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Abstract. Extending previous results, we construct two further versions of d = 11 super- 
gravity. The transformation laws are given in a form where the SO(1, 10) local Lorentz 
group is replaced by S0(1,4)  x USp(8) and S0(1 ,5)  x [ S 0 ( 5 )  x SO(5)], respectively. The 
spinless fields are assigned to the corresponding representations of E,(+,, and 

1. Introduction 

It has been known for some time that maximally extended supergravities in D 
dimensions obtained from d = 11 supergravity [ 11 are manifestly invariant under an 
internal symmetry group SL( 11 - D)global x SO( 11 - D)local [2,3]. This symmetry can 
be enlarged to the product of a non-compact global group GI,-, and a compact local 
group HI1-D.  Assuming that the scalar sector in these theories is governed by a 
non-linear v model based on the coset G I I - D / H I I - D ,  one can deduce the relevant 
groups by equating the number of scalars obtained in the dimensional reduction with 
the dimension of this coset space. In this way, one gets [2,3] the results presented in 
table l t .  

In [4] it was shown that some of these hidden symmetries are actually present in 
the d = 11 supergravity itself there exists a reformulation where the tangent space 
group SO( 1,3) x SO(7) is replaced by SO( 1,3)  x SU(8) and the spinless degrees of 
freedom are assigned to a representation of E,(+,). A crucial step in this construction 

Table 1. 

D GI,-D HI1-D 

t For D 3 9 the field AUNP does not give any scalars in the reduction. Hence one retains only GL(2, R)global x 
S0(2),,,,, after the Weyl rescaling for D = 9. 
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was the introduction of 'composite' gauge connections in the internal dimensions so 
as to covariantise the theory with respect to SU(8) transformations depending on the 
internal coordinates. Subsequently, the corresponding version of d = 11 supergravity 
with tangent space group S0(1,2)  x SO(16) was constructed in [5]. These results 
suggest that, in fact, all of the hidden symmetries displayed in table 1 can be realised 
in the full d = 11 theory. In this paper we show that this is indeed the case by presenting 
explicit results for D = 5 and D = 6 (we have not considered D 5 7 since these cases 
are less interesting and unlikely to furnish any new insights). This confirms the 
conclusion that d = 11 supergravity is a multifaceted theory whose ultimate formulation 
(and possible embedding into an  ancestor dual model) remains to be found. It would, 
of course, be even more interesting if one could extend the results now established for 
3 s D s 6 to D < 2 where one expects the emergence of infinite-dimensional groups:. 

We now briefly summarise our notation and conventions; more details can be found 
in [4,5]. The only difference with [4,5] is that we use a metric with signature 
(+, -, . . . , -). The Lagrangian of d = 11 supergravity is given by 7 

CJ= -'ER - i i ~ q  2 M  1."" DNVP - & E F L N P Q  

+ ( 1 / m 1 / ( 1 2 ) 3 1 ~  X ~ M N p Q ~ R s T U ~ V W X  

+ (&/ 192) EFMN~Q( q R I' MNPQRs Vs+ 1 2 q M F N p v Q )  

Higher-order fermionic terms are neglected throughout. 

2. Field redefinitions and transformation laws 

The starting point is a D + (1 1 - D )  coordinate split. The curved and flat d = 11 indices 
M and A are decomposed into (p ,  m) and (a, a ) ,  respectively. Fixing the gauge 

e," B,'"ema 
0 em 

reduces the local SO(1, 10) Lorentz group to SO(1, D - 1) x SO(l1- D) .  The Weyl 
rescaling 

e' a = Axepm A det ema S'l/(D-2) (2.2) 
leads to the standard Einstein action in D dimensions (for D > 2 ) .  The fermionic 
fields are redefined as follows: 

9; = A - s / 2 e L e ( V a  + s F e F a Y a )  = e L a V &  

9; = A - s / 2 9 a  (2.3) 
& I =  AS/'.r, 

+ For some recent results concerning maximally extended supergravity in two dimensions,  see [6]. 
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As a general rule, quantities with index p are obtained from the flat ones via eFU and 
without the E," contribution (so that we have a scalar under (11 - D)-dimensional 
general coordinate transformations S m ( x w ,  y"')). In  particular, we use [4, 51 

2, = e,,cla, = a ,  - Bpmam 

W,AB =ze, (RA,, - R B , A - ~ ~ , A B )  
1 ,  

where 

Raec' = ~ E C A ~ E B ~ " ~ M E N ~  

The supersymmetry transformation of the spin-2 field is given by 

se;, = Ssusy(Are,La) + EWARA" 
1. - , - a  = r q. 

(2.4) 

(2.5) 

The compensating SO(1, 10) rotation - -  
a,, = 1. *l&f,YI, - a., = + i s E r , p r a 9 a  (2.6) 

restores the gauge (2.1). The spin-1 fields transform into 

SBpm = -4iA-s,am[Er?'~\II+E'f',(77ah +s?"?').\lrL]. (2.7) 
Variation of the spin-; fields YL (2.3) yields the lengthy expression 

8.\uL = [B, + W L , ( , f a b )  -~S~,B;]E '  

+ (+sfLfaP - e:["fP1)(-~ASR&,,fa +$fiA-SFapcdrCd)~' 
- sA-'e,"f"[d, +$;,,rap -aW,,bfah -4(1+ s)(A-'a,A)]rLs' 

4~ f b c d  + (1 - s)nh(,, ,e:Pfa&l+ &fiA-'e:[ -SFabcdf,fabcd - abcd 

+(8sF,Fpy'- 126~ ' rYS1)FPY~dfd  + ( 3 ~ f , f ~ ~ " - 4 4 S [ , P f ~ " ~ ) F p ~ f i ~ ] & '  (2.8) 

= wLeP + 2seLi,e&;a,,,B;. (2.9) 

3. Covariantisation for D = 5 

To establish local USp(8) covariance we give some notation and definitions for the 
5 + 6  coordinate split. The d = 11 y matrices are represented by 

(3.1) 

For y e  ( a  = 0, . . . , 4 )  we use the conventions of [3]. r" and R are real antisymmetric 
8 x 8 matrices: 

{ra,  r b }  = 2 p i  R2 = -1. (3.2) 
Accordingly, the D = 11 Dirac indices are split as (g ,  A )  where g is the D = 5 index 
and A is the 'internal' SO(6) spinor index. We will suppress the index g in the 
following. The SO(6) part of the local Lorentz group acting on Majorana spinors can 
be extended to USp(8) with the 36 generators R, rab, iYb'  satisfying 

A' = - A  

(nil)'= RA. 
(3.3) 
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We can raise and lower USp(8) indices by means of the symplectic metric a. Thus 

T A  = a A B q B  ( 3 . 4 )  

transforms in the complex conjugate representation of VIB by virtue of ( 3 . 3 ) .  It follows 
that USp(8) is compatible with the d = 1 1  Majorana condition which in turn is 
equivalent to the D = 5 pseudo-Majorana condition [ 3 ]  

qA = Y 5 R A B ( q B ) * .  ( 3 . 5 )  

The next step is to regroup the 48 spin-; fields qaA into a representation of USp(8). 
This is done as follows [ 2 , 3 ] :  

where (. . .) denotes antisymmetric tensors which are traceless with respect to R. xABC 

satisfies the reality condition 

7 5  ( X A B C  * *  ( 3 . 7 )  

j A B C Y p ~ , X A B c  = 6iQa(vab +frar6),i .wpq, ( 3 . 8 )  

X A B C  = 

We note the identity 

which renders the spin-; kinetic term diagonal. 
From ( 2 . 5 )  and ( 2 . 7 )  we obtain the USp(8) covariant transformation laws 

s e ;  
SBm=-' ~ ~ A B ( E ~ Y I . ~ - ~ ~ ' ~ E C ~ : X ~ ~ ~ )  

where the generalised vielbein e,", is defined as 

( 3 . 9 )  

eTB= i ~ - " ~ e ~ ~ r z ~  (3 .10)  

and thereby assigned to the 22 representation of USp(8). As explained in [ 4 ]  one must 
introduce a local USp(8) to avoid the emergence of new degrees of freedom; (3 .10)  
then corresponds to a special gauge choice. Raising indices gives emAB = ( e z B ) * .  

Using properties of the d = 7 Clifford algebra [ 2 , 4 ]  the supersymmetry transforma- 
tion of eZB can be cast into the form 

with 

(3 .12)  - E  FGH 
Z A B C D  = ~ [ A x B C D ] + ~ E A B C D E F G H E  x 

and the USp(8) parameter 

= - + i ( g r a p 6 ) r a b  + & i ( ~ r , ~ q ~ ) r ~ ~ ~ .  (3 .13)  

(ZABcD)" and thus 
transforms in the 42 representation of USp(8). Discarding the local USp(8) rotation 
we arrive at a manifestly covariant transformation law for e & .  Furthermore the 
right-hand side of (3 .11)  can be interpreted as a (local) E6 rotation in the fundamental 
- 27 representation. 

ABCD = ZABC- is antisymmetric, traceless and pseudoreal: Z 
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We must then rewrite the fermionic variations. Just as in [4,5], (2.8) can be 
simplified by the introduction of further USp(8) covariant quantities. These are found 
in exactly the same fashion as in [4,5] and are given by (we omit all primes in the 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

In the reduction to D = 5 where the y dependence is dropped, these results agree with 
those of [3]. 

4. Covariantisation for D = 6 

Since the procedure should be clear, we just quote the results for D = 6 in this section. 
According to the 6 + 5 coordinate split the d = 11 y matrices are represented by 

F a =  y " 8 1  y e P ~ W  = E a P y S E S r *  

r a h c d e  - - iEahcde  (4.1) F a  = r*oy - 

y a  and r" correspond to r" and y a  of the last section with an additional factor of i 
due to the metric 7"' = diag(+, -, . . . , -), 77'' = diag(-, . . . , -). 

In  D = 6 there exist Weyl spinors. The projectors are 

n, =;(I + r*)o 1. (4.2) 
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We want to extend the internal SO(5) Lorentz group (table 1) so we assign the chiral 
spinor components (which are still (pseudo)-Majorana spinors) to representations of 
SO(5) x SO(5): 

A and A denote the spinor indices of the first and the second SO(5) in SO(5) x S0(5) ,  
respectively; a and H are the corresponding vector indices. The original SO(5) is, of 
course, embedded as the diagonal subgroup (just as for D = 3 [5]). 

We redefine the spin-; fields 

and introduce the '16-bein' 

emAB = ih-'/4eamr:B. (4.5) 

This yields SO(5) x SO(5) covariant expressions for the transformation laws (2.5) and 
(2.7): 

Se," = - t i (EAyaqpA+ g A y a q p A )  (4.6) 

(4.7) SB," = -iem A B[ & - A  r * . \ I r p ~ 4 ~ ( ~ Y C L r h ) A X h ~ ] + ( A t , A ,  a - 8 ) .  

Discarding a local SO(5) x SO(5) rotation we obtain for the supersymmetry transforma- 
tion of emAB the covariant result 

aemAB = -$(ccracDx6D - DXaD)(raemr6)AB. (4.8) 

One can interpret (4.8) as a (local) E5(+5j = SO(5,5) rotation in the following way. 
The spinor representation of S0(5 ,5)  has 32 components. In the Weyl basis it is 
sufficient to consider the 16 upper components. We use the explicit form 

Acting on emAB the generators and f$(I= AB,. . .) give rise to the proper 
SO(5) x SO(5) transformationt. The introduction of E5(+5) valued fields (a,  sd) leads 
to SO(5) x SO(5) covariant expressions for the fermionic transformation laws. With 
the abbreviation 

F a a h  = Eahcde FaCde Fa = E a b c d e F h L d e  

one finds 

~ n , a b = - f " , a h + ( a / 2 4 ) F ~ ~ u h  

%w a6 = -1 2"p ah - ( a i 2 4 1  Fpah  

(4.10) 

f ThisJepresentation is in fact sixteen dimensional, because we can impose the SO(5, 5)  Majorana condition 
e;" = C,J(eyi)*, Cn~,c.fi = C,  ac.C;bs. e"'@''-= transforms in the complex conjugate SO(5,  5)  rep- 
resentation. In  the gauge (4.5): e"'nB = e"'+,'. 
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(4.13) 

(4.14) 

5. Concluding remarks 

The H11-D (and E1l-D) structure of d = 11 supergravity has now been established for 
D = 3,4,  5,6. After a coordinate split the various components of the d = 11 graviton 
and  the three-index 'photon' are combined into irreducible representations of the group 
HI1-D. The key ingredient is the generalised vielbein field [4,5] 

ern - A-(em,ra (5.1) 
which satisfies a 'generalised vielbein postulate' covariant under global E,  rotations. 
The fermionic redefinitions coincide with those needed to diagonalise the Rarita- 
Schwinger terms after dimensional reduction. One obtains HI1-D covariant expressions 
for the supersymmetry transformation laws; the covariance of the equations of motion 
follows by the usual arguments [4]. There is little doubt that the procedure can also 
be carried out for the remaining values of D. For D = 7 the necessary redefinitions 
and field assignments can be read off directly from [7]. 
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The general coordinate transformations take a rather unusual form in the covarian- 
tised versions of d = 11 supergravity. For the elfbein E M A  compensating SO(1, 10) 
rotations are needed to preserve the gauge (2.1) and a transformation with parameter 
[" = -B,"[" is included [4]. For (5.1) one finds 

agcem = [ ' " ( % , e " + s a , , B ~ e " + a , B ~ e " ) + [ " a , e "  -san["em - a n e m e n .  (5.2) 

Comparing with (3.19) and (4.11) we see that (%,,, dP) generate a D-dimensional 
general coordinate transformation of em. The (1 1 - D)-dimensional part of (5.2) can 
also be expressed as a rotation, with parameter ["(;%,,, +&,) (cf (3.20), (4.12)) 
and a corresponding term in which ["(eanameb,) is replaced by eamam["ebn. 
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