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The genus-two bosonic and fermionic string partition functions factorize, in the separating pinching limit, into genus-one par- 
tition functions after integrating out the supermoduli with super-Beltrami support on the puncture points in the fermionic and 
heterotic case. 

One very important aspect of string theory is the consistency of higher loop scattering amplitudes. In contrast 
to the one-loop expressions [ 1,2 ], the results for higher loops [ 3 ] are much less straightforward to obtain. The 
difficulties originate in the complicated structure of moduli or supermoduli space. In this letter we will show 
that the two-loop partition functions of the bosonic and fermionic string, derived from a path integral approach 
[4], correctly factorize into the known one-loop expressions pinching the zero homology cycle. For the bosonic 
string, the contribution of the reparametrization ghosts does not simply cancel two bosonic degrees of  freedom 
as in the one-loop case. This follows from the non-existence of a globally defined light-cone gauge for more than 
one loop. However, the dependence of the insertion points of  the three ghost fields disappears in this pinching 
limit. For the fermionic string we follow the approach of ref. [4] by first integrating out the supermoduli. Then, 
by identifying the insertion points of  the super-Beltrami differentials with the two puncture points, in the pinch- 
ing limit [ 5,6 ], the one-loop partition function of the fermionic string is obtained for each spin structure. Fol- 
lowing this procedure we will show that only the matter part of the supercurrent contributes in the pinching 
limit ~1 

In the path integral formulation the two-loop partition function of the bosonic string is given by 

~ i3i 3 f 3 3 F2 = d2miI-[ d2r~; @ X ~ b @ 6 ~ c ~ g e x p ( - S )  l~ (qilb) ]-[ (0116). (1) 
i=1 i=l i=1 i=1 

The rn~ denote the three complex moduli of the genus-two Riemann surface Z2 and the r/~ are the three Beltrami 
differentials dual to the one-forms dm~. The insertion of the (rlglb) is necessary for the absorption of the three 
b-zero modes. (Any non-vanishing correlation function requires (N+  3 ) b and 6, and N (c and ~ insertions. ) 
Thus, the computation of this path integral involves the following correlation functions: 

( 1 ) x =  ~ X e x p ( - S )  = dp~ dp~ exp[ -21tp~ (Im I2)opy] IZI (~¢~) I -26 ]Z 1 (g2) 1-26 , (2) 

(b(Wl) b(w2) b(w3))  ~ [Z2(wl , w2, w a ) / Z V  2 ] (~Q) , (3) 

I On leave of absence from Physics Department, Korea Advanced Institute of Science and Technology, P.O. Box 150 Chongryang, Seoul, 
Korea. 

~ Recently Yasuda [ 7 ] has discussed the factorization behaviour of the four-graviton superstring amplitude. 

0370-2693/88/$ 03.50 © Elsevier Science Publishers B.V. 
( North-Holland Physics Publishing Division ) 

433 



Volume 208, number 3,4 PHYSICS LETTERS B 21 July 1988 

where 12 is the genus-two period matrix. Z~ can be computed by relating it to the correlation function of two b 
and one c field of conformal spin 1 and 0, respectively, and background charge Q = 1 [ 8 ] 

Z3/2 = 1 Z j ( z l , z z ,  W)= 1 O(zl + z 2 - w - 3 1 g 2 )  E( z l , z2 )  a ( z l ) a ( z 2 )  (4) 
det 09~(zj) det 09t(zj) E(z~, w) E(z2, w) a(w)  

Similarly one obtains for Z2 [ 8 ] 

Z2(wl,w2, w3)=O(Wl-Fwa"Fw3-3zJlff2)E(Wl,W2)E(wl,w3)E(w2, w3) a3(wl)~73(w2)a3(w3). ( 5 )  

The O(zl g2) are the Riemann theta functions, E(z,  w) the prime form, J the Riemann theta constant and a(z)  
a holomorphic section of a trivial line bundle of rank g/2 tensors (see e.g. ref. [ 8 ] ). 

We will study the partition function near the boundary 3~ of moduli space which corresponds to pinching Z2 
along the trivial homology cycle. Near zJ~ the period matrix £2 of Z2 can be expanded as 

g2=(0~ 202)+a(0  ; ) + O ( t 2 , ,  (6) 

where 2-1 and 2" 2 are the Teichmiiller parameters of the tori T~ and T2 into which Z2 decomposes at 3~, i.e. t=0.  
We can picture Z2 near/11 as two tori T~ and T2 connected by a cylinder C which becomes infinitely long as t--,0. 
The length of the cylinder, T, is related to t by I t I = exp ( - T). Alternatively, we can view the surface as two tori 
connected by an annulus A whose inner radius shrinks to zero as t--*0. A point z on A is related to a point z' on 
C via z' = ( 1/2zd) In z. 

Let us list the pinching limits of various quantities needed below [ 8 ]: 

E(z l ,  z2)--~t- l /eE(zl ,pl)  E(P2, z2)(dpl )1/2(dP2)1/2, 

E(z l ,  z3)--, - t - l /4E(z l ,  Pl ) z3 (dz3)-l /2(dpl )1/2, 

E(z2, z3) --,t-~/4E(z2, Pz) (dz3) -WZ(dp2 )1/2, 

a(zl ) 1 likewise for a(z2) a(z3) ~ 1 dz3. (7) 
a(z. ) ~ a(pl ) E(z . ,  Pl~) ' ' z3 

and 

\ i =  1 j =  1 k =  1 

~ 0 [ ~ 1 ]  z } i ) -mp l -QAl l2 -1  0[c~2] -QA212-2 • 
\ i =  I 

(8) 

Here zl (z2) denote points on the tori TL (T2) and z 3 a point on the annulus A. Pl and to 2 are the puncture points 
on T~ and T2, respectively. For genus one the prime form is 

E(z, w)= 
01(z-wit) a(z l )  (dz,)  1/2 

O'(Olr ) (dzdw)  1/2' a(z'l) - -  (dZPl) 1/2" 

¢J = (dr, ~2 ); for d an even spin structure, dj and d2 are either both even or both odd. Also, we will use the notation 
O[6=O](zl t2)=O(zlt2)  and O 1 =vtl/2j.arl/21 At g = l , 3 = ½ (  l +r)  and O(z+ 231r )~O(z l r ) ,  O(z+Q31T)~Ol ( z+  
( Q -  1 ) 31 O, up to z-independent phases which cancel in our final results; furthermore 01 (0l r) =0.  Note that 
the factorization properties of  the Riemann 0-functions are exactly such that at the torus the net ghost number 
is zero if one imagines nl ~2) c-ghost insertions at the puncture points pl ~2). This has also important consequences 
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when determining the lowest (mass)2 string state which is exchanged between the two toil. The Beltrami differ- 
entials become [ 6 ] 

l 1 
= - -  dz® (dz) -1 t/~2= - -  dZ® (dz) -~ 

rh' Imz~ ' Imz2 ' 

l z  1 1 1 
t b - -  - -  dZ® (dz) -1 . . . .  d~'® (dz ' )  -~ , (9) 

t Zlog [tl t log Itl 

where t/~,, t/~2 and t/t have support on TI, T: and C, respectively. 
Applying these formulae to eqs. ( 3 ) -  ( 5 ), it is easy to verify that Zl, Zz (Wl, w2, w3 ) factorize as follows: 

Zl/E-~t/(zl) t/(z2) , Za(wl, w2, Wa)-~(1/tw 2) t/a(zl) t/3(z2) (10,11) 

[ t/(z) being the Dedekind t/-function ]. The dependence on the ghost insertion points disappears in this pinching 
limit as 01 (Wl -P l  ) /E(Wl,  p, ) ~ 0'1 (0). The wrintegral implied by (t/t ]b), together with the factor l /w  2 in eq. 
( 11 ) gives I. Combining all the various factors and performing the w~, wz, w3 integrals with the Beltrami differ- 
entials as given in eq. (9),  we obtain for the bosonic string partition function 

1..~2 m.~ f d2Tl d2T2 ; d2t ~ " 1 --13 __48( 1 ~13 --48 

To recognize the implications of the factorization it is convenient to transform the annular coordinates w into 
the coordinate w' on the cylinder. Then, the t-integral turns into f<~ dTexp (m2T)  (m2= - 2 )  describing the 
exchange of the tachyon between the two tori. 

To get a better understanding of the tachyon exchange let us examine the operators appearing in the degener- 
ate limit [ 9,10 ] 

F2~ T, < b ( ~  [q~h> <~hl )(t/t [b)(~h [q~h> <~h[ )b> T2 ' (13) 

where a complete set of states has been inserted at each end of the cylinder. The states have been labelled by 
their conformal weights. The cylinder will contribute a factor ( 1/t) dt t h from the state q~h propagating through 
the cylinder. To leading order in the pinching parameter t the state with the lowest conformal weight h will 
dominate. From the factorization properties of the 0-function we see that this state is the ghost field c with 
h = - 1, which is just the tachyon vertex operator at zero momentum. This ghost state is also needed to get non- 
vanishing correlation functions on the two tori as well as on the cylinder, according to the Riemann-Roch 
theorem for Riemann surfaces with punctures. 

Finally let us mention that the expression ( 1 ) has exactly the same factorization behaviour as the two-loop 
partition function obtained by considering modular forms of weight ten [ 3,11,12 ] 

f 1 i_ 4 /~2 = d2(2 (det im f2)13 ]z~(2)(~ ) • (14) 

The cusp-form A ( 2 ) 

10 
d(2 ) (~ )=  ~I O[~i](O]~2)"-~tt/12(~:l) t/12(~'2) (15) 

i=1 

leads again to the It1-4 dependence in the pinching limit. Thus, we conjecture that the path integral expression 
is identical to eq. (14). It is clear that the b, c ghosts make a qualitatively different contribution to/"2 than the 
bosonic X-system. 

For the heterotic string the two-loop partition function is 
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/'2 = f I~ dmidn~z ~I d(, ~, e6Wr, (16) 
i,[=1 a=l  

where 

W,=  f ~ X ~ r e x p ( - S [ X ,  ~ ] ) f  ~6~Cexp(-S[5, C]) f @B,~Crexp(-S[B, C])  

× 1-I 8( (Za IB) ) l-I (r/i rB) (r /r iB).  (17) 
~1 1,1 

Here C and B are superfields containing the right-moving conformal and superconformal ghosts (c, ~,) and anti- 
ghosts (b, fl). r/;, r/; and Xa are the Beltrami and super-Beltrami differentials. They project out the zero-modes of 
B corresponding to changes in the (super)conformal structure of the genus-two Riemann surface Z2 and the 
insertions (r/;IB), 8 ( (za lB))  restrict the B integration to modes orthogonal to the zero modes. The sum over 
spin structures 6 reflects the fact that we can impose periodic or antiperiodic boundary conditions for ~u, p and 
~, along the homology cycles o f  Y.2, Since the V a and the gravitino transform under supersymmetry with the same 
supertransformation parameter, the ~u, fl and y carry the same spin structure 6. ~6 are phases that ensure mod- 
ular invariance of the partition function. For odd spin structures, W6 vanishes identically due to the ~u zero- 
modes. From now on 6 will always denote an even spin structure on Z2. Finally, mi, n~r and (a are the moduli 
and supermoduli. Following the literature [ 6 ] we choose a metric on Z2 such that r/TJ= r / j =  r/az z = ~azg= 0 and 
for the gravitini Zfl = ~ a  Ca 8(2) (Z- Z a ) where z~.2 are as yet arbitrary points on X2 (however, c.f. below). We can 
then perform the integration over the supermoduli to arrive at [ 13 ] 

Wn= (?]/-I~) ~(Zo) Y(gl) Y(z2) 17 (~/ilb)+~(Zo) Y(Zl)O~(z2) E ( - l ) j + t  17 (qilb) 
i j = l  ~ m j  i ~ j  

+ ,(zo) ( - 1 ) - ,  0z, ) _~.~7-. 1-I (n;Ib) • (18) 
y=l ornj i # j  6 / 

Here we have bosonized the fl, y ghost system and dropped terms which vanish by (b, 6) ghost number conser- 
vation. The picture changing operator Y splits into three parts labelled by their superconformal ghost charge 

y =  y(o)+ y ( t ) +  y(2) (19) 

with 

Y(°)(z)=cO~(z) , Y(l)(z)=exp(q~) T~atter(z)=exp(q~) ~'OXu(z ) , 

y(2) (z) = - ~ [2(0~) exp(2q~) b(z) + r/0(exp(2~) b(z) ) ] = - ~ (20z, +0~ ) q(z ' )  exp [2q~(z) ]b(z) ~, = .  

We will show that near At only the first term in W6 contributes and factorizes into the product of two genus-one 
partition functions for each spin structure separately if we put z~ and z2, the support of the super-Beltramis, or 
equivalently, the insertion points of the picture changing operators, to the puncture points p~ and P2, as we are 
instructed to do following refs. [ 5,6]. We will first take the limit t ~ 0  and then put z~,2 to the puncture points. 
Let us start with the term quadratic in the picture changing operator. Conservation of conformal or super- 
conformal ghost charge dictates that only three out of nine possible terms contribute, namely 
Y(J ) (zj) y(l  ) (Z2) + y(o) (Z 1 ) y(2) (2 2 ) + y(2) (21 ) y (o)  ( z  2 ). We will denote their contributions to the partition 
function by W~ ~l) + W~ °2) + W~ 2°). Let us consider them in turn. The various correlation functions can be 
found in ref. [ 8 ]. 

W~ ll) . For the holomorphic part we need the following correlators and their pinching limits. (We will only 
keep terms to lowest order in t and L) 
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(0XU(Zl) (dzl) OX~(z2) (dr2))  ~ I Z~ I -~o 
1 

(det Im r) 5 [ -2~z2~°i(z i  ) (Im z)ffltos(z2) + O102 In E(Zl, z2) ]8 u" 

01 [62 ] (Z2 --p2 I "t'2) "~,g 
E(22, P2) j=uv. 

1 1 1 

( 1 dZl ) (  1 dz2 ) , .  
--, i- IZ, I '° (Im-z,)gJklZ~l l° ~ ~u . O ( t ) ,  

where we have dropped constant factors. 

1 4[d] (01 O) 0[l~] (ZI--Z2 [O) ~/tp 
(~/u(zl) ~,(z2) )e = Z~/----~ 0 E(zl, z2) 

,'2 [ 1 a o,[o,](z,-pllz,))(z1T/2o4[62](olz2 ) t ' ~Z---~0 [a , ] (01z,)  E(z,,p,) 

Notice that this vanishes if 61 or 02 are odd spin structures. 

(20) 

(21) 

(~(x)  exp [q~(zl ) ] (dzl)-3/2 exp [0(z2) ] (dz2)-3/2)n =Zl/2 
0[t~] (zl +z2 -2A I t2) E(zl, z2) a(zl)2a(zz) 2 

t,/2( zl/2 e(z, p,) zl/2  (p2)2  
, - ~ - ~ ) 2 ] \ O [ 0 2 1 ( z 2 _ p 2 1 z 2 ) E ( z 2 , p 2 ) ~ } .  (22) \O[Ol l (z l -p l l z l )  

The remaining correlation functions have been given before. From the antiholomorphic part we also get a con- 
tribution from the sixteen-dimensional lattice corresponding to the spin structure 6. Its contribution is given in 
terms of 0-functions and they factorize in the pinching limit according to eq. (7). Putting everything together 
we finally get 

fdZt (  f d2Zl l 04[~,](O[z,)Pfdtti¢e('~,)~( f d2z2 1 O4[¢~2](Ol'c2)P~auice(e2)'~ F~= 
d Itl 2 . J (Im z,) 2 (Im z,) ---------~ q'2(z,) ~ J \  J (Im z2) 2 (Im z2) ~ r/'2(z2) q24(,2) ] "  

(23) 

From this we see that the lightest exchanged particle is the dilaton (cf. the discussion of the superstring below). 
WJ °2) . We will show that WJ °2) vanishes in the pinching limit. We write 

W~ °2)= f VI rli(w,)C~ °2) , (24) 
i=1 

wi 

where 

C~ °2) = - ~ (20z~ + 0z2) c(zl ) (dz l ) - lb(z2)  (dz2) 2 h b(wi) (dwi) 2 
i=1 

× (~(Zo) 0~,~(zl) (dzl) q(z~) (dz~) exp[20(zz)l(dzz)-4)n (dz2) . (25) 
Z 2 ~ z  2 

It is straightforward to show that in the pinching limit it has the following w3-dependence (w~ = ( l / 2 n i )  
× log w3 ~ C): C~ °2) ~ w; 3 (dw3)2.  This comes entirely from the bc-correlator, as is easy to see. Using the expres- 
sion for q, (w3) given in eq. (8) and integrating over w3 we get zero. I.e. W] °2) vanishes in the pinching limit. 

W~ 2°) . It vanishes by an argument identical to the one above. 
Let us now turn our attention to the terms in eq. (18) linear in the picture changing operator. Here, by ghost 

charge conservation only y(2) contributes. Let us concentrate on the second line in eq. (18). We will show that 
each term in the sum vanishes separately. The third line then vanishes by symmetry under interchange of Zl and 
z2. Near AI the moduli m~ are z,, z2 and t. The term proportional to 0Z2/0r 2 contains a factor 
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¢ 
(b(zj) (dz,)2 (q,, I b) (q, I b) ) = J q~, (Wl) ~,(W3) (b(Zl) (dz~)2b(w, ) (dw~)2b(w3) (dw3) 2) . (26) 

wt 

The b-correlation function is 

(b(zl) (dzj)2b(Wl ) (dw I )2b(w3) (dw3) 2 ) 

= ZF1/20(Z~ +wl +w3 -3A I g2) E(z~, wl ) E(z~, w3) E(wl, w3) tr3(zl ) tr3(wl ) a3(w3) • (27) 

In the pinching limit z~, w~eT~, w; = (1/2~i)  log w3eC, where the restriction on w~ and w3 comes from the 
support of q¢, and q, respectively. Then 

0(z, +wl -t- w3-  3A 112)--,0(z, -l-w1 - 2 p ,  -3 / I  1 Iv1) 0(-3A2 [ h ) = 0 .  (28) 

The reason why this term vanishes in the pinching limit is clear. There is no b-insertion on T2. 
The term proportional to Oz2/Oz~ contains a factor 

(20~ +0~, ) (b(wz) (dw2)2b(zl) (dz~)2b(w3) (dw3) 2 ) (~(Zo) ?/(21 ) 0~(22) exp [2•(zl) ] )n z~ =z, (29) 

In the pinching limit, zl KTl, 7.2, w2eT2 and w3eA. In this limit the above expression becomes 

( O[62](2z2-2p2) ) 
(20_ i +0., ) (27t)-ttl-3('r2) 02[62] (z2_P2) 021(22 --P2) 

( O[~11(2z'-2z'~) 04(zl-P' ) ) 1 
- ~ , ( 3 0 )  X (27~)37]9('L'1) 02[~11(2z~-z'~-p~) 02(z'~-Pl) w3 Ztl=Zl 

which vanishes for even spin structure ~1 upon differentiation and setting Z'l = Z l since then 0' [ ~ ] (0) = 0. For 
odd spin structure ~j the factor coming from the ~u integration, ( 1 ) ~, vanishes in the pinching limit. This is easy 
to understand since for ~ and ~2 odd spin structures, the g/zero-modes on the two tori lead to a vanishing result. 
A different argument why this term is zero is that ( 1/v~ ) 0z2 itself vanishes as z2--,p> The puncture point on T2 
should not depend on the Teichmtiller parameter of T~. 

The last term finally vanishes since Oz2/Ot = 0 for z2--,p> This is so because t parametrizes a family of surfaces 
near A~ of the moduli space of Z2 all of which have the same pinching limit (namely t ~ 0 )  and therefore the 
same puncture points. 

The pinching limit of the type II superstring partition function is obtained by repeating the calculation of the 
holomorphic sector of the heterotic string for the antiholomorphic sector. The only difference is the correlation 
function of the bosonic matter fields (OX ~ (zl) aXe(z2) OXP(g~ ) OX°(f~)) which now produces a factor (to 
lowest order in t) (Im z~ ) -6 ( Im z2) -6. Also, the terms proportional to ~zo/Omr and OZa/Om~ which spoil the 
factorization of the two-loop partition function into an holomorphic and an anti-holomorphic part, can be shown 
to vanish either by (b,/7) conservation or by arguments identical to the ones discussed in the heterotic case. 
Multiplying the holomorphic and anti-holomorphic parts we finally obtain for a given even spin structure 
6= (~ ,  ~2) 

( )( ) 04[62] (0l Z2) 
F2~-- f d2z~ d2r2 f T ~  d2t (-]mm ~,) 6 1  04[~1] (01v~)q(v~)t2 (Im z2) 6 t/(z2) 12 . (31) 

A 

The lightest exchanged particle, corresponding to the lowest power in t, is a massless dilaton, as indicated by the 
factor 1 / I t l 2 in eq. (31 ). This can be seen if we replace eq. ( 13 ) by 
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l-'2~T,(OX~'exp((9)b(~ h ICbh)(dPhl)(rltlb)(~ h I~h)(clghl)OXgJexp(fb)b).r2. (32)  

Now the state • with lowest weight h inser ted at the puncture  points  Pl and  P2 can be deduced f rom the factori-  
zat ion proper t ies  of  the 0-functions o f  the ~u, (b, c) and  (fl, y)-correlators  and  the requi rement  o f  ghost number  
conservat ion.  We f ind ~ = c  e x p ( - 0 )  ~. Since this holds for both  the left- and  the r ight-moving sectors, we 
conclude that  the lightest exchanged state is a massless di laton.  This  is true for each spin structure separately 

and due to the integrat ion over  the supermodul i .  
In conclusion, we have shown that  only W ]  ~t ) does contr ibute  to the par t i t ion  function in the pinching l imit .  

Fur thermore ,  the factor izat ion behav iour  into genus-one par t i t ion  functions is true for each spin structure sep- 
arately. Therefore,  these arguments  can be easily generalized for general (heterot ic)  string theories in an arbi-  
t rary number  of  dimensions.  

Note added in proof The observat ion of  the absence o f t achyon  exchange in the superstr ing and heterot ic  string 
even before the sum over spin structures is performed,  is a lready conta ined in ref. [ 14 ]. We want  to thank 
Professor I. Iengo for bringing this to our  at tention.  

One of  us ( I .G .K. )  would like to thank R. Dijkgraaf,  J. Sidenius, E. Verlinde and H. Verl inde for useful 
discussions. He also thanks the MPI  for hospi ta l i ty  and acknowledges a research grant f rom KOSEF.  
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