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The genus-two bosonic and fermionic string partition functions factorize, in the separating pinching limit, into genus-one par-
tition functions after integrating out the supermoduli with super-Beltrami support on the puncture points in the fermionic and
heterotic case.

One very important aspect of string theory is the consistency of higher loop scattering amplitudes. In contrast
to the one-loop expressions [1,2], the results for higher loops [3] are much less straightforward to obtain. The
difficulties originate in the complicated structure of moduli or supermoduli space. In this letter we will show
that the two-loop partition functions of the bosonic and fermionic string, derived from a path integral approach
[4], correctly factorize into the known one-loop expressions pinching the zero homology cycle. For the bosonic
string, the contribution of the reparametrization ghosts does not simply cancel two bosonic degrees of freedom
as in the one-loop case. This follows from the non-existence of a globally defined light-cone gauge for more than
one loop. However, the dependence of the insertion points of the three ghost fields disappears in this pinching
limit. For the fermionic string we follow the approach of ref. [4] by first integrating out the supermoduli. Then,
by identifying the insertion points of the super-Beltrami differentials with the two puncture points, in the pinch-
ing limit {5,6], the one-loop partition function of the fermionic string is obtained for each spin structure. Fol-
lowing this procedure we will show that only the matter part of the supercurrent contributes in the pinching
limit #!,

In the path integral formulation the two-loop partition function of the bosonic string is given by

3 3 3 3

= | J[dm[] dzrﬁ;j 2X 2b 2b 2c 2¢exp(—S) [1 (n:16) [1 (77:16) . (1)
i=1 i=1 i=1 i=1

The m;, denote the three complex moduli of the genus-two Riemann surface X, and the #; are the three Beltrami

differentials dual to the one-forms dm,. The insertion of the (7| b) is necessary for the absorption of the three

b-zero modes. (Any non-vanishing correlation function requires (N+3) b and 5, and N (c and ¢ insertions. )

Thus, the computation of this path integral involves the following correlation functions:

1
detIm Q

13

(yx= j PXexp(—S)= Jdp‘( dp} exp[—2ap¥ (Im Q);p/11Z,(2)| %= 1 Z,(2)17%,  (2)

Ch(wy) b(wy) b(ws) ) ~ [Zo(wy, wa, w3) /Z121(R) (3)

' On leave of absence from Physics Department, Korea Advanced Institute of Science and Technology, P.O. Box 150 Chongryang, Seoul,
Korea.
#! Recently Yasuda [7] has discussed the factorization behaviour of the four-graviton superstring amplitude.
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where £ is the genus-two period matrix. Z; can be computed by relating it to the correlation function of two b
and one ¢ field of conformal spin 1 and 0, respectively, and background charge Q=1 [8]

1 1 E(z,, 2,) 6(z,) 0(z3)
3/2_ 4 - —W—
U= et wi(2) Z(2), 22, W)= detw,(z,) 0(z,+z,—w—-4|Q) E(z,,w) E(z5, W) a(w) (4)
Similarly one obtains for Z, [8]
Zy(wi, wy, w3) =0(w; +wy +w;y =34| Q) E(w,, wy) E(w;, w3) E(w;, w3) 63 (w,) 0*(w,) a(ws). (5)

The 6(z|82) are the Riemann theta functions, E£(z, w) the prime form, 4 the Riemann theta constant and o(z)
a holomorphic section of a trivial line bundle of rank g/2 tensors (see e.g. ref. [8]).

We will study the partition function near the boundary 4, of moduli space which corresponds to pinching X,
along the trivial homology cycle. Near 4, the period matrix Q of X, can be expanded as

7, 0 0 ¢
Q:(O _[2>+a<[ 0>+O(t2), (6)

where 7, and 7, are the Teichmiiller parameters of the tori T, and T, into which X, decomposes at 4,, i.e. t=0.
We can picture X, near 4, as two tori T, and T, connected by a cylinder C which becomes infinitely long as t—0.
The length of the cylinder, T, is related to ¢ by |#] =exp( —T'). Alternatively, we can view the surface as two tori
connected by an annulus A whose inner radius shrinks to zero as t—0. A point z on A is related to a point z’ on
Cviaz' =(1/2ni)In z.

Let us list the pinching limits of various quantities needed below [8]:

E(z,,2)=t="2E(z,, p1) E(p>, 2) (dp)) "2 (dp,) /7,
E(z), z3)>—t7"*E(z(, p) z3(dz3)~"*(dp,)""?,
E(zy, 23) >t~ *E(z2,, p2) (dz3) ~'/*(dp2) "2,

o(z,) 1
o(p) E(z,p1)’

. . 1
a(z,)—> likewise for o(z,) , o(z3)— Z dz;. (7)

and

i=

m ) n ) P
0[5]< Zl zi" + Zl 8+ AZI 2§90 —04| 9)
j= (=

m

- 0[(51]<Z z{" —mp, — Q4, |n>9[52](_i Z;Sf’—npz—QAzlrz) . (8)

i=

Here z, (z,) denote points on the tori T,(T,) and z; a point on the annulus A. p, and p, are the puncture points
on T, and T,, respectively. For genus one the prime form is

6, (z—wiT) o(z) _ (dz))'”?
'(0|7)(dzdw)'/?” a(z}) — (dz})'/*’

E(z,w)=

0= (d,, 6,); for 6 an even spin structure, J, and J, are either both even or both odd. Also, we will use the notation
0[6=0](z|R)=06(z|R2) and 8, =0[1/3]. Atg=1,4=1(1+1) and 0(z+24| 1) ~0(z|7), 8(z+ Q4| T)~6,(z+
(Q—-1)4|1), up to z-independent phases which cancel in our final results; furthermore 8, (0] 7) =0. Note that
the factorization properties of the Riemann &-functions are exactly such that at the torus the net ghost number
is zero if one imagines 7, ) c-ghost insertions at the puncture points p, (,,. This has also important consequences
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when determining the lowest (mass)? string state which is exchanged between the two tori. The Beltrami differ-
entials become [6]

1 1

— = -1 — 5 -1
= I, dz®(dz)~', e =1 dz®(dz)~*,
12 1 _ 1 1 1 _ _1
= — - S — s ’ , 9
N [ Zlog [1] dz® (dz) ¢ Tog 171 dz®(dz') 9)

where 7,,, 1., and 7, have support on T, T; and C, respectively.
Applying these formulae to egs. (3)-(5), it is easy to verify that Z,, Z,(w,, w,, w;) factorize as follows:

Z\Pon(n) () s Za(wi, wa, ws) > (1/tw3) (1) n°(%2) (10,11)

[n(1) being the Dedekind #-function]. The dependence on the ghost insertion points disappears in this pinching
limit as 8, (w, —p;)/E(w,, p,) ~61(0). The ws-integral implied by (#,|b), together with the factor 1/w3 in eq.
(11) gives 1. Combining all the various factors and performing the w,, w,, w; integrals with the Beltrami differ-
entials as given in eq. (9), we obtain for the bosonic string partition function

13 13
Iy= | an an [ @2 (=) ineo === In(m))-*. (12)
1 \imn, e

To recognize the implications of the factorization it is convenient to transform the annular coordinates w into
the coordinate w' on the cylinder. Then, the z-integral turns into [$ dTexp(m?2T) (m?= —2) describing the
exchange of the tachyon between the two tori.

To get a better understanding of the tachyon exchange let us examine the operators appearing in the degener-
ate limit [9,10]

Fz~Tl<b<; |¢h><¢h|)(n,|b)(; |(ph><(bh|>b>h: (13)

where a complete set of states has been inserted at each end of the cylinder. The states have been labelled by
their conformal weights. The cylinder will contribute a factor (1/¢) d¢ ¢” from the state &, propagating through
the cylinder. To leading order in the pinching parameter ¢ the state with the lowest conformal weight A will
dominate. From the factorization properties of the #-function we see that this state is the ghost field ¢ with
h= —1, which is just the tachyon vertex operator at zero momentum. This ghost state is also needed to get non-
vanishing correlation functions on the two tori as well as on the cylinder, according to the Riemann-~Roch
theorem for Riemann surfaces with punctures.

Finally let us mention that the expression (1) has exactly the same factorization behaviour as the two-loop
partition function obtained by considering modular forms of weight ten [3,11,12]

1
— 20— - —4
Fz_jdg(detlmg)” |A(2)(‘Q)| . (14)
The cusp-form 45,
10
42 (2)= l:[l 016,1(01Q)~>m" (1)) n'(12) (15)

leads again to the |¢| ~* dependence in the pinching limit. Thus, we conjecture that the path integral expression
is identical to eq. (14). It is clear that the b, ¢ ghosts make a qualitatively different contribution to I'; than the
bosonic X-system.

For the heterotic string the two-loop partition function is
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3 2
ro= [ I1 dmdm: [] 42, 5 W, (16)
NE a=1

ii=1 é
where

Wy= j DX Dysexp(—S[X, v]) J 26 9¢ exp(—S[b, ¢]) j 2B;9Csexp(—S[B, C])
><Hé((xalB))f[_(ﬂi!B)(anB)~ (17)

Here C and B are superfields containing the right-moving conformal and superconformal ghosts (¢, y) and anti-
ghosts (b, ). n,, n; and g, are the Beltrami and super-Beltrami differentials. They project out the zero-modes of
B corresponding to changes in the (super)conformal structure of the genus-two Riemann surface X, and the
insertions (#;| B), 6((x,|B)) restrict the B integration to modes orthogonal to the zero modes. The sum over
spin structures d reflects the fact that we can impose periodic or antiperiodic boundary conditions for y, ffand
y along the homology cycles of X,. Since the y* and the gravitino transform under supersymmetry with the same
supertransformation parameter, the w#, § and y carry the same spin structure 8. €5 are phases that ensure mod-
ular invariance of the partition function. For odd spin structures, W vanishes identically due to the y zero-
modes. From now on 6 will always denote an even spin structure on X,. Finally, m,, /i and {, are the moduli
and supermoduli. Following the literature [6] we choose a metric on X, such that > =9,."=1,"=7..=0 and
for the gravitini x.’=>,{,0® (z—z,) where z, , are as yet arbitrary points on X, (however, c.f. below). We can
then perform the integration over the supermoduli to arrive at [13]

3
Wo=(TT r16) ){ &z0) V() ¥(22) T] (010) +8(z0) Y(2) 8(22) 3, (=) %n (m15)
+ &z) V() 862 3 (1) S]] () (18)
Ha) ¥z 88(a) 3, (1P T (D))

Here we have bosonized the g, y ghost system and dropped terms which vanish by (5, 5) ghost number conser-
vation. The picture changing operator Y splits into three parts labelled by their superconformal ghost charge

Y=Y O 4y 4y@) (19)
with
YOUz)=cd(z), Y'(z)=exp(9) TF"(z)=exp(p) ¥"3X.(2),

Y (2)=—4[2(0n) exp(29) b(z) +n3(exp(2¢) b(2))]= -4 (28, +8.) n(z) exp[2¢(2) 16(2)|

=2z

We will show that near 4, only the first term in W contributes and factorizes into the product of two genus-one
partition functions for each spin structure separately if we put z; and z,, the support of the super-Beltramis, or
equivalently, the insertion points of the picture changing operators, to the puncture points p, and p,, as we are
instructed to do following refs. [5,6]. We will first take the limit —0 and then put z, , to the puncture points.
Let us start with the term quadratic in the picture changing operator. Conservation of conformal or super-
conformal ghost charge dictates that only three out of nine possible terms contribute, namely
Y (z)) YO (2)+YOUz)) YP(2,) + Y P (z,) Y ©(z,). We will denote their contributions to the partition
function by W'V + W§%2 + W §29 Let us consider them in turn. The various correlation functions can be
found in ref. [8].

W §' . For the holomorphic part we need the following correlators and their pinching limits. (We will only
keep terms to lowest order in £ and £.)
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(3X*(2)(d2,) 8X”(22) (dz3) Y ~ | Z4 |(dTI‘m—T) [=27%w,(2,) (Im )5 @,(22) + 3,0, In E(z1, 25) 1647
t 1 le 1 d22 »
- ’(lzl ™ (Im 71)6)<|Zx I (Im rz)ﬁ)‘s” +0@), (20)

where we have dropped constant factors.

0[61(z,—2,19)

Wal2) W) a= o 01810010 L2 A2 5,
Notice that this vanishes if J, or 4, are odd spin structures.
CEx) expl9(21) 1 (d2) >/ explp(22) 1 (d2) 2230 = 212 oo i s
A gtz o) S e e B ) 5) )

The remaining correlation functions have been given before. From the antiholomorphic part we also get a con-
tribution from the sixteen-dimensional lattice corresponding to the spin structure 8. Its contribution is given in
terms of f-functions and they factorize in the pinching limit according to eq. (7). Putting everything together
we finally get

ré— Jgfg(y d’r 1 9“[51](0IT|)Pﬁ,‘mce(ﬂ))(J’ d’n 1 9"[(521(0|Tz)Pﬁfmce(fz)>
PTU P\ (Imt)2 (Imn)* p(n) 72(5) (Im)? (Im5)* 7'%(w) 7)) /-
(23)

From this we see that the lightest exchanged particle is the dilaton (cf. the discussion of the superstring below).
W §92)  We will show that W §°} vanishes in the pinching limit. We write

Wi = [ T now) e, (24)

Wi

where

Ci = 204 +0,){ e(2) (d2) () (@22)° ] b(w) (dw)*)

X <&(20) 9;,&(21) (dz1) n(23) (dz3) exp[2¢(22) 1 (dz2) ~*Ds

 (dz) . (25)

zy=12%

It is straightforward to show that in the pinching limit it has the following w;-dependence (w3 = (1/2xi)
xlog w;eC): C§°? ~ w3 3(dw;)2. This comes entirely from the be-correlator, as is easy to see. Using the expres-
sion for 77,(ws) given in eq. (8) and integrating over w; we get zero. Le. W §°?) vanishes in the pinching limit.

W §2® It vanishes by an argument identical to the one above.

Let us now turn our attention to the terms in eq. (18) linear in the picture changing operator. Here, by ghost
charge conservation only Y2’ contributes. Let us concentrate on the second line in eq. (18). We will show that
each term in the sum vanishes separately. The third line then vanishes by symmetry under interchange of z, and
z,. Near 4, the moduli m; are 1,, 7, and ¢. The term proportional to 0z,/97, contains a factor
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(b(z)(dz))* (1, |1B) (,10) > = j'?n(Wn) n:(ws) (b(z1) (dz))*b(w,) (dw; )b (ws) (dws)?> . (26)

The b-correlation function is
<b(z,)(dz,)2b(wy) (dw; )?b(ws) (dws)?>
=Z7'%0(zi +w, +w; =34 Q) E(z,, w,) E(z,, w3) E(w;, w3) 0*(2,) a*(w;) 03 (w3) . (27)

In the pinching limit z,, w,eT,, wi=(1/2xni) log w;eC, where the restriction on w, and w; comes from the
support of n,, and #, respectively. Then

0(7., +w1 +W3—3A|Q)—>0(Z| +W1 —2p| —3A1 IT]) 0(—3A2 |T2)=0 . (28)

The reason why this term vanishes in the pinching limit is clear. There is no b-insertion on T,.
The term proportional to 0z,/01, contains a factor

(20, +8-,) Cb(w2) (dw,)b(21) (dz,)?b(ws) (dws)?) (&(z0) n(21) 3E(22) exp[26(21) 15 . (29)
In the pinching limit, z,eT,, z,, w-€T, and w;eA. In this limit the above expression becomes

0[6,]1(2z, —2p,) )
02[‘52] (z2-p2) 03(z:—p,)

0[4,]1(2z, —2z}) 9‘1‘(21—1)1))_1_
6%[6,1(2z, =z —p1) 63(z1 —py) w3

(2a_.,l+az.)<(2n)-'n-3(rz)

, (30)

zi=2z1

X ((2”)3'79(71)

which vanishes for even spin structure d, upon differentiation and setting z} =z, since then 8’ [4,](0)=0. For
odd spin structure d, the factor coming from the y integration, (1), vanishes in the pinching limit. This is easy
to understand since for d, and d, odd spin structures, the ¥ zero-modes on the two tori lead to a vanishing result.
A different argument why this term is zero is that (1/7,) 9z, itself vanishes as z,— p,. The puncture point on T,
should not depend on the Teichmiiller parameter of T .

The last term finally vanishes since 0z,/9¢=0 for z,— p,. This is so because ¢ parametrizes a family of surfaces
near 4, of the moduli space of Z, all of which have the same pinching limit (namely 1—»0) and therefore the
same puncture points.

The pinching limit of the type II superstring partition function is obtained by repeating the calculation of the
holomorphic sector of the heterotic string for the antiholomorphic sector. The only difference is the correlation
function of the bosonic matter fields <9X*(z,) 0X*(z,) 0X?(Z7) 9X°(Z5) > which now produces a factor (to
lowest order in ¢) (Imt,)~%(Im1,) ~°. Also, the terms proportional to dz,/ 9 and 0z,/3m; which spoil the
factorization of the two-loop partition function into an holomorphic and an anti-holomorphic part, can be shown
to vanish either by (b, &) conservation or by arguments identical to the ones discussed in the heterotic case.
Multiplying the holomorphic and anti-holomorphic parts we finally obtain for a given even spin structure

6= (3,,3:)
2
). (31)

a3’ 1

1"6 = J‘ 2 2 J -~ -

Fnd ) i\ @me)e
A

The lightest exchanged particle, corresponding to the lowest power in ¢, is a massless dilaton, as indicated by the

factor 1/]¢|%in eq. (31). This can be seen if we replace eq. (13) by

64[,](0]72)
n(t)"?

0416,1(07)) D( 1
()" (Im 7,)°
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F2~Tl<6Xl//exp(¢) b (; |<z>h><<1>hl> (n:1b) (; |d>h><<p,,|>axwexp(¢) b>T2. (32)

Now the state @ with lowest weight 4 inserted at the puncture points p, and p, can be deduced from the factori-
zation properties of the f-functions of the y, (b, ¢) and (f, y)-correlators and the requirement of ghost number
conservation. We find @=c exp(—¢) v. Since this holds for both the left- and the right-moving sectors, we
conclude that the lightest exchanged state is a massless dilaton. This is true for each spin structure separately
and due to the integration over the supermoduli.

In conclusion, we have shown that only W §!! does contribute to the partition function in the pinching limit.
Furthermore, the factorization behaviour into genus-one partition functions is true for each spin structure sep-
arately. Therefore, these arguments can be easily generalized for general (heterotic) string theories in an arbi-
trary number of dimensions.

Note added in proof. The observation of the absence of tachyon exchange in the superstring and heterotic string
even before the sum over spin structures is performed, is already contained in ref. [14]. We want to thank
Professor 1. Iengo for bringing this to our attention.

One of us (I.G.K.) would like to thank R. Dijkgraaf, J. Sidenius, E. Verlinde and H. Verlinde for useful
discussions. He also thanks the MPI for hospitality and acknowledges a research grant from KOSEF.
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