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For the maximally extended N= 16 supergravity theory in two dimensions, we explicitly construct a linear system whose 
integrability conditions are equivalent to the full nonlinear field equations of this theory. All the (on-shell) information contained 
in it can thus be encoded into a single E8 matrix and its dependence on a spectral parameter; the invariance of the equations of 
motion under E9 is manifest. Possible consequences and further developments are briefly discussed. 

The recent surge o f  interest  in two-dimensional  
field theories has been largely confined to 
( super )conformal ly  invar iant  theories because o f  
their  direct  relevance to ( super )s t r ing  theories.  By 
contrast ,  very litt le a t tent ion  has been devoted  to the 
maximal ly  extended N =  16 supergravi ty  theory in 
two d imens ions  al though this theory has been con- 
jec tured  to possess ra ther  special proper t ies  (espe- 
cially, a h idden  Eg-invariance) [1] .  Unl ike  the 
conformal  supergravit ies,  which in two d imens ions  
only exist for N~< 4, the N =  16 theory does not  admi t  
a gauge choice where the physical  degrees o f  f reedom 
are governed by free wave equations.  Nonetheless,  it  
comes very close to being exactly solvable as will be 
demons t ra ted  in this paper:  there exists a l inear  sys- 
tem whose integrabi l i ty  condi t ions  are equivalent  to 
the full nonl inear  field equat ions  of  N =  16 super- 
gravity ~J. The der ivat ion of  this result relies on recent 
progress in unders tanding  the d imens iona l  reduct ion 
of  bosonic  coset-space a -mode l s  and the emergence 
of  infini te d imens iona l  symmetr ies  in two d imen-  
sions [2] .  While  one expects integrabi l i ty  o f  the 
bosonic  sector on the basis of  these results, we here 
f ind that, quite remarkably ,  this approach  also fur- 
nishes a natural  explanat ion  for the fermionic  non- 

* this work is dedicated to my father. 
"~ We employ the notion of "integrability" in the same sense as 

ref. [2]. For a more thorough discussion, see refs. [ 1,2] and 
references therein. There is ample literature about integrable 
systems, see ref. [ 3 ] and references therein. 
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linearit ies.  Some of  the special (and,  in fact, unique)  
features of  N =  16 supergravi ty can now be under-  
s tood very explicitly. There are intr iguing possibil i-  
ties for further deve lopment  but, for lack of  space, 
we can only briefly ment ion  these at the end of  this 
paper .  

N =  16 supergravity in two d imensions  may  be 
der ived  from the corresponding theory in three 
d imens ions  by d imensional  reduction.  The d = 3 ,  
N =  16 theory has been constructed in ref. [ 4 ] whose 
no ta t ion  and convent ions  we will adhere to in this 
paper  with the following exceptions and addi t ional  
conventions.  Three-d imens ional  curved and flat 
indices are deno ted  by m, n, ... and a, b, ..., respec- 
tively, whereas we reserve Greek  le t ters / t ,  v, ... and  
c~, r ,  ... for curved and flate two-dimensional  indices. 
We define y3=i72= --iy 2 and ~°q/=7~P73. The phys- 

ical states of  the d =  3, N =  16 theory const i tute an 
i r reducible  N =  16 supermul t ip le t  with 128 bosons 
and 128 fermions t ransforming as inequivalent  fun- 
damenta l  spinor  representat ions  of  SO (16 ). The the- 
ory has a rigid E8~ +8) invar iance which is l inearized 
in the usual way by in t roducing a local SO(16)  
invariance.  Consequently,  the scalars ~o(x) are 
proper ly  descr ibed as elements of  the coset space 
E8~+8)/SO(16), and the "compos i t e "  SO(16)  gauge 
field Qm is ob ta ined  from the Es Lie algebra 
decompos i t ion  

"¢/ol Om 3V'o=Qm + Pm 

_ _  1 I '~  l J  y l J  ..1- D A yA - ~  . . . . . . . . .  (1) 
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Here the indices I, J, . . . .  1, ..., 16 and A, B . . . . .  1 .... , 
128 (or Jl, B, ...= 1 ..... 128) label the vector repre- 
sentation and the fundamental spinor (or conjugate 
spinor) representation of SO(16), respectively. The 
Es generators X~J= - X , j  and ym obey the commu- 
tation relations 

[ X I J ,  x K L  ] = (~IL x J K  .~_ ( ~ J K x I L  

- -  8 I I (  x J L  - -  (~JL x I K  , 

[ x Z J ,  yA] = l~ IJ  vR 

[ yA yB] = I r Is v l s  
, Z - - A B "  • ( 2 )  

B.esides the physical boson and fermion fields q~A and 
Z A, the N =  16 theory contains a dreibein em ~ and a 
gravitino ~'m t transforming as the 16-dimensional 
vector representation of SO (16). These fields do not 
correspond to any phyaiscal degrees of  freedom, but 
are nevertheless indispensable for the formulation of 
the theory. In 1.5 order formalism, the complete 
lagrangian of d =  3, N =  16 supergravity reads [ 4 ] ~2 

Y~= ]eR + 1 . . . .  P,DI I'N , , ,I  2-  1 . . . . .  ~DA p A  
- -  ~z  y.,, m a - S n W p  ~ ~r..~ a m a t n  

~ , z  , - , z  ~;e~'A~'"r'., ''~ l o q A  . . . . . . . . .  1 ~ 1  p A  - - ~ c ~  [ l" W n a A A ~ t  m 

l -fit IJ. B - I mnp J - 1 p mJ  
- ~ e [ z  Y p F A B , ~  (lff ,n~) I f fn - -~ l / ,n  ~ ~ll ) 

-A A - 1  n m Z 
+Z Z Z,.~' 7 ~/~] 

+ e[ ~ (~Az ~)2 _ ~ (2A~,mF/J ZB) 2 ] . (3) 

AS shown in ref. [4], this lagrangian is invariant 
under d=  3 general coordinate transformations, local 
Lorentz ( = S O ( l ,  2)) and local N =  16 supersym- 
metry transformations. Since these results are 
described in great detail in ref. [ 4 ], we refrain from 
giving further formulas here. 

The dimensional reduction of the lagrangian (3) 
to two dimensions involves some novel features in 
comparison with the dimensional reduction to 
dimensions higher than two. One first drops all 
dependence on the third coordinate and then tries to 
simplify the field equations as much as possible by 

suitable gauge conditions. For the dreibein, a natural 
choice is 

a ( 2 ~  ;B~)  (4) 
em \ 0  

where we have exploited local SO(l,  2) invariance 
and d=  2 diffeomorphism invariance to bring em a 

into triangular form and to diagonalize the zweibein 
e u" (a trick well-known to string aficionados). The 
field Bu is auxiliary in two dimensions and appears 
only through its invariant field strength 

F - p 2  lf.aBOo~B#. ( 5 )  

Its elimination leads to further quartic spinorial 
terms, see below. Finally, we make use of the local 
N =  16 supersymmetry to eliminate part of the d=  3 
gravitino ~U~m. The following gauge choice is associ- 
ated with the diagonality of  the zweibein in (4) (for 
flat d = 2  indices) 

7~ y"~u~ = 0 .  (6) 

At this point it turns our that, fortunately, a further 
simplification is possible because the above gauge 
choice admits residual invariances. Namely, the 
diagonal form of the zweibein is preserved by 
(anti)holomorphic diffeomorphisms, and one can 
verify that the gauge (6) is left invariant under local 
N =  16 supersymmetry transformations with param- 
eters satisfying yPT"Dpel= 0 (thus, in the absence of 
scalar couplings, the chiral components of the 
parameter d are homomorphic or antiholomorphic, 
respectively). This residual freedom can be used to 
identify the function p in (4) with one of the two- 
dimensional coordinates (see e.g. ref. [ 2 ]) and to get 
rid of  one more gravitino component such that 

N~ = (~,~, ~,/) = (~, ~,i, 0) (7) 

is the equations of  motion ,3. In the unphysical sec- 
tor, we are thus left with the conformal factor 2 and 
its N =  16 "superpartner" ~,z. In contradistinction to 
conformally invariant theories, these fields do not 
decouple but play an important role here. For 
instance, the central extension of E 9 acts nontrivially 
on 2 [ 1,2]. 

~2 In the last term (Zy"FIJz) 2, we differ by a factor 1/3 from ref. 
[41. 

~3 Alternatively, one can pick the gauge q/~ = 0 and prove that 
V~, =7~V / from the equations of motion. 
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The above gauge choices entail dramatic simpli- 
fications in the dimensionally reduced field equa- 
tions, After redefining the fermionic fields according 
to Ipd--~).l/2 q/l, Z A ---~)~l/2z;~ , the physical fields decou- 
pie entirely from the unphysical ones in that their 
equations of motion no longer contain 2 and ¢/. For 
the scalar fields, one obtains 

p - J D , ~ ( p p  A ) =  I F ' IJ  D B ~ C ' , , O t I " I J  D 
~ - ~ - ~ , ¢  ~ - - t A X  , (8) 

where, in accordance with the gauge (4), all index 
contractions are with respect to the fiat ( = M i n -  
kowski) metric r/~. D~ is only covariant with respect 
to local SO (16); all Lorentz-covariantizations have 
been written out explicitly and are properly accounted 
for by the conformal rescalings and the extra factors 
o f p  in (8) and p'/2 in (11) below. Note that there 
is no q)~u term on the right hand side of (8). The sim- 
plifications among the fermionic quartic terms are 
even more spectacular. Elimination of the auxiliary 
field F (see (5)),  leads to 

~t- 18 (~ /~g)  2 ] , ( 9 )  

where we have omitted terms containing ~ which 
do not contribute in the equations of  motion because 
of (7). In addition, we get the following terms in sec- 
ond-order formalism (again dropping terms with 
~/~'): 

~(~torsion = e[ - h (2X)z + ~ ( ~ / ) ( 2 X )  

__ ~ ( ~ / , / )  2]  . ( 1 0 )  

Adding (9) and (10) to (3) and substituting the 
gauge condition (7) into the equations of motion, 
we see that al cubic spinorial terms cancel with the 
exception of those coming from ~paFIJz)2. Conse- 
quently, the full Dirac equation takes the form 
(remember that a = 0, 1 whereas a = 0, 1, 3) 

- i p -  l/2~aDa(pl/2 ZA ) 

I ~r, KL B-¢ rKL D (11) 

Observe that the usual Noether term is also absent 
from (11 ). 

The only equations remaining are those of the 
unphysical fields. They are 

p- 'O¢~p2-10~)2 -½t l~#p- 'O '~p2  'Oy2 

= T ~  - ½ tl~p T'~ ~ (12) 

with the energy-momentum tensor 

1 A A Tap - ~P~P ~ - ½ i~AT (~D~)z A , (13) 

and 

p -  tOBpy~7~q/=  iF~AA 7~ 7'~z'~P~. (14) 

Again, all cubic spinorial terms have disappeared in 
(14). Making use of  the identification p = x  ~ and 
introducing light-cone notation 0 + - 00-+ 01, pA _ 
PJo _+pA, etc. as well as chiral spinors ¢/t _= ½ (1 + 
p 3 ) ¢ ,  etc., we can write (12) and (14) more suc- 
cinctly as 

0 + l n 2 = p T + + ,  0 l n 2 = - p T  , (12') 

and 

= i_F  l pA .A ¢+ - t '  ,4A z + ,  

~uL = i p F  ~ApA+ x A . (14') 

This confirms that the fields 2 and ~d carry no degrees 
of freedom of their own but can be explicitly 
expressed in terms of  the physical fields. 

To proceed further, we must briefly recall the 
essential results of ref. [ 2 ]. The decomposition (1) 
is, of course, valid for arbitrary Lie algebras G = H ~  
so that Qu~H, Puck, and the scalar fields % live on 
the coset space G/H. As is well known, the "com- 
posite" fields Q~, and P~ obey the integrability con- 
straints (we now specialize to the case of two 
dimensions) 

O u Q , - O , Q ,  + [ Qu, Q,] + [ Pu, P,] = 0 ,  

D u P . -  D~P~ = 0  (I5)  

(D,  is the H covariant derivative). The crucial 
observation is now that, in two dimensions, one can 
generalize (1) in such a manner that the scalar field 
equation p -  ~ D ~ (pP,~) = 0 ( which coincides with ( 8 ) 
for X = 0) also follows from the integrability con- 
straint. To do so, one replaces ~ ( x )  by an element 
~U(x, t) of the affine ( = Kac Moody) extension O °~ 
of G. Here, t is the "spectral parameter" by means 
of which the affine algebra G °~ can be represented in 
the form Yt '®¢~ (plus central extension). Owing to 
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the nontrivial p-dependence of  the scalar field equa- 
tion, the spectral parameter  is itself a nontrivial 
function t (x ,  w) (w is an integration constant)  obey- 
ing ~4 

E,~OPp= -O~[½p( t+  l / t ) ] ,  (16) 

or, alternatively 

t(1 --t2)p-l Oe~p 

in the integrability constraint arising from the fermi- 
onic bilinears in (20).  Requiring absence of  terms 
proportional to P.j~y37"Z, we find 

l + t  2 . 
g ( t ) = - z ~ t  f ( t  ) . (21) 

Next, we demand 

0 = 0 [u(P - If)PZYu] FHZ 

= (1 + t 2 ) O , t - 2 t e , a O ~ t .  (17) 

Generalizing (1) to 

~ -10  ~U 

l + t  2 2t ~, (18) 
= G + ] ~ 5 7 P .  + 1 - t - - - ~ " ~  ' 

one can show that the new integrability condition for 
(18) is equivalent to (15) a n d t h e  scalar field equa- 
tion. As emphasized in ref. [2],  the right-hand side 
of  (18) is invariant under the t ransformation 

r~: ~ ( x ,  t)-~r~/~(x~, 1 / t ) - (  ~ / r ) -~(x ,  1/t) , (19) 

which induces the usual automorphism r(H, K) = (H, 
-04) on the Lie-algebra. The elements ~ G ~ invar- 
iant under r ~ constitute an infinite-dimensional 
subgroup H ~ of  G ~ which, however, does not coin- 
cide and should not be confused with the affine 
extension of  H. Note that H ~ is not o f  finite codi- 
mension in G% 

Specializing to the case at hand, i.e. G = E 8  and 
H = S O ( 1 6 ) ,  we now propose to further extend (18) 
such that the full N =  16 field equations (8) and (11 ) 
can be derived from an integrability constraint. This 
evidently requires adding new terms depending on 
the fermions to the right-hand side o f  (18). Since ~u ~ 
does not appear in either (8) or (11 ), we proceed on 
the assumption that the modification of  (18) is also 
independent o f  ~d. This automatically excludes 
additional terms in P~u (which would have to be pro- 
portional to F~AA)?~7,~' ~) and leaves us with the fol- 
lowing possibility for the modification of  Q,: 

OIJ {~lJ , = ~ .  + f ( t ) , ~ 7 , F I J z + g ( t ) Z . 7 3 7 , F H z .  (20) 

The next step is the investigation of  the extra terms 

~4 The occurrence of t+ l/t rather than t -  1/t in our expressions 
is due to the indefiniteness of our metric ( in ref. [2 ] a euclid- 
ean metric is used. 

+ 0 l , ( p  l g)p,,~73~ulFIJz 

= ½e.~pzT~F~J Z 

× [E~O~(p ' f ) - O . ( p - ' g ) ]  (22) 

(the factor p must be pulled out because o f  the extra 
pl/2 in the Dirac equation (11)). The differential 
equation (22) can be solved by use of  (16), (17) and 
(21 ); the result is 

t z 
f ( t )  =2i(1 _ t2 )  2 , (23) 

where the prefactor is determined by matching the 
term proportional to P ~ 7 ~ Z  to the scalar field equa- 
tion (8). At this point, all available coefficients have 
been fixed, and the rest of  the calculation only checks 
the consistency of  the ansatz (20).  The action of  D~ 
on Z in (20) yields the Dirac equation twice. It is 
crucial here that the right-hand side o f  (11 ) vanishes 
when multiplied by ~ F  ~J but not when multiplied by 
.~,3F~J. The cubic term, then, is correctly repro- 
duced if one makes use of  the Fierz identity 

~737o, F KL I ZJ~7o, F JIK Z 

= -- ~Zy37aFZJFXt-ZZTaFXLz , (24) 

which may be deduced from the identities given in 
the appendix of  ref. [4].  

To summarize, we have shown that 

1 0/t ~/~--- 0kt +]-~P,l+t2 + 1 _2~tt2 e, ,P" , (25) 

with 

t 2 ~/ j  Qu = Qff + 2 ~ i z ~ ' , F I J z  
( -  ) 

t(1 + t 2 ) . _  . 
q - ~ I Z Y ~ Y l z F I J x  , (26) 
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satisfies an integrability constraint if and only if (8), 
( 11 ) and (15 ) are satisfied. This, in turn, ensures that 
there exists a t-dependent E8 matrix ~such  that (25) 
holds. This matrix contains all the (on-shell) infor- 
mation about d=2 ,  N = 1 6  supergravity. It is 
remarkable that our construction also supplies a nat- 
ural raison d'etre for the quartic fermionic terms in 
(maximally extended) supergravities! 

The above construction effectively amounts to a 
bosonization of the 128 fermions of N =  16 super- 
gravity. Of  course, bosonization makes sense only in 
the quantum theory, and we here assume that the 
N =  16 theory is sufficiently benign so that all our 
manipulations survive quantization. The formulas 
(25) and (26) are reminiscent of the non-abelian 
bosonization formulas of  refs. [5,6] (where it was 
suggested that 128 fermions belonging to the coset 
space E8/SO(16) can be bosonized in terms of 120 
bosons), but there are important differences. The 
presence of an x-dependent spectral parameter is a 
complication not encountered in refs. [5,6] and, 
unlike refs. [5,6] which are concerned with free fer- 
mions, we are dealing with a system of fermions and 
bosons in interaction. Also, it is not immediately 
obvious in our case how the E 9 symmetry acts on the 
fields. In this context, it is significant that the extra 
fermionic terms in (26) are still invariant under the 
automorphism (19). This means that, following [ 2 ], 
one can construct a "scattering matrix" 

m(x, t ) = ~ z ~ ( ~  ~)(x, t) (27) 

and prove that M is actually x-independent, i.e. M(x, 
t(x, w))=M(w). Under the action o fg(w)eE9,  we 
have 

~(x, t)-~g(w)-~ ~(x, t)h(x, t) , (28) 

where h•  H °~ is a compensating transformation which 
renders ~"tr iangular"  (in the sense ofref. [2]). One 
can also study the E9 transformations before boson- 
iz.ation and explicitly derive their action on the fields 
Z A and gt ~. 

By encoding the whole theory into a single 
(bosonic) matrix ~,, we have succeeded in fusing 
SO(16) symmetry and N =  16 supersymmetry such 
that they are now part of E9. However, this "boson- 
isation" of N =  16 supersymmetry certainly requires 
further elucidation. One of the more futuristic aspects 
of  this work is a possible "stringy" (or rather "mem- 

brany" as ~ really depends on three variables) inter- 
pretation of N =  16 supergravity. I f  this theory has 
soliton solutions, as is suggested by the existence of 
such solutions for other integrable models (see e.g. 
ref. [ 3 ]), these might be converted ito higher-dimen- 
sional particle-like excitations in the same way as the 
"solitons" of string theory (i.e. the free vibrational 
modes of the string). It is difficult to see how the 
"zero-slope-limit" of  such a theory could not be 
related to d =  11 supergravity [7]. In refs. [8,9], it 
has been shown that the "hidden" symmetries of the 
maximally extended supergravities in four and three 
dimensions can be "lifted" to eleven dimensions. In 
this process, internal symmetries of the dimen- 
sionally reduced theories are elevated to space-time 
symmetries. I f  simular results hoTd for the case con- 
sidered here, there would be a much more stringent 
relationship between two-dimensional symmetries 
and "target space" symmetries than in string theo- 
ries. This line of argument suggests a sort of "boot- 
strap" whereby d =  11 supergravity via dimensional 
reduction gives rise to a theory that contains the on- 
shell states of d =  11 supergravity in its soliton spec- 
trum and thus regenerates its own ancestor (the on- 
shell states of SO (16) invariant d =  11 supergravity 
[9] transform as the 128L and 128R spinor repre- 
sentations of  SO(i6)) .  Finally, it has been pointed 
out in ref. [ 1 ] that E~o is a natural successor to E9, 

and perhaps the results described here will help us 
towards a better understanding of these issues. A 
more daring speculation is the possible realization of 
E~o as a symmetry of the multiparticle states in a 
"stringy" interpretation of N =  16 supergravity. 

I am very grateful to P. Breitenlohner and D. Mai- 
son for explaining their work (ref. [ 2 ] ) to me; to H. 
Grosse, C.B. Lang and J. Wess for helpful and enjoy- 
able discussions; and to the Max-Planck Institute, 
Munich, and the theoretical physics department of 
the Universities of  Graz and Vienna for hospitality. 
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