'JftJk OZ k dv~z 

Finally, we note  that the second term in this formula is actually equal to - ( 0 / 0  Z k) 2, 

as one  may show by using 

O 
OZ----- ~ in det z = - w1jf1jk (2.36) 

and eq. (2.21). 
After  these manipulat ions we can now give the reduced hamiltonian /~. Before 

doing so we decompose the coordinates X A into Z[, - X,' and Y,{ - X~, i.e. 

xA-+(Z~ ,Y , I ) ,  a = l  . . . . .  8. (2.37) 

The  hamil tonian  H is then divided into four terms, 

/ ]  = n 1 -t- n 2 Jr- n 3 -}- n 4 ,  ( 2 . 3 8 )  

which are separately invariant under the Caf tan subgroup K. They are defined by 

1 =_ 1(01  
H 1 ~ ( 0 @ ) 2 - 2 1 c 3 Z , ]  . (2.39) 

= - z z ) , + r ;  , H2 2 + ½( T I J (2.40) 

_ t .  * . ( 2 . 4 1 )  H 3 = ~lO (Z IJV9  "~ ZlJ~a ) 0 J , 

114 = ¼fAtJfAKL Y/Y~ Y /  Y/~ + fAjfAKL Z':Y/ YX Y+~ 

1 i J k L + 5fAisfAkzZ,,Y,; (Z,, Y+; - Z~Y. L) 

+ ~(wTw) , jLzLs  ~.  , .4 8 (2.42) _ - 5if1ABY~O 3'.0 , 

where we have used the notat ion 

~ _  k (2.43) Z I j -  Z a f k i  J . 
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3. The spectrum of H 

In this section, we prove the theorem stated in section 1, following in outline the 
argumentation we have applied there to the simple operator (1.5). 

3.1. A N S A T Z  F O R  T H E  T R I A L  W A V E  F U N C T I O N  ~b t 

The wave packet to be constructed will be moved to infinity along the potential 
valley characterized by X, ~ k. More precisely, using reduced wave functions, we 
choose the variables Z i to play the r61e of the variable x in the model studied in 
section 1. Thus, we introduce a smooth function x (Z ,  Zu), Z, Z ,  ~ k, with compact 
support, which will appear in the trial wave function ~/, in the form x ( Z -  tV, Z~), 
where V is a constant diagonal matrix given by 

V = i  

s - 1  0 ... 0 

J 
0 s - 2  ... 0 

0 0 ... s - N  

s = ( N + l ) / 2 .  (3.1) 

When t is increased the wave packet will thus be translated along the valley in the 
direction specified by eq. (3.1). Because X has compact support, this implies that 
differences between the eigenvalues A m of Z satisfy 

~t,~- Yt, = ( n -  m) t  + (_9(1) (3 .z) 

for Z in the support of ~t- In particular, for large enough t, ~t is supported in the 
Weyl chamber p, as appropriate for reduced wave functions• 

The complete expression for the wave packet ~t reads 

¢,(z,  zo, rJ) = x ( z -  ,v, zo)%(z, (z, zo), (3.31 

where % and ~v are the ground-state wave functions of the hamiltonians H 2 and 
//3, respectively. The notation has been chosen in such a way that the analogy with 
the wave function (1.7) is completely evident. Furthermore, as we shall show later 
on, the ground-state wave functions of the hamiltonians H 2 and H 3 are separately 
invariant under K, while X depends only on K-invariant variables. Consequently, ~b t 
is K-invariant as well and hence an element of the Hilbert space ~ of reduced wave 
functions• Furthermore, for sufficiently large t, ~t vanishes unless Z is contained in 
a compact subset of the interior of p so that the associated full wave function ~t is 
smooth (as we have discussed in section 2). 

We now proceed to discuss the wave functions % and ~V in detail. 
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3 . 2 .  T H E  G R O U N D  S T A T E  O F  H 2 

Consider the positive-definite symmetric matrix 

~2 = z~zz,  (3.4) 

which has two-fold degenerate eigenvalues X , , -  X, (m < n), so that 

N N 

det ~2 = I-[ ()tin - )kn) 2, tr 17 = 2 ~2 (X, , , -  X,,). (3.5) 
rtl -< n ~;~l -< H 

For fixed Z, the hamiltonian H 2 describes a set of 8 ( N  2 -  N) harmonic oscillators 
with frequencies )%, - X,,. The wave function for its ground state is therefore easy to 
write down, and reads as follows 

% ( Z ,  YJ) = vr2(N-N:}(det ~2)2 exp( - II?; jYJY/) • (3.6) 

The ground-state energy is given by 

H 2 qo o = 4 tr E2 % .  (3.7) 

Furthermore, % is normalized such that 

(%, %)r = 1, (3.8) 

where the norm in eq. (3.8) involves only an integration over the coordinates Y,[, viz. 

(W,+)~= f~dYJw*+. (3.9) 

Observe that the ground-state wave function (3.6) is manifestly K-invariant, because 
the matrix ~2;j commutes with the rotation matrices representing the action of 

K on k±. 
When Z becomes large in the way we have described above, the potential valley 

will become more and more narrow, so that expectation values of the transverse 
coordinates y l will be suppressed. More precisely, if P(Y) is a homogeneous 

polynomial of degree 8, we have 

(3.m) 

This result may be extended to (homogeneous) operators 91, 9 2 . . . . .  which may 
contain derivatives with respect to Y,* or )%, with polynomial coefficients. We can 
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assign a dimension to such operators by defining 

dim )%, = 1, 

dim 0 / 0 ) k r n  = - -  1 ,  

It is then straightforward to show that 

I( ~I(jDo ' ='~2~0)Y I "~ C t dim "~1 + dim ~2 

for suitable constants C and sufficiently large t. 

dim y l = _ I ,  

dim O / 8 Y ] -  
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(3.11) 

(3.12) 

3.3. THE G R O U N D  STATE OF/4[~ 

From rather general arguments one can show that, for fixed Z and Z. ,  the 
ground-state energy of H 3 is given by 

N 

H 3 ~ F = - - 8  E ~ m n ~ F ,  ( 3 . 1 3 )  
Ftl "( l l  

where w .... is defined in terms of the eigenvalues X., and ~ ,  of Z and Z.  by 

w,.. = ~()t m - )t,,) z + (X~,-)t~,,) 2 . (3.14) 

However, to determine the wave function ~F explicitly requires more work. Let us 
start by diagonalizing the (commuting) matrices Qj and Q~j. Their eigenvectors are 
precisely the (complex) root vectors* E~,, (m ~ n), satisfying 

" - ( X . , - X , , ) E . ' , , , ,  Z lJ E m  n - -  l 

a J __ a 1 z , jE . , .  - i( )t~., - )t.) E . . . .  

(urn',,)* = E L .  (3.15) 

These vectors define a complete orthonormal set, i.e., 

I * / Y'~(Em. ) E;q=6mpSnq ( m ¢ n ,  p ~ S q ) ,  
I 

E ( E l m n ) * E J m n = ~ I J "  (3.16) 
rn g: n 

• Not  to be confused with the roots, which are ( N -  1)-component vectors, whereas the E, , , ' s  have 
N 2 - N components .  
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Expanding 0 ~ in terms of the vectors E,~,,,, 

we have the reality property 

and the anticommutation relations 

O'= ~2 O"E2~, (3.17) 

0 m"* = o "m, (3.18)  

(3.19) 

Notice that by rewriting the real spinors 0 ~ in a complex basis we have now a 
natural split into !(N2-N) creation and ~ 2 ~(N - N )  annihilation operators. In 2 

terms of 0m", H3 takes the form 

N 

H3= E 0~"*[(X.~-X.) '~9+(X%-X~,,) 'G]O ""- (3.20) 
m < n  

We now redefine the spinors by a X-dependent Spin(9) transformation, 

,( ( x 2  - x~,,) roy9 

¢%m.+X.,--X,, 
O m" ( m < n ) ,  (3.21) 

so that the t~ m~ and ~mn'~ satisfy the same anticommutatlon relations as 0 .... and 
0"n*, although they no longer commute with the bosonic momentum operators. The 
hamiltonian H 3 can then be written as 

N 
H3 E .trent .¢mn = ('OmnU ~[9 U 

m < . n  

N 

Y'. ,., [ d m"*tTmn + Om'O m~* -- 8) (3.22) w m n \ ~  + v q _  _ 

m ~ < / t  

where we have used the anticommutation relations to split off the first two terms 
which are positive definite. Note that we have employed "chiral" spinors in eq. 
(3.22), defined by the projections 

1 -t-79 
0+=- 2 0, (3.23) 

which have only eight non-vanishing components labelled by a'. 
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The ground-s ta te  wave function can now be written as 
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( N 8 (#,,,.t ) 
FI FI )o, 

m<n a ' = ]  
(3.24) 

where the Fock  vacuum ~0 satisfies 

0"n~0 = 0 for all m < n ,  (3.25) 

and is chosen A-independent and normalized to 1". The only X-dependence in ~v 

therefore comes from the operator  multiplying ~0 in eq. (3.24). Furthermore,  ~v is 

also normalized,  i.e. we have 

(SeF, S%)F = 1. (3.26) 

N o t e  that the condit ion (3.25) does not completely determine the fermionic Fock 
vacuum,  because it does not specify how the remaining fermionic operators 0 ~ act 

on  it. However,  further specification of (V is unnecessary, because 0 i only occurs in 

H 4 and this term makes a negligible contr ibution to the energy of the wave packet 

~,, as we shall show below. 

To  verify the consistency of our  ansatz (3.24) we must also check the K-invariance 

of  ~V which is not  immediately obvious. To do so we recall that the generators 

which must  annihilate ~V are given by (cf. eq. (2.6)) 

1 
L ~ = - - e  010 J (3.27) 

2 i J k l J  a a "  

Using the expansion (3.17) and the decomposi t ion of the 0 ..... s into creation and 

annihi la t ion operators,  one finds that a sufficient condit ion for ~v to be K-invariant  

is 

(OmnO~ n* -- Omn*O~n)~ v = 0 for all m < n .  (3.28) 

Since the Spin(9) t ransformation (3.21) is unitary and does not  mix the S U ( N )  
indices, eq. (3.28) is equivalent to 

,/----O~"O~"t - " ~ ' 0  ~ ' T a ' '  ] e  - 0 for all m < n 
a ~a J %V -- 

(3.28') 

F r o m  eqs. (3.24) and (3.25), it is now straightforward to see that ~F does indeed 
satisfy this requirement.  

* To show that eq. (3.24) is the ground state of H 3, observe that the Spin(9) rotation (3.21) does not 
mix the SU(N) indices, so that we also have #m"~o = 0 for m < n. 
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For large t the operators Omn tend to 0"",  so that ~F becomes independent of X, 
v i z .  

( ) iF = I3I 1-1 (0mn*),, 40 +('° t " (3.29) 
m < n  a ' = l  

As a result (multiple) derivations ~ with respect to the eigenvalues X m 
acting on ~v will satisfy 

C 

t 

and X2, 

(3.30) 

for large t. 

3.4. PROOF OF THE THEOREM 

We will now come to the central result of this paper. First we observe that since 
the ground-state wave functions q% and ~F are normalized, the norm of the trial 
wave functions q~t is given by 

(~, ,  ~,) = (X, X),  (3.31) 

where the scalar product ( , ) is defined by 

{X1, X2) = f lTI i dZi I1 dZ2 X~X2" 
k , a  

(3.32) 

Next, we note that 

N 

( H 2 + H 3 ) ~ ,  = 8  E (X,  -X, , -~0, , , )q~, .  (3.33) 
m < n  

When ~km--~kn "---) ~ ,  the rhs in this equation will go to zero, which can be 
understood from the fact that the hamiltonian H 2 + H 3 describes a set of supersym- 
metric harmonic oscillators in that limit. Using that X is of compact support, we 
conclude that 

lim 11(/t2 + n3) ,ll = o. (3.34) 
t ~  

Furthermore, one can easily establish that the operator H 4 is a sum of terms of 
dimension 8 ~< - ½ in the sense of (3.11). Using the inequalities (3.12) and (3.30), it 
follows that 

lim IlH4~tl[ = 0, (3.35) 
t ~ o C  
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so that altogether we nave 
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lira (~bt, H"~b,) = lim (~, ,  H(~ , )  (3.36) 
g ~ O C )  t ---~ 3C, 

for v = 1, 2. 
If  the derivatives contained in H 1 act on % or (F, we can once more invoke the 

inequalities (3.12) or (3.30), respectively, to argue that those terms are of order t-1. 
We can therefore rewrite eq. (3.36) as 

lim (~p,, H"#t )  = (X ,  H{X) for v = 0 ,1 ,2 ,  (3.37) 
t ~ G  

where, for v = 0, we have just combined eqs. (2.26) and (3.31). Note that due to 
translational invariance in the variable Z, the expectation value on the rhs of eq. 
(3.37) is independent of t. 

We are finally ready to prove the theorem stated in the introduction. Let E >/0 be 
an arbi trary energy value and E > 0. We then choose a wave function X, as specified 
above, such that 

(x,x)=l, ((H1-E)x,(H1-E)x)<¢/2. (3.38) 

It is easy to convince oneself that such functions X always exist (take a plane wave 
and multiply it by a smooth slowly varying cutoff function of compact support). For 

this choice of X and for sufficiently large t, the function ~, defined and discussed 
above is an element of ~ .  Furthermore, the associated full wave function ~, is 
differentiable, gauge invariant and satisfies eq. (3.37). It follows from this relation 
that 

(3.391 

for (say) t >~ T. Consequently, for these values of t we have 

II~tll=l and I[(H-E)+,Jl2<¢, (3.40) 

which proves the theorem (the second statement made in the theorem is a trivial 
consequence of the first and of the fact that H >/0 by supersymmetry, see eq. (2.12) 
and ref. [81, for example). 

4. Conclusions 

In this paper  we have presented an investigation of a set of supersymmetric 
quantum mechanical models with a (global) gauge symmetry. These models are 
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directly related to both the supersymmetric Yang-Mills theory and the supermem- 
brahe. Our basic mathematical result is that the Hamilton operator of these systems 
has a continuous spectrum starting at zero. The proof given is completely rigorous 
and, apart perhaps from the gauge fixing procedure, also rather simple. 

Our primary motivation for this investigation was to analyze the spectrum of the 
eleven-dimensional supermembrane, and here our results do not bode well for its 
future. Although one might object that our results were derived only for finite- 
dimensional gauge groups and therefore do not apply to the supermembrane proper, 
we are confident that our main conclusion will not be affected by taking the large N 
limit. This is because the potential valleys which cause the instability are also 
present for infinite-dimensional groups (in fact, the subset of configurations with 
zero potential energy even becomes infinite-dimensional in this case), so that the 
basic physical picture embodied in the simple example of the introduction remains 
the same. Quite on the contrary, even if the spectrum had been discrete for finite N 
(as is the case for the purely bosonic membrane) one would have been left with the 
problem of showing that it remains so in the limit of infinitely many degrees of 
freedom. However, we would still like to stress that the N ~ oo limit is quite subtle 
and that we cannot a priori exclude a discontinuity at N = ~z, especially in view of 
the apparent non-renormalizability of the supermembrane as a three-dimensional 
field theory. 

It is also worth emphasizing that the question of whether the supermembrane has 
massless states, i.e. whether there exists a set of normalizable eigenstates of H with 
eigenvalue zero, remains open. (This question was addressed in refs. [5,11]). The 
relevance of this problem has, however, been greatly reduced by our results: 
massless states, if they occur, will not be separated from the continuum. In other 
words, the supermembrane describes a world without gap between low-energy and 
Planck-scale physics. It should also be clear that compactification of the supermem- 
brane does not help since not all of its coordinates can be compactified if it is to 
describe the real four-dimensional world. We have not investigated whether these 
problematical features are absent for supermembranes moving in a non-trivial 
background. 

As examples of supersymmetric quantum mechanics, the models discussed in this 
paper have been known for some time [12]. Our result shows that they are more 
intricate than expected. In particular, the possibility of a continuous spectrum has 
apparently not been envisaged so far. In these circumstances, the Witten index 
Tr(-]_)V is not a well-defined quantity anymore. Nevertheless, there have been 
attempts to calculate it through the path-integral representation of the partition 
function of the model, using the "ultralocal" approximation where the path integral 
is reduced to an ordinary integral [13]. In the light of our result, the significance of 
these calculations is not clear at present. Similar comments apply to the arguments 
presented in ref. [14]. 

Evidently, our investigation is also relevant for the understanding of supersym- 
metric gauge theories. At first sight, one might be worried that these field theories 
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are subject to an instability, too, but as we shall now explain in some detail, the 
effect described in our paper actually has quite different implications here. 

First, it is important to note that the operator (1.14) is obtained from the 
hamiltonian of the supersymmetric Yang-Mills theory by restricting the fields to be 
constant in space, and thus it is a truncated hamiltonian whose significance for field 
theory remains to be established. In the case of pure non-abelian gauge theories in 
four dimensions, it has been known for some time [6] that if one encloses the system 
in a finite (space-) box with periodic boundary conditions and linear extension L, 
the spectrum of the theory in the limit L --* 0 is exactly calculable. Furthermore, at 
low energies, it is given by the eigenvalues of the operator 

~2/3 
1 A A 1 [ f y A y B y C x D  ~ (4.1) H'  = (~P,; Pi + ~JABeJcoe"~"h l,~ h l ,  

L 

where ~ denotes the "running" coupling at scale L. Thus, the reduction to constant 
gauge fields has a precise meaning in this theory. Note also that H '  has a purely 
discrete spectrum [6, 7], as appropriate for a theory in a finite volume. 

Supersymmetric Yang-Mills gauge theories can also be formulated in a finite 
volume and one can then study the limit L --* 0. As a first guess, one would expect 
that the spectrum of the theory in this limit is obtained by dropping all non-con- 
stant modes, as in the bosonic case, so that one would end up with the Hamilton 
operator (1.14). However, as shown in this paper, the spectrum of this hamiltonian 
is continuous, and since this is rather unusual for a finite volume system, one is led 
to suspect that the small volume limit of supersymmetric Yang-Mills gauge theories 
is n o t  given by the constant field model (1.14). 

This conclusion is supported by the following considerations. At finite L and in 
D ~< 4 spacetime dimensions, it is possible to calculate the spectrum of the full field 
theory hamiltonian in perturbation theory (this is because the effective coupling of 
the theory tends to zero in the limit L--* 0). To this end, one first determines the 
field configurations which minimize the bosonic potential and then expands about 
these minima. The potential is given by 

f dO-'xFJZ,,A ~ (4.2) 

where F~ denotes the gauge field strength and the indices k, l run over the D - 1 
space directions. The absolute minima of this potential are obviously characterized 
by F A = 0. Usually the solutions to these equations are just the pure gauge 
configurations, but on a toms, there are non-trivial solutions, referred to as 
" torons" .  It is easy to show that any toron is gauge equivalent to a constant gauge 
field taking values in a fixed Cartan subalgebra of the Lie algebra of the gauge 
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group. Moreover, the manifold of all torons (modulo gauge transformations) is a 
compact orbifold. 

When we now expand about the toron configurations, one finds that the ground- 

state wave function of the bosonic system is essentially supported in a small 

neighborhood of a set of singular points of the toron orbifold including the classical 

vacuum configuration [6]. The reason for this is that the potential (4.2) is not 

equally wide at all points of the toron orbifold in the directions transverse to it and 
consequently the wave function is suppressed at those points where the potential 

valley is narrow. In the analogous case of the bosonic operator H R introduced in 

section 1, the singular points of the toron orbifold correspond to the origin in the 

xy-plane (where the wave function prefers to live) while the lines x = 0 and y = 0 

correspond to the non-singular parts of the orbifold. 

In the supersymmetric case, the situation is completely different, because the 

zero-point energy associated with the fluctuations transversal to the toron orbifold 

is exactly cancelled by the contribution of the fermion degrees of freedom. Thus, 

there is no force driving the ground-state wave function to any particular points on 

the toron orbifold, and the spectrum of the model is hence given by a differential 

operator acting on functions defined on the toron orbifold. This, rather than the 

constant field hamiltonian (1.14) is the operator which describes the spectrum of the 

theory in the small volume limit, and since the toron orbifold is compact, it is clear 

that its spectrum will be discrete, as expected for a system in a finite volume. 

The conclusion of this discussion is that the quantum mechanical system (1.14) is 
not actually the L = 0 limit of the full supersymmetric Yang-Mills field theory, and 

the result of our paper therefore has no immediate impact on the latter. In 

particular, there is nothing which stands against the Witten index being a well- 

defined quantity in the field theory. The statement is only that T r ( - 1 ) F  cannot be 

calculated by reducing to the constant field model as has been suggested by some 
authors. 

We would like to thank U. Marquard and P. van Baal for discussions related to 
this work. B. de Wit is grateful to DESY for hospitality and financial support. 
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