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The graviton contribution to the renormalized one-loop effective stress-energy tensor is calculated
in an arbitrary vacuum space-time with a cosmological constant. This is done for (1) the standard
definition of the effective action and (2) the reparametrization-invariant effective action of Vilkovi-
sky and DeWitt. The renormalized one-loop effective stress-energy tensor is given in terms of the
graviton two-point function, by making use of its symmetric Hadamard representation.

I. INTRODUCTION

The effective action is supposed to contain all informa-
tion about a quantum field theory. Unfortunately, there
is an ambiguity in the definition of the ‘“off-shell”
effective action. S-matrix theory is contained in the
undifferentiated ‘“‘on-shell” effective action and so is
unaffected by this ambiguity. However, there are many
situations in which one wishes to consider, for example,
the differentiated effective action evaluated on shell
where the ambiguity is important. In this paper we shall
consider such a situation, which arises in the context of
linearized gravitational perturbations on a vacuum
space-time. Here there are two preferred candidates for
the effective action. The first of these, here called the
“standard” theory, is obtained from a straightforward
loop expansion of the Einstein-Hilbert action. Unfor-
tunately, this theory appears to depend upon (1) how the
quantum fields are parametrized, (2) the choice of the
background-field gauge, and (3) the choice of the gauge-
fixing term in the action. For these reasons, Vilkovisky
has proposed a new definition of the effective action,
which differs from the standard theory off shell, and is
claimed to have none of these defects.! > DeWitt® has
made a slight modification to this new effective action
(which, however, makes no difference at one-loop order,’
the only order to which we work in this paper) and we
shall thus refer to it as the “Vilkovisky-DeWitt” theory.
For energy scales which are small compared to the
Planck scale of 10! GeV one may hope that one of these
one-loop theories is a good approximation to the correct
theory of quantum gravity.

In this paper we obtain the renormalized one-loop
effective stress-energy tensor for the linearized gravita-
tional field in a vacuum space-time with a cosmological
constant, for both the “standard” and the “Vilkovisky-
DeWitt” theory. Our motivation for this study is two-
fold. First, the effective stress-energy tensor is necessary
to study back-reaction effects due to graviton production,
for example, around a black hole. Second, it can be used
to study the cosmological production of gravitons in the
early Universe, for example, during a de Sitter
(inflationary) stage in the early Universe. The current es-
timates of these effects are based on a particle interpreta-
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tion of the gravitons. This is certainly acceptable at
wavelengths which are short compared to the curvature
scale, but is not trustworthy at the longest wavelengths.
Of particular interest is the difference made by the
Vilkovisky-DeWitt modification.

The fundamental tools employed in this work are the
symmetric Hadamard development of the Green’s func-
tions of the theory and the covariant Taylor-series devel-
opment of bitensors. For the ‘“standard” case, this paper
is a straightforward extension of results already obtained
for a massive spin-0 scalar field by Brown and Ottewill”8
and Bernard and Folacci,’ and for the massless spin-1
electromagnetic field by Brown and Ottewill.® The
method is closely related to the Hadamard renormaliza-
tion scheme originally developed by Adler, Lieberman,
and Ng,'” and by Wald,!! which, however, has the disad-
vantage of involving asymmetric Green’s functions. If
the Green’s function of the graviton is known, then the
renormalized effective stress-energy tensor may be ob-
tained directly from it.

In Sec. II we give the symmetric Hadamard develop-
ment of the graviton and ghost Green’s functions, and ex-
plain the Hadamard renormalization technique. We then
derive the renormalized stress-energy tensor for the
“standard” theory of quantum gravity. Section III con-
tains a brief description of the “Vilkovisky-DeWitt”
definition of the effective action. This is followed by a
calculation of the renormalized stress-energy tensor for
that theory, using the same methods and notation as in
the standard case. The results are compared and dis-
cussed in Sec. IV. The technical details and a discussion
of the covariant Taylor series that they involve may be
found in the Appendix.

We finish this introduction with a step-by-step guide
for the reader who simply wishes to calculate the renor-
malized graviton stress-tensor in a particular space-time,
and is not especially interested in following the deriva-
tion. Such a reader must provide the graviton’s Feynman
Green’s function in the state of interest:
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This function obeys the equation of motion

Gabc'd' =
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( —Dgacgbd _2Racbd )Gabc'd' = %(gc’cgd'd +gc’dgd'c
__gcdgc'd’)sﬂl(x’x,) .
(1.2)

In fact, this Green’s function does not need to be known
exactly, but only up to terms which vanish faster than
o(x,x’) for x close to x’, where o(x,x') is one-half the
square of the geodesic distance between x and x’. One
then defines W%“'¥(x,x') via Eq. (2.9). The necessary
geometrical quantities VY and A!'/? can be found in
Sec. 2 of the Appendix of this paper and in Appendix A
of Ref. 8, respectively. The bitensor W?<'¢ is the finite,
state-dependent part of the Green’s function, with the
geometrical short-distance singularity removed. (If the
Green’s function does not have this singularity structure,
then the associated state has infinite renormalized stress-
energy tensor.) The tensors 59, g9 and 5%/ are
then defined from W44 by Egs. (2.11a)—(2.11c). The re-
normalized one-loop effective stress-energy tensor in a
vacuum space-time is then given for the ‘‘standard”
theory by Eq. (2.19). An additional term, present in the
“Vilkovisky-DeWitt” theory, is given by Eq. (3.17).

A few remarks about our conventions and notation
may be useful to the reader. We use the metric and cur-
vature conventions of Hawking and Ellis'? throughout;
however, we shall find it convenient to use both Latin and
greek tensor indices. We do this merely to make the
equations easier to read; there is no distinction between
them. Bitensors have primed and unprimed tangent-
space indices: the unprimed indices exist at x and the
primed ones at x’. Bitensors (such as W?<'?’) are some-
times referred to, shorn of their indices, in boldface (e.g.,
W). Quantities related to the ghost field carry a tilde
(e.g., V). Given a bitensor (say Q%) we will often
define an “‘equivalent” bitensor with all of the indices at
the point x, by parallel transporting all of the indices to x
(Qc=g9,g%.0%%°). The resulting bitensor (Q*) is a
tensor at x and a scalar at x’. Lower-case letters are used
to refer to the coefficient tensors of the covariant Taylor-
series expansion of a bitensor, for example,
Wop(x,x" ) =w,, +wabaaa+%wabaﬁaaaﬁ+ <-+. We use
units with fi=c =1, and define k’=(327G)~!, where G
denotes Newton’s gravitational constant.

II. RENORMALIZATION OF THE STANDARD
THEORY

We begin by reviewing the theory of a linearized gravi-
tational perturbation around a given background space-
J
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time. We write the metric g,, +h,,, and expand the
Einstein-Hilbert action 2«* [ V' —gd*x(R —2A), keep-
ing only the parts quadratic in h,,, to obtain

S,=k? [V _gd*x[th®Ohy, —LhTh +(Voh,y — 1V, h)?
+h®Roepgh“+h% R %h, —hh Ry,
—4Rhy,h**+ LRR?

+Ah®h,, —LAR?] . 2.1
The action S, is invariant under infinitesimal gauge
transformations h,, —h,, 4§ ,.5) When the background
metric satisfies the vacuum Einstein equation (throughout
the paper, this means “the vacuum Einstein equation
with a cosmological constant A”). The trace of h,, is
h =gabhab.

To quantize the theory we must add a gauge-breaking

term to this action and a compensating complex vector
ghost field 45

Sop=—k> [ V—gd*x(Voh, —1V,h)?, (2.2)

Seu=+> [ V—gd*x A}(g*0+R*)4, . 2.3)
The gauge-breaking term Sy has been chosen to simpli-
fy the form of the equations of motion, and the ghost ac-
tion Sgy is obtained from the gauge-breaking term via
the standard Faddeev-Popov procedure. A° is treated as
a standard bosonic field except that one must include a
factor of (— 1) for each closed ghost loop.

The total action is S=S,+Sgg+Sgu. The wave
equations derived from this action are, for the graviton
and ghost, respectively,

O0=[(—0O+3R —2A)8,:8a —2Rcpa
+ 1(8apRea +8caRap) — tREap8a 1M, (2.4)

0=(g,O0+R,,)A°. (2.5)

Although we will later restrict our work to vacuum
space-times, the above expressions are true for general
space-times; they are necessary because in order to obtain
the stress-energy tensor one needs to make an arbitrary
variation of the metric. Only after performing this varia-
tion can one specialize to the vacuum case.

One can define the classical stress-energy tensor corre-
sponding to each of the three terms in the action as twice
the variation of the action with respect to the back-
ground metric, TH'=2(—g)~ 17288 /88,,- The explicit
expressions can be most easily obtained with the help of
the formulas contained in Appendixes A and B of Ref.
13. For a vacuum space-time, they are

K—2T;2w=_hab;uhab;v_4ha(pDhv)a+2hvah +4hab;a(phv)b_4h;b(;¢hv)b
+4ha(u;v)bhab+4ha(u;v)hab;b+6habhc(uR v)abc+4Ahhuv+2ha(p;abhv)b
+2ha(uhv)b;ab+2ha(y;bhv)b;a_2h;bhb(u;v)__zhab;abhpv_Zhabh;w;ab+hthv
—2hHY R —2hH RV b hFO 2k, kY L hhRY 2 AR RR, Y — 2Rk, B

+g" (2 0h,, —hOh + 3k hy,. —2h .  hy ' —3h, P hy + Ah gy h P+ h PR o gh

—h®hCy. e — L3RR+ 2Ry P+ 20 Py — AR+ RR . — R Ry, )

(2.6)
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K—ZT;év :_‘4hab;a(uhv)b+2h;b(,u.hv)b_2huv;ahab;b+h;ahyv;a+2hya;ahvb;b

— 2k R LpRR Y g B R Ry 4 20, YRy — LR, —h Ry, 2.7)
K—ZT;(L}\;_I:_4AA t(pAv)_ZA *(pDAv)____zmA t(yAv)+2A *b;bA(y;v)+2A t(y;v)A b;b

+2A:A(;A;v)a+2A t(p;v)aAa+2A ta;(pAa;v)__zA ‘(”;HAV);"

+g,uV(AA taAa_ZAa:;bA(a;b')_Ata;(ab)A b_AtbAa;(ab)__Ata;aAb;b) . (2.8)

To make the transition from classical to quantum theory, the classical fields k,, and A° are replaced by operator-valued
distributions }’z\ab and 4% The expectation values of the three operator stress-energy tensors T4, TSy, T4y are then
formally infinite, because the field operators act at the same space-time point. The method which we will use to renor-
malize these quantities is based on the symmetric Hadamard development of the graviton and ghost Feynman Green’s

functions.

We assume that the Feynman functions possess the Hadamard forms

AW Ty (kg (x) | )

Gopear=iK

14,15

(v|¢)
i AI/Z .
=W otie (8c'(a8b)d* — 18ab8ca) + Vaverar (0 +i€)+ Wy | (2.9)
~ (Y| T(A Xx) Apx")) | ) R NY _ _
Goymint A i =5 | oot Vo o i€+ Woy | 2.10)

where V, V, W, and W are smooth bitensor functions of
x and x’. The square of the geodesic distance between x
and x' is denoted by 20(x,x'), and

Alx,x")=(—g)"2(x) det(0, ,, ) —g) ™ H(x")

is the biscalar form of the Van Vleck-Morette deter-
minant.'®!” In flat space-time A(x,x')=1, and in a gen-
eral space-time A(x,x)=1. The parallel propagator'>'?
from x to x' is denoted by g,%(x,x’), and we adopt the
standard convention that unprimed (primed) tensor in-
dices live in the tangent space at x (x’).

It is often considered that the set of “physically al-
lowed” quantum states are exactly those for which the
two-point function has this form,'”!® since any state for
which the two-point function does not possess it has an
infinite renormalized stress-energy tensor. The important
point about the Hadamard form is that the bitensors W
and W, which are analytic in a neighborhood of x =x',
are the only parts of the Green’s functions that depend
upon the quantum state. The bitensors V and V are
geometrical: they are determined completely by the
background space-time, and are independent of the quan-
tum state. Because the Feynman Green’s functions will
only be needed up to order o as x —x’, one only needs
short-distance expansions of V and V to the necessary or-
der. (These are found in Sec. 2 of the Appendix using
standard techniques.'>?)

We now discuss the regularization and renormalization
of expectation values of quantities quadratic in the field.
The purpose of regularization is to replace the formally
infinite quantities such as x*(% ®#(x)h,,**(x)), which
appear in the formal quantum version of expressions
(2.6)-(2.8) for T*” by finite quantities, in such a way that
the resulting finite quantities have the correct dependence
upon the quantum state. The Hadamard regulariza-
tion prescription accomplishes this in the following

I

manner: The quantity in question, for example,
K2( K r(x)h,Y(x)), is first written as a “point-split”
expression, such as

K2< ﬁ ab;p(x)ﬁa,b’;v'(xl)) — -—iGabarb';‘“V'
where the field operator standing at the right (or its
derivatives) are put at a nearby space-time point x', and
we assume that x and x' are spacelike separated. This is
then replaced by the corresponding state-dependent regu-
lar part of the two-point function, which for the term just
given would be (1/87*)W?,.,/#". Finally the limit
x'—x is taken. Because W is analytic, the limit x'—x is
always finite, and the regularized expectation value of
any bilinear (in /,, or 4,) is finite. For the same reason,
the result is independent of the way in which the two
points are split apart. Thus, to summarize, the Ha-
damard regularization prescription is

lim k%, (x)h,4(x")) — lim —%W,,,,c.d,(x,x') )
x'—x x'—x 8
Since the stress-energy tensor (2.6)—(2.8) contains at
most two space-time derivatives, there is no contribution
to it from any terms in W that vanish faster than o(x,x")
as x'—x. This means that the final result for the regular-
ized stress-energy tensor can be expressed in terms of the
first three coefficients of the Taylor-series development of
W in the neighborhood of x =x' [Egs. (A8)-(A10)]. Sec-
tion 1 of the Appendix contains the details of this pro-
cedure; it is entirely analogous to the ordinary Taylor de-
velopment of a function of two real variables.
The bitensor W is necessarily a symmetric function of
x and x’, because the Feynman propagator is a sym-
metric function of x and x’'. This symmetry constrains
the “Taylor coefficients” of the development of W in the
neighborhood of x =x’, as explained in Sec. 1 of the Ap-
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pendix. The lowest-order unconstrained ‘“Taylor Aopa=H Wi ol = H Wapor] (2.12b)
coefficients,” which are denoted by gobed  gabcda  5n4 B

59bcdeB for the graviton, and 3%, @ “®, and 5 °®°f for the Sabas= 3 Wapswpn ]+ 3 Woaryiapn] - (2.12¢)

ghost are ordinary tensor functlons of x alone. One may
express the regularized stress-energy tensor entirely in
terms of them. The Taylor coefficients are defined by the
following coincidence limits (the s coefficients are sym-
metric and the a coefficients are antisymmetric):

Sabed =[ Wapc'a'] » (2.11a)
Aopeda= 3 Wedav;a 1= 3 Wabcrar,a'] > (2.11b)
Sabcdap= 3 Wabe'a'swp) )+ 5[ Wedabrypn] »  (2.11c€)
S =[Wap'1, (2.12a)

J

1
v v va
%+ 7= [Os"",
T
1 ab;uv | 1o a b;uv
—35ab +Tsa b +6sabc

—Sap abpv_,{_ 1sa b ;.w

va b av
._a/'l a b 2sl‘

+g"(30s%,, — 30s%,5, —s

Ha= L [4A§’“’+ Os #v —
82

Note that this last equation contains the factor of (—1),
which appears because the Feynman diagram corre-
sponding to T4y contains one closed ghost loop.

There is now one further complication. The “stress-
energy tensors” that have just been obtained are not con-
served: their divergence does not vanish. However, it is
shown in Sec. 4 of the Appendix that their divergence is a
purely local geometrical quantity. This must be so for
the following reason. The stress-energy tensor is con-
served for a classical field and, since the regularized bilin-
ears defined by the Hadamard procedure differ from the
classical expressions only by geometrical terms, it follows
that any ‘“‘anomalous” divergence of 7 must be geome-
trical. Thus the final step in determining the renormal-
ized stress-energy tensor is to add an additional purely lo-
cal geometrical term with dimensions of (length)™* to 7"
to ensure that the resulting stress-energy tensor is con-
served. Because this term is not unique (there is no
unique geometrical, dimension-4, symmetric rank-2 ten-
sor with a given divergence) there is necessarily an ambi-
guity in the definition of T#". However, this is the stan-
dard renormalization ambiguity!® in adding conserved
geometrical tensors: in a vacuum space-time the only
ambiguity is in the value of the renormalized cosmologi-
cal constant. (We do not discuss here the important
problem of possible nonlocal geometrical terms in the
one-loop effective action.”) The difference in the value of

(up vlabe pav a
R —2AsHY —4da,,

c a bc
;ac +5%

Square brackets around the bitensors indicate that the
coincidence limits x'—x are to be taken, and the sub-
script ;a’ denotes a covariant derivative at the point x'.
The index-labeling convention in Egs. (2.11) and (2.12) is
that any primed index in the tangent space at x' (for ex-
ample, ¢’) has the same name, but unprimed (thus ¢) after
the limit x’' —x is taken.

Carrying out the regularization procedure just de-
scribed, one finds that the stress-energy tensors corre-
sponding to the actions S, +Sgp and Sgy are, in a vacu-
um space-time,

av avb a blu;v) a(u;v)b vab
—OskY, 254970, ) =252 7Y 425, VP 25 HY90

(uv);b

b b
b+ SHY % +4AsH,

—As%0, + As,, +sBAR, L 1gab e 1gabc )]
(2.13)

@y _pz ey | ag a(uv);a+2§aayv+2§-,uvaa +ghiOse +3.—ab ,—3%.b, _AT%)] .
(2.14)

the renormalized stress-energy tensor in two different
quantum states is unique.

The ‘“‘anomalous” divergence of the nonconserved
stress-energy tensors is found, with the help of a simple
trick, in Sec. 4 of the Appendix. It can be expressed as
the divergence of a symmetric geometrical tensor:

(7'”"' G‘i{) __‘[ TI“' TG B+ '(L}‘i‘l )geom];v .
(2.15)

The geometrical expressions on the right-hand side of Eq.
(2.15) are calculated in Sec. 4 of the Appendix. They can
be expressed in terms of the geometrical Taylor-series
coefficients of the bitensor V, and are given by

( T‘ZW + Tlé‘v‘iB )geomz

1
872 l:z(v‘llbab _—%vfllabb )gpv

>

— 12008 Y — 109 4]
(2.162)

(TG4 geom= = 2(1217“ —4v,,%") . (2.16b)

The right-hand sides of these expressions are quadratic
functions of the curvature tensor (as they must be on di-
mensional grounds) and are given in Egs. (A23) and
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(A27). In a vacuum space-time they give [see Eqgs.
(A30)-(A32)]

1
- (B R adeR abcd

8772 720
+SA%)gH .

Up to this point, the calculation has followed along ex-
actly the same lines as in the electromagnetic case.?
There is, however, one notable difference. In the elec-
tromagnetic case, the contributions to the renormalized
stress-energy tensor coming from the ghost and the
gauge-breaking terms cancel each other (i.e., they add up
to a state-independent geometrical term). Indeed one can

(T5" +TEs + T6H )geom=

(2.17)

1 b b bed abe ~a
+guv(7Dsaa b—sa Ca;bc +20b c;d'—za ab;c +4U la )] .
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formally prove that this cancellation takes place because
of Becchi-Rouet-Stora (BRS) invariance. The gravita-
tional case is different: one can show that 7g+ 8% is
not purely geometrical, and depends upon the quantum
state.

In Sec. 3 of the Appendix we show that in a vacuum
space-time, the ghost propagator is completely deter-
mined by the graviton propagator and the space-time
geometry. Thus one can express the ghost stress-energy
tensor (2.14) in terms of the Taylor coefficients of the
graviton propagator. (For reasons explained in Sec. 3 of
the Appendix, this is only feasible in a vacuum space-
time.) Using Egs. (A38), (A39), (A44), and (A45) one ob-
tains

[__Dsaauv+2sabpv;ab_2abbpvc;c+4aabyva;b+2aaba(yb;v)+2aaba(yv);b _4syavbab+4saba(pv)b_165;{.\/

(2.18)

One can now obtain the final result—the renormalized one-loop effective stress-energy tensor of the standard
theory—by adding together (2.13), (2.17), and (2.18), and by using the equations of motion [(A35) and (A36)] to simplify
some of the Taylor coefficients. In a vacuum space-time one thus obtains the final result:

Tlr‘el;l =( Tgv+T‘é‘i3+74€}‘ii )+ ( TI’ZW + T‘(‘}VB + Tlgi-l )geom
— 8:7.2 [ __Dsyava +2suavb;ab _

a b(u;v) a(u;v)b 1 ab;uv | 1, a b;uv
2sa # ;b+2sab K _}‘Sab K +7{sab #

+ 2555, MRV —2AsHIY, — 2595 RH# ¥y —2a,, VP

ba ; b b /)b
+4aabpva;b+zaa (;tb v)_saba pv+%saa bpv__4sy,avbab+4saba(p1)

v(3 ab 1 ab a be abe
+g# (TDS ab_EDs a b+s a ;bc—’zs a;b

ab bed abc 179 p abed 6 A2
+As ab +20b c;d_za ab c'—ﬁR Rabcd_?A )] .

III. RENORMALIZATION
OF THE VILKOVISKY-DeWITT THEORY

In the standard approach to quantum field theory, the
one-loop part of the effective action is given by

. 2 r
L inget [SL2T | 3.1)
2 5¢'5¢/

where ¢' is the quantum field and ®" is the background
field. The field indices i denote both space-time and inter-
nal degrees of freedom. Unlike the classical action, this is
not a scalar in the space of background fields ®". The
consequences of this are discussed at length in Ref. 1.
Among the most serious consequences are that “off shell”
the effective action depends upon (1) how the quantum
fields are parametrized (i.e., upon the choice of coordi-
nates in field space) and (2) in gauge theories, the choice
of the background field gauge.

The Vilkovisky-DeWitt definition of the effective ac-
tion overcomes these problems, by using covariant
derivatives in the space of fields. In this approach, the

c %AS aa bb
(2.19)
[
one-loop part of the effective action is given by
: 2 r r
Lindet | S5 pi @ 8SL21 | (3.2)

2 5¢'6¢/ 8¢k
where I“z- is a connection on the space of fields. For the
ordinary scalar case and the electromagnetic case the
space of fields is flat. Thus the connection vanishes for
the standard choice of field coordinates. The case of
non-Abelian gauge theories, for which the space of fields
is curved, is studied in detail in Ref. 5. In the gravita-
tional case, the natural metric on the space of fields is
defined by the equation!2°

ds®= [V —gd*x y*Udg,,dg., , (3.3)

abed ab,, cd

where y?®=g\cg®b_1gabgcd  Ag we will discuss short-
ly, the connection appearing in Eq. (3.2) is not the
Christoffel connection associated with the metric (3.3).

If the background field ®” satisfies the classical equa-
tion of motion 8S[®"]/8¢*=0 then the effective action
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(3.2) is not affected by the presence of the connection
term. This is well known: on-shell quantities such as
scattering amplitudes are independent of the choice of
coordinates in the space of fields. Thus the Vilkovisky-
DeWitt approach retains the desirable features of the
standard approach and preserves unitarity. However,
quantities depending upon the off-shell effective action, in
particular its variation with respect to the background
field, are affected by the presence of the connection term
even on shell. In the gravitational case this variation is
precisely the stress-energy tensor associated with gravita-
tional perturbations.

The choice of connection in Eq. (3.2) is essentially
determined by gauge invariance. It is the Christoffel con-
nection associated with a metric for which the distance
between gauge-equivalent fields is zero. The interested
reader is referred to Refs. 1 and 6 for the details. In gen-
eral the connection is not local, and this greatly compli-
cates the calculation if one chooses the gauge-fixing term
(2.2) that was used in the standard case. However, it is
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shown in Ref. 2 that at one-loop the Vilkovisky-DeWitt
effective action coincides with the standard effective ac-
tion calculated in the Landau-DeWitt gauge with a pure-
ly local connection. For gravity, this local connection is
precisely the Christoffel connection associated with the
metric (3.3).

To work in the Landau-DeWitt gauge one takes as
gauge-breaking term a~'Sgp, where Sgp is given by Eq.
(2.2), and then takes the limit a—0 at the end of the cal-
culation. The local connection term in the action is?

Sie=k* [ V—gd*x[1R (h®ho, —1h?)+ Lhh R,

—h%R,,h%]. (3.4)
This action vanishes when the background field satisfies
the vacuum Einstein equations so it does not affect the
equation of motion of the gravitational perturbation;
however, it has associated with it a classical stress tensor
which does not vanish but is given by

KzTﬁéz—Zh“b;(“;bh")a—Zh“bha(“;");b-i-Zh a(uDhav)+hab;yvhab+h;(yh v)a;a
__2hab;(yhv)a;b+hab;uhab;v_2hab;bha(u;v)+2hau;bhav;b
_h;ah;w;a_%hyvmh _%hDhyv+h;(u;ahv)a+h;aha(,u;v)

FRROW). LppsY LR L 2 ARRR Y, — ARh R

+g“v( 2h ac;(bc)hab'_h athab _%hhab;ab'i'%h Oh +h ab;chac;b_h ab;chab;c

+h h, . —Lh®h g —hhg, P+ Lh i — L AR PRy, + LAR?)

The total action is now
S=Sz +a_lSGB+SGH+SLC . (3.6)

In a vacuum space-time the equation of motion for the
gravitational perturbation derived from the action (3.6) is

0=D0hg +2R, % hey
+(a ' =10V, Yy + Y, VR —V,V, h) . (3.7)

This equation does not admit Green’s functions with the
Hadamard form except when a=1. However, the
Green’s function G(a) for it can be related to the Green’s
function for the Feynman-gauge (a=1) Green’s function
by the equation

G (a)=G%, (1) +2(a—1)VV FY, , (3.8

where F°,(x,x’) is a convolution of ghost Green’s func-
tions, defined by

Fe(x,x")= f\/——g"d“x”é 2 (x,x")G <l x",x")
(3.9)
F?,.(x,x") satisfies the equation

(O4+A)F%(x,x")=—G %(x,x") , (3.10)

(3.5)

f

which gives us an alternative representation for
F.(x,x") as
Fo(x,x")=— 7G %(x,x";m?) , (.11
om

m2=0

where G “b'(x,x’;mz) denotes the Green’s function for a
massive ghost field which satisfies

(—O—-A+mHG % (x,x";m?)=g%,.8%x,x") .

These relations and the boundary conditions implicit in
them are perhaps best understood by expanding in a com-
plete set of eigenfunctions of the vector wave operator
(O4A).

The singularity structure of the massive ghost field
may be related to that of the massless ghost by using the
equation’

172 n4+1 (__ 1\ 2y —r+1
2__A (=1)(m?) i (nx')

V. (x,x';m?)=
n(%xsm 2"+t &y (n—r41)

(3.12)

where 7,(x,x') denote the mass-independent DeWitt
coefficients. It follows that
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i

F=—3r

1A1/250+ 2

n=1

(m =0)o" |In(o +i€)

b
m?=0

where @,%,(x,x')=g%,. The first term in this equation is
the geometrical smgular part of F. We shall assume that
the second term is regular and shall denote it by W with
the corresponding notation for its Taylor-series
coefficients. Note that, in principle, W is totally deter-
mined by G through Eq. (3.9) although the actual calcu-
lation might be quite complicated.
The Green’s function G(a) satisfies the Ward identity

(3.14)

+ (3.13)

am?

Gabera’ (@) = 3G %eqrp( @) +aGp 0 =0

which follows readily from Egs. (3.8) and (A41).
To obtain the renormalized stress tensor we must regu-
larize the expression

ik T2(TE 4a~ ' TEY + TE[G(a) ]+ T4 (G ]}

in the limit a—0. Here T#" should be regarded as the
coincidence limit of a differential operator applied to the
two-point function. First we note the formal identity

=TE%[G(0)] . (3.15)

This is true because the propagator G(0) satisfies the
Landau-DeWitt gauge condition

0=Gabc’d';a(0)_%Gaac'd';b(O) ’

1 .
TE | =25 W) | +2(T8 + TH) —lz?—vvw
=§11r—2{[]s;mv 1sa b ;w+ 1sab HA

l[:]s;w+2~a yv+~a(yv

—%(DS a(y);v)a —%D(R aybvs.ab )—

+R abd#jarbw—R abc(u;v)( 24

+8"[—40s

—13 %, +1005 9, + 105 2.,

1
2

IV. CONCLUSION

Any discussion of back reaction in quantum -field
theory in curved space-time should include the effects of
linear gravitons which contribute to the one-loop
effective stress tensor a term of the same order as those
from ordinary matter fields. In this papet we have shown
how to calculate their contribution to the one-loop

1 a pv a b(u;v) ab (u;v)
0% MY 489, Y =259 Y —
THV L 1ed mvy 1 BV _
— A 208 7 4V 42008
Ra(uv)b(s-.
& s a(pv)
abc_sac;b)+D(a ® a

ab 1 ab ab ¢ 1 .abc ab 1
ab+TDs a b+s a ;cb — 738 c;ab—zA ab+ sAs? a b—“D

1075

and the gauge-breaking action (2.2) is quadratlc in this.
One consequence of this identity is that o~ !( TERG(a)]
is independent of the gauge-breaking parameter a, and so
is well behaved as a—0. It now follows from (3.8) and
(3.15) that the stress-energy tensor in the Vilkovisky-
DeWitt (VDW) theory can be written in the form

ik T{hw = {(T4 + TE)[G(D)]+ T4 (G 1)
+T{e[G(1)]—2TY + T )[VVF],
(3.16)

where VVF denotes V'°Y.F”,,. The term in curly
brackets is the standard result which was calculated in
Sec. II.

We now discuss the regularization of the last two terms
in Eq. (3.16). The first of these two terms can be regular-
ized in exactly the same way as in the standard case. In
the second of these two terms the natural regularization
is

b) ! gla i7 b)
V("V(C,F )y ﬂ_zV VieW a) -

It is shown in Sec. 4 of the Appendix that the sum of
these additional contributions to the stress-energy tensor
is conserved—no additional geometrical terms are re-
quired.

The total renormalized stress-energy tensor for the
Vilkovisky-DeWitt theory is therefore equal to that for
the standard theory plus a correction term given by

A5+ 2AsH,
LTAs o # 4 LAOs v — 1(0s 9,

€eab + 0805 +2AS 05 +26 p.c + R gpa$ od)
)—2RAWVbic(s, ) +2d,,, ) —4RENURY s
2A§ ‘a

‘ADs . +3AS "b

»—SA2] . (3.17)

effective stress tensor in vacuum space-times from a
knowledge of the graviton Feynman function according
to either the standard effective action or the Vilkovisky-
DeWitt reparametrization-invariant effective action.

The standard case of Sec. II requires no further discus-
sion: it is a straightforward extension of the method of
Hadamard renormalization along the lines of Refs. 8 and
9 to the case of a massless spin-2 field. It is, however,
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perhaps worth emphasizing the value of such a scheme
given the shortcomings of the Schwinger-DeWitt
proper-time expansion for massless fields. The equations
contained in this section and the Appendix have been
presented in an encyclopedic way with the express desire
that no one will ever again have to perform the odious
calculations involved.

The Vilkovisky-DeWitt case of Sec. III is rather
different in that it represents merely the first step in an at-
tempt to understand the differences made to physically
observable quantities by the Vilkovisky-DeWitt
modification to the effective action. Equation (3.17)
shows that there is a difference, as there is no reason to
believe that the correction term given there should van-
ish. Unfortunately, the correction term is rather compli-
cated, and calculations in specific cases will be required
to shed further light upon it. Even more unfortunately,
in cases where symmetry enables one to calculate this
correction term relatively easily (the de Sitter vacuum in
de Sitter space and one-graviton states in flat space-
time—see Sec. 5 of the Appendix) that same symmetry
ensures that it vanishes. To show that this term is not al-
ways zero, it will be necessary to find a less symmetric
but still tractable example. This would be easier if one
could perform the corresponding analysis for a general
space-time, and not just for a vacuum space-time, but one
then has to face the problem of adding matter to obtain a
classical solution to perturb around and of the complicat-
ed Ward identity discussed in Sec. 3 of the Appendix.
Such an analysis is clearly of the utmost importance in its
own right in that it includes, for example, most cosmo-
logical situations. This question—in what situations does
the Vilkovisky-DeWitt correction term make significant
contributions to the stress-energy tensor?—clearly
deserves further study.
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APPENDIX

This appendix shows how one can (1) make use of the
covariant Taylor series of the symmetric bitensor W to
express the regularized stress-tensor in terms of the
“free” or ‘“‘unconstrained” Taylor coefficients of W, (2)
use the Hadamard recursion relations to find the
geometric function V, (3) use the Ward identity to obtain
the ghost propagator from the graviton propagator and
obtain information about the graviton and ghost propa-
gators from their equations of motion, (4) find the “anom-
alous divergence” of the stress-energy tensor 7", and (5)
apply the method to one-graviton states in Minkowski
space-time.

It is organized in five parts, corresponding to (1)—(5).
The calculations are identical in form to the electromag-
netic case,® which we will frequently refer to as a model.
The reader who delves into the details of this appendix
will be assumed to have “in hand” copies of the follow-
ing: (I) Ref. 8, hereafter referred to as I, in which the
electromagnetic case is treated (a copy of page 1785 is
especially useful), (IT) page 961 of Ref. 21 and page 2497
of Ref. 22, which contain useful lists of covariant Taylor
series and are hereafter jointly referred to as II.

1. Covariant Taylor series of a symmetric bitensor

Let U%<?(x,x') denote any bitensor which is analytic
as x'—x. For convenience, one can define an equivalent
bitensor with all of its tensor indices at the point x:
Udbed—ge gd,U% In the neighborhood of x =x',
this bitensor can be expanded in a covariant Taylor
series:?>

Uabed (X%, x ") =t gpeq (X) + U gpego( X ) ®

+ Lt gpegap x)0 P4 - - (A1)

To understand this series, one can regard the vector
0%=0(x,x')® as the curved-space analog of the flat-
space vector (x —x')* it points from x’ to x and its
length is equal to the distance between x and x’. Thus
the expansion (A1) is analogous to an ordinary Taylor
series but has the advantage of being covariant.

The coefficients of the covariant Taylor series are ten-
sor functions of x alone. They can be found in the same
way that one finds the coefficients of an ordinary Taylor
series: by equating the nth derivative of the left- and
right-hand sides of Eq. (Al) in the coincidence limit
x'—x. It is useful to define s and a to be the parts of
these Taylor coefficients symmetric and antisymmetric
with respect to the interchange (ab)«—(cd) (cf. I, p. 1781):

abed
N a---B

=%(uabcda“.8+ucdaba.”B), (A2)

abcd | abcd
a = 7( u a--

v .B—u”d“ba...B). (A3)

Now suppose that U is symmetric by which we mean
that U%'¥ (x,x")= U ?4(x',x). [For example, the grav-
iton Feynman Green’s function (2.9) has this symmetry,
although it of course is not regular.] In the case of an or-
dinary function of one variable, the symmetry
f(z)=f(—z) implies the vanishing of the odd
coefficients in the Taylor series of f about z =0. In our
case, the symmetry of U implies that the antisymmetric
parts of the even coefficients (symmetric parts of the odd
coefficients) are completely determined in terms of the
symmetric parts of the odd coefficients (antisymmetric
parts of the even coefficients):

Uabed =Sabed » (A4)
u =—15 +a
abcda ™ 2°%abcd ;a abcda > (AS)
Ugbedap= Sabedap ™ Yabed (a;B) (A6)
— 3 1
uabcdaﬁy = Tsabcd(aB;‘y yt+ 7Sabed;(aBy) + aabcdaﬂy . (A7)
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For the ghost field, the expressions corresponding to
(A2)—(A7) can be found in I [(3.31)—(3.35)].

To calculate the renormalized stress-energy tensor, one
(only) needs the following coincidence limits, which can
be obtained using the formulas of II:

[Uabc'd’]:‘sabcd ’ (A8)
[ abc'd’;e’ ]_ 25abed;e — Qabede (A9)
[ abc'd’; e] abcd e+aabcde ’ (A10)

[ abc'd’; ef]“—sabch def+_sabde cef
—H@apege; +aupedf;e )+ Sabeaes » (A1)
[ abc'd’; e'f]~ - sabch def__sabde cef

_T(aabcde;f _aabcdf;e )

+ ';—sabcd;ef _sabcdef ’ (A12)
[ Uabc’d’;ef ] =% pbcdR paef + %sapcdR pbef
+%(aabcde;f+aabcdf;e )+sabcdef . (A13)

0= VO c'd’ '+ ngc'd’;eae_ Vabc’d’A_l/zAl/z;e0e+%Dabef[Al/z(gec‘gfd'—%gefgc’d')] )

O=n(n 4+ 1)V, . +nV2®

O=n(n+ )W j+nWe, .0t —n W,
L) —

—'V: c'd’A l/Z‘Al/z;ea'e'i"%l)abef :f—lc'd’ :

Here the differential operator D is D, “=0g, " g,
—P,,% where in a general space-time the potentlal is

given by Eq. (2.4):

Pade= _2R(acb)d+ %(gabR Cd+ngRab - %Rgﬂbgc‘i)

+(4R —2A)g, 8" (A18)

In the case of a vacuum space-time, only the first term on
the right-hand side of Eq. (A 18) is nonzero.

The recursion relations (A15) and (A16) determine V
uniquely via Eq. (A14) in terms of the geometry of space-
time. One can easily see that Eq. (A15) determines V
uniquely in a normal neighborhood (one in which any
two points are joined by a single geodesic). To do this
one starts at the point x'=x, where ¢° vanishes, and
determines the initial value Vy(x,x). One then integrates
(A15) away from x’'=x, moving along a geodesic, to
determine Vy(x,x'). The recursion relation (A16) then
completely determines the remaining V,’s in the same
manner. Thus the V,’s are uniquely determined by Eqgs.
(A15) and (A16).

Vous = —5R (84 8s "~ 188+

ed __ 1 cd 1 (c ;d) d)
Voab a=—7Y0as ;0= 58 (R |a|b) —R %),

1 cd 1,cd
7Pap =38 “Pape”
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The se]f-adjomtness of the wave operator implies that
yebe'd’ is symmetric,?* and it follows from the definition
of the Feynman Green’s function that W is sym-
metric. This symmetry is essential in proving that our
definition for the renormalized stress tensor yields a con-
served tensor.'®8

2. The geometrical bitensor V'

The bitensors V and W defined by (2.9) have develop-
ments of the form

Vabc‘d'= i V:bc'd’o.n ,
n=0
- (A14)
Wabc'a": 2 W:bc’d’o,n

n=0

A priori, these developments are not unique; for a given
bitensor V (for example) there are many different ways to
choose the coefficient bitensors V,. However, the
coefficients V,, and W, can be uniquely prescribed by
demanding that they satisfy the Hadamard recursion re-
lations, which are obtained by substituting the develop-
ments (A14) into the wave equation (1.2) and equating ex-
plicit powers of 0" (Ref. 15):

(A15)

n c'd;e? _nVr‘:bc'd'A_1/2A1/2;e0e+%DabefVrff—lc'd' ’ (A16)
dATVAAY2 o 2n + DV g+ Vi g0

(A17)

The bitensor Wy(x,x’) is unrestrained by the recursion
relations, reflecting the freedom to add to G(x,x') any
smooth symmetric solution to the wave equation. How-
ever, once Wy(x,x') 1is specified all higher-order
coefficients are determined by Eq. (A17). We shall dis-
cuss this further in Sec. 3.

It is not necessary for us to determine V exactly: we

will only need it to order o(x,x’) for x near x’. We thus
expand V, and V, in a covariant Taylor series:
Viabc’d’=gc'cgd'd[viabcd(x )+ Uiabcda(x )ol

+ Lyfbed (x)o%0P+ - ] (A19)

The coefficient functions v, .. 4(x) are geometrical

tensor functions of x. Inserting the Taylor development
(A19) into Eq. (A15), multiplying by the parallel propaga-
tor g. gdd, and using the short-distance developments

given in I and II, one obtains, at orders 0% o!? and o,
respectively,
(A20)
(A21)
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ed __ 1 cd cd 1 cd 1 cd _ 1 ,cd P
Voab " ap=73V0" ab(a;8—V0ab (@8t 5Pab (apyt 5Pab “Rop— 138 Papp’iiap)

d ( d), ( ) ( d)
_21‘436 PabppRa3+Tl{g(a CRb)pq(aR pqﬁ)_%gﬂ pgbq Rﬂrp cRﬁ’q

(80 B 18068 N R R+ R RPI— Ry R+ ERR g+ R 0+ HOR o)

Now one can use Eq. (A16) with n =0 to find

V106 = 208085 + 88 —8ap8 N LR s RP"— LR

(A22)

RP 4+ LR*+10R)

— L(O4R)P, 4+ 1P, PP, “+ Lg“[(O+R)Pyy,P —3P,,PP,,"]

1 (¢ d), (¢ d)pgr
+ﬂ(qu(a Rb) pq__g(a Rb)pqu ).

(A23)

Precisely the same manipulations for the ghost Green’s function yield

T baﬁz_v ab](a;B)+1_12Rapq(aRﬁ)qpb+%P ab;(aB)

o8

+ 5 P@®RPB Y gob(_ L RPTAR P LR, R%PI4 LRPRP — LRR®—LRP— ORY),

180

and
v§=— LR%R®, — LOP®_ LRP®1pwp}t

+8%( S5 RP"R s — A5 RPIR  + s R+ [LOR)

(A27)

The ghost potential P °® that appears in these expressions
is

P%=_R® . (A28)
All of the equations that appear up to this point in Sec. 2
of the Appendix hold in a general space-time.

In a vacuum space-time, the Ricci tensor and the sca-
lar curvature are R,, =Ag,, and R =4A, and the gravi-
ton and ghost potentials (A18) and (A28) become

P,,“=_2R, ¥ P,=—Ag, . (A29)
One then finds that
pI =g LR PASR pors — BAY), (A30)
v‘fbcc=gab(—%qurstqrs_%Az) , (A31)
¥ ¢lzb=gab( _ ﬁ';%Rmepqrs + %AZ) . (A32)

J

(A24)
(A25)

(A26)

[

As we will see in Sec. 4, the v9%*? and ¥ %° provide the

“anomalous divergence” (2.15)—(2.17) of the renormalized
stress-energy tensor.

3. The wave equation and Ward identity for W

The wave equations satisfied by the Feynman functions
G and G imply that the nonsingular state-dependent
parts of these functions, W and w, satisfy wave equations
with geometrical source terms. These equations can be
derived in the same way as for Eq. (I1.2.19) in the scalar
case and Eq. (I.3.19) in the electromagnetic case. In a
vacuum space-time, they are

[Elg"eg bf+2R aebf] Wefc’d': _6V:11bc’d'
—2V‘1’bc"i';eae+ e
(A33)
[O4+AIF =6V -2V 04 -+ . (A34)

If one substitutes the covariant Taylor series development
(A1) of W and W into these equations, and collects the
different powers of o, one finds that the wave equations
(A33) and (A34) impose conditions on certain coefficients
of the development. For the graviton, one finds

aabcde;e =sabepRecpd_scdepReapb , (A35)
sabcdee — _sabepRecpd_scdepReapb_ 6v(]1bcd , (A36)
sabcdef;fz%[:‘(sabcd;e)+ %sabcd;e_R apbqapche___R cpdqapqabe

——;—R apbq;escdpq ———;—R cpdq;esabpq +%R pegey abpdq +%R pdqea abcpq

+%R pageg, cdp bq—{—%R pbqea cdapq+l_12Rpcqesabpd;q +%R pdqesabcp;q

+%Rpaqescdpb;q+1_12prqescdap;q_vzlzbcd;e . (A37)
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For the ghost, one finds

aabc;czo s (A38)
3—abc - ——AS"ab—6U ab (A39)
§abcd ={_ D+A)Sab c+Rpcd(a~b) Daabc. (A40)

These relations can be used to simplify the forms of the
renormalized graviton and ghost stress-energy tensors.

The linear graviton is a massless spin-2 particle which
propagates two physical degrees of freedom, because it
has two polarization states—the same number as the elec-
tromagnetic field. Because the linearized gravitational
action is invariant under a four-parameter group of
infinitesimal gauge transformations, it is necessary to
modify the action by the addition of a gauge-breaking
term to the action. The presence of this term adds eight
additional degrees of freedom to the “‘graviton,” which
thus becomes a rank-2 symmetric tensor field with ten de-
grees of freedom. The role of the ghost field is to subtract
away the effects of the eight additional, spurious degrees
of freedom.

The ghost field has exactly the same properties as the
eight vector degrees of freedom which were added to the
gravitational action to break the gauge invariance, with
one exception: it has the statistical properties of a fer-
mionic field and not those of a bosonic field. Because it
has the “wrong” statistics, the ghost subtracts the eight
extraneous degrees of freedom away from the gauge-fixed
effective action. Thus the final results, including the
ghost and gauge-breaking terms, contain the correct two
physical degrees of freedom.

The ghost propagator satisfies an equation of motion

correctly subtract away the extraneous degrees of free-
dom, the state of the ghost field must be chosen to be the
“same” as the state of the graviton field. In practice this
means that the ghost and the graviton fields have “com-
patible” boundary conditions. The mathematical state-
ment of this equivalence is the Ward identity, which re-
lates the ghost and graviton propagators. In a general
space-time, this is a complicated nonlocal equation with a
source term.> In the simpler case of a vacuum space-time
the Ward identity takes the form

Gaped’*— 3G acarsp +Gpiean =0 - (A41)

This identity can be derived either by the abstract
methods of Ref. 20 or by expanding in complete sets of
eigenfunctions of the wave operators and making use of
Eq. (AS53). The Ward identity (A41), together with the
symmetry of G in x and x’, completely determines the
ghost propagator G °®" in terms of the graviton propaga-
tor, except for a possible additive term

S . KHHKE(x")

n=1

(A42)

where m is the number of Killing vectors K, in the
space-time, and the ¢, are constants. Killing vectors do
not generate gauge transformations, and they do not con-
tribute to the ghost stress-energy tensor. The potential
ambiguity in the ghost propagator is thus of no further
concern to us.

If one substitutes the Hadamard form of the propaga-
tors into Eq. (A41) one obtains the “anomalous” Ward
identity satisfied by the state-dependent parts W and W

which admits many inequivalent solutions. In order to  of the Feynman functions in a vacuum space-time:
J
Wabcd ]W ac'd’;b W"“'“"):—v‘,”’”'d'oa+%vla“"d'a”-—if'{‘C'U"')+O(a3/2) , (A43)

which can be derived in the same way as in the electromagnetic case (I.3.21). By the argument just given, this equation
determines the state-dependent part W of the ghost Feynman function, in terms of the state- -dependent part W of the
graviton propagator [up to a possible additive term of the form (A42)].

The anomalous Ward identity (A43) determines W in terms of W. It therefore determines the coefficients of the co-
variant Taylor series for W in terms of the coefficients of the covariant Taylor series of W (A2). Substituting these Tay-

lor developments into (A43) one obtains (for vacuum space-times) at order o° and at order o

tions

_ B ;
48y (ca)—28p ;)= — 5 acd;b + 2Sbaca’ —

-~ P e
43, (berd — 285 (bey;d —28a(h | d ;00 25 “a R (be)a =41 adbe

a a
2a acdb +4abacd ’

172 respectively, the rela-

(A44)

e a e
=207 ebc8ad — 4V 1(68c)1a 5 ebe;da

"'2seabc;d;e+ 2s eef(bR fc)ad —4s, e(bec)fde +4a eabc[d;e] —2a eebc[d;a]

e e
—2s ebcda +4s eabcd

Using (A38), (A39), (A45), and the derivative of (A44),
one can now express the ghost contribution to the stress-
energy tensor (2.14) entirely in terms of the graviton
Feynman function. This gives rise to expression (2.18).
Differentiating the massive version of Eq. (A34) with
respect to m?2 and then setting m%=0 we obtain the
anomalous equation satisfied by W:
(O+AW =W —

WV ot (A46)

(A45)

[
This yields the following equations on the Taylor-series
coefficients:

p abc;c =0, (A47)
§ abcc = —A$ ab+§"1b_3fj (‘;b s (A48)
s ade;d =1[(0+2A),,].. —RP4'% b)q;p

+RP9ag b)qp _%50“”;0 . (A49)
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4. The anomalous divergence of 7"

One can calculate the divergence of the regularized
nonconserved stress-energy tensor (2.15) by simply taking
the divergence of (2.13) and (2.14). The Hadamard forms
of the equations of motion (A33)-(A40) then provide the
geometric result (2.15)—(2.17). However there is a trick
which simplifies this calculation (this trick is essentially a
variation of the method first used in I). This trick per-
mits one to do the calculation described above on the
back of an envelope, given Egs. (2.13) and (2.14).

If one takes the divergence of the classical stress-
energy tensors, i.e., the sum of Egs. (2.6) and (2.7) for the
graviton, or (2.8) for the ghost, one finds that they are
conserved in the standard case as a consequence of the
equations of motion (2.4) and (2.5), respectively. In the
quantum case, the regularized stress-energy tensors (2.13)
and (2.14) are not conserved, because the Hadamard reg-
ularized bilinears in the field operator W do not obey the
equations of motion. It can be seen immediately from
Eqgs. (A33) and (A34) that the renormalized graviton and
ghost two-point functions fail to satisfy the equations of
motion because of source terms which are geometric, and
which are proportional to V, and V|, respectively. Were
these terms not present, the regularized stress-energy ten-
sors (2.13) and (2.14) would be conserved.

The equations of motion are given in Egs. (A35)—(A40).
It is clear that the only contributions made by the source
terms V, to the divergence of 7"+ {4y can be accounted
for by making the substitutions s%—0, a%%_.0,
sabcdee ——6v zlzbcd’ and sabcdef abcd ¢ in the diver-
gence of Eq. (2.13). When combmed w1th (2.15) this leads
to (2.16a). In the case of the ghost, the only contributions
made by the source terms V| to the divergence of 8} can
be accounted for by makmg the substitutions ¥ %°—0,
a0, 3%, 609, and ¥ abed , — —p 4% in the
divergence of Eq (2.14). When combined with (2.15) this
leads to (2.16b). These equations express the divergence
of 7., in terms of the geometric functions v{** and v ¢
These are quadratic polynomials in the Riemann tensor
which are given in Sec. 2 of the Appendix.

In the Vilkovisky-DeWitt theory, it is straightforward
to show that the additional terms that appear in TH,
given by Eq. (3.17), have vanishing divergence. For the
local-connection term, one knows that the action Sy is a
scalar, and hence that it is invariant under an
infinitesimal coordinate transformation x%—x%+6x°.
Under the action of this coordinate transformation, the
background metric and graviton field transform as
—8x,., (A50)

gab’—’gab _axb;a )

By —hy, ox ¢ (AS1)

abc

—hacax c;b "‘hbcsx C;a

The invariance of the action under this infinitesimal coor-
dinate transformation implies that the divergence of T{¢
is

6S1c
8hy,

8S1c

©n
> 8hy,

(Tﬁ‘é );v=( _g)?l/2 hbc;lJ

;€

(AS2)
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It is easy to see that the right-hand side vanishes even if
h,, does not obey any equation of motion, because the
variation of S| ¢ [Eq. (3.4)] with respect to h,, is zero in a
vacuum space-time.

The remaining term in the Vilkovisky-DeWitt theory is
T4 (VVYW). The divergence of T%" can be expressed ex-
actly as above with S| replaced by S,. In the present
case the variation 8S,/8h,, is proportional to the wave
operator that appears on the right-hand side of Eq. (3.7),
with a— . It then follows from the identity

0=0(V4,5))+2R, % c.a)

— (VY 4.0+ Vs VY (0= Va Y V) (AS3)

(valid for an arbitrary vector field V in a vacuum space-
time) that T4V(VVU) is divergence-free for any bivector
U.

5. Graviton stress-energy in Minkowski space-time

Here we explicitly demonstrate the cancellation that
takes place between the ghost stress-energy tensor and
the nonphysical components of the graviton stress-energy
tensor, in flat space-time. We also show that the
Vilkovisky-DeWitt correction term vanishes for one-
graviton states in flat space-time.

The gauge-fixed graviton action (2.1,2) in flat space-
time is

S2+SGB= fd4x(,C2+.,£GB)

=i [ d*% Ly hyphoy—VhoyVhey) ,  (AS4)
where the DeWitt metric is V500 =3(80c8bd
+8448bc —8ap8cq)» and we use Cartesian coordinates
(t,x,y,2) for which the metric tensor is
8. =diag(—1,1,1,1). Boldface indicates a three-

dimensional spatial vector. The canonical momenta 7%

conjugate to the field variables h,,, are defined as
7 =09(L,+Lgp)/dh,,, where an overdot denotes d/dt.
The canonical equal-time commutation relations can be
written as

(Ao (%), Aoy (8, X )] =ik 72 4peg O (x—X") (A55)
where one may use unprimed tangent-space indices at x
because in flat space-time the parallel propagator g,°
equal to the unit matrix §,°

In flat space-time, the ﬁeld operator satisfies the equa-
tion of motion Oh,, =0. The general Hermitian solution
to this equation may be written in the form of a Fourier
sum. For convenience we imagine that the system is con-
tained in a large box of spatial volume L3, so that the
sum is over discrete three-dimensional wave vectors k:

1
(2L3lk| )1/2

X [elpa;(k)explik,x?)

10
P>

i=1 k

+elial(k)exp(—ik,x)].  (A56)

The null four-vector k? is k°=( |k |,k). The polariza-
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tion tensors e/, for i =1, ..., 10 are any complete set of
ten constant symmetric tensors. Without loss of generali-
ty one may assume that they are (1) real, (2) independent
of k, and (3) normalized by the relation

abcdei

y®elyel;=n" (A57)

fori,j=1,...,10. Here 71’7 is the indefinite metric
ni=diag(—1,—1,—1, =1, + 1, + 1,41, 4+1,+1,+1).
(AS58)

Note that it is impossible to choose "/ to have any other
signature, because it is determined by the signature of
y?°d which is + 2 (see Ref. 20, p. 661). The polarization
tensors e, form a basis for the ten-dimensional space of
symmetric tensor fields, and ¥°*? acts as the natural
metric in this space. One thus has

¥ abed ="Mij€ap€% » (A59)

where summation of i, j over the ten polarization states is
understood and %Y is the inverse of n;- The
indefiniteness of the signature has been shown by Gupta?’
to give rise to an indefinite metric on the Fock space of
one-particle states. In Eq. (A56) it is formally necessary
to include also a contribution from the zero mode which
has k=0. In the infinite-volume limit L — o, this prob-
lem does not exist. For this reason, we drop this term in
the subsequent discussions. Further details of it may be
found in Ref. 20 (problem 95).

The canonical commutation relations (A55) follow

J

Cik | gy (xX)heg(x") | j, k') =830 | hop(X)hg(x") ] 0)

K—Z

+2L3(|k||k'|)'/2

from the Fourier expansion of the field operator (A56)
and the normalization of the polarization tensors (A59)
provided that the creation and annihilation operators
obey the commutation relations

[a,(k),a (k)] =78y - (A60)

Because the right-hand side of (A60) contains four —1’s,
there are four one-particle states which have negative
norm. These should not be confused with the ghosts,
which are anticommuting spin-one fields with eight de-
grees of freedom. The negative-norm graviton states do
not occur in external lines of Feynman diagrams, but
must be summed over in all internal loops. These states
must be present in order to maintain the general covari-
ance of the calculation; choosing a pair of ‘“physical” po-
larizations would break this covariance.

To understand this point better, one can consider the
renormalized stress-energy tensor of the one-particle
states in the Fock space. The one-particle state of polar-
ization i and momentum k is obtained by applying a
creation operator to the usual Minkowski vacuum state
|0):

li,k)=a(k)|0) .

By (A60) the inner product of these states is
(i,k | j,k') =7;;8,, Thus four of the one-particle states
have negative norm.

The matrix element of two field operators can be easily
calculated. One finds that

(A61)

[elpel; exp( —ik,x+ik.x'®)+elyely exp( —ik,x"*+ik.x®)] .

Thus for a single graviton of momentum k, in polarization state i one has

(K | By (X)eg(x") | k) €O | hgy(x)hg(x') | 0)

(i,k|i,k) (0]0)

Note that the polarization index i is not summed in this
equation.

In flat space-time, the two-point function in the vacu-
um state is given by Eq. (2.9) with V=W =0. Hence for
the one-particle state W, , is given by the right-hand
side of Eq. (A63). In flat space-time 0° is (x —x')% so
one can expand the right-hand side of (A63) in a Taylor
series as

8Ty .,
abed = T 7 eapCial 1 — Tk kpgo®aP+0(a?)] .
|k|L
(A64)
The Taylor series coefficients are thus given by
8wy,
7’“ i (A65)

s i
Sabed = lle:,eabecd ’

(A62)
-2
K ™ Ni . e . e
= 2|k | L3 egpecqfexplik, (x —x")]+exp[ —ik, (x —x")]} .
(A63)
f
Aabcda=0 , (A66)
8, Y,
Sabedap= — Weabecdkak,g : (A67)

Note again that the polarization index i is not summed
over.

It is now straightforward to evaluate the graviton and
ghost contributions to the renormalized stress-energy ten-
sor in the one-particle state |i,k) of polarization i and
momentum k“ Because the geometrical terms 7.,
vanish in flat space-time, one finds, from Egs. (2.13) and

(2.18), that
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TW 4 Ty = | k1| = nelyel y ki :li;):s from the start, then using Eqgs. (A59) and (A63) one
1 10 . 81T2
=—l—k|—L—3k“kV , (A68) S Wi =Ty e cos[k,(x —x')?].  (AT3)
i=1
TEu= |k—TL§77,-,-(e"““e "’”ka ky —e‘“bkbefa"‘k vy, From the Ward identity (A41) it follows easily that
10 ; 8772 ,

(A69) > W l,cz—I Kl L3g,,c cos[k,(x —x')°] . (A74)

If one sums over the ten polarization states and makes
use of (A59) one finds immediately that

TE T = klloL N (A70)
TEu =Tl—(:|%k“kv ) (A71)

Thus the sum of these two terms contains the correct two
physical degrees of freedom:

2
TY + T +TEy=—""3
2 GB GH k| L°

We may also calculate the Vilkovisky-DeWitt correc-
tion term for this case. It is easiest to sum over polariza-

kEEY . (A72)

Forming the massive version of Eq. (A74) and using Eq.
(3.11) we find that

10 2
Py 41
E w ’bc =

i=1 L

3 8he cos[k,(x —x")¢]

.
k|’

t—t' . ,

— E sin[k,(x —x")¢]
It is now immediately clear that the Vilkovisky-DeWitt
correction term vanishes in this case, as of course one
would hope, since all the Taylor-series coefficients ap-
pearing in Eq. (3.17) in flat space-time appear
differentiated, but it follows from Egs. (A73)-(A75) that
they are all covariantly constant.

(A75)
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