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Abstract. We investigate the propagation of small-amplitude gravitational waves through 
pressureless matter (‘dust’). After establishing the local linearisation stability of Einstein’s 
equation for dust about any of its solutions we use the W K B  method to study the locally 
plane, linearised perturbations of an arbitrary background dust spacetime asymptotically 
for small wavelengths. The dispersion relation exhibits two modes. One is simply degenerate 
and represents gravitational waves, whereas the other is doubly degenerate and describes 
density and vorticity perturbations. The waves are shown to propagate along the null 
geodesics of the background; in leading W K B  order their amplitudes behave as in vacuo. 
The rays associated with the matter mode are the worldlines of the background dust. In 
leading order the perturbations of density and 4-velocity vanish for both modes. 

1. Introduction 

The propagation of gravitational waves through matter has been treated in several 
papers under various assumptions with different methods of approximation. Sometimes 
contradictory conclusions have been reached, particularly with respect to the dispersion 
relation and the related question of Landau damping (see, e.g. [l] and the references 
therein). Therefore we have begun to study these questions again systematically by 
means of generally applicable methods rather than with ad hoc approximations valid 
in special cases only 

In this paper which is based on [2] and [3] we use the simplest matter model, dust, 
and investigate generally locally plane, short wave, linearised perturbations of an 
arbitrary background dust spacetime by means of the WKB (or geometrical optics) 
approach. In order to justify the use of linearised perturbations we prove in § 2 that 
the Einstein gravitational field equation for dust is locally linearisation stable at any 
of its solutions. This fact is established by means of Choquet-Bruhat’s treatment of 
the initial value problem which is also used to exhibit which unconstrained data can 
serve to parametrise dust solutions. 

In § 3 we first set up the equations for linearised perturbations without imposing 
a gauge condition, and express the matter perturbations in terms of the metric perturba- 
tion. We then show that one may, without loss of generality, impose the Landau (or 
radiation) gauge on the metric perturbation, and continue to work in that gauge. 

In § 4 we specialise the linearised metric perturbations to rapidly oscillating, locally 
plane ones, and apply the WKB method to determine the dispersion relation, the phase 
hypersurfaces, rays and polarisation states of the two possible modes. It turns out that 
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the leading gravitational wave amplitudes have the same transverse-traceless structure 
as in vacuo, and that they propagate normally along the null geodesics of the background 
spacetime. In contrast, the spacetime dependence of the amplitudes of the matter 
perturbations is not determined by first-order transport equations; its determination 
requires the calculation to be extended beyond the leading order. 

In this paper we do not take into account the back reaction of the perturbations 
on the background spacetime but consider the latter as given, i.e. the perturbations 
are treated as test fields. Let a background field be denoted as (p ,  U', g a b ) ,  and a 
linearised perturbation as (b, U*", & b ) ,  and let E denote the small ratio between the 
scale of variation of the perturbed variables to that of the background. According to 
linearisation stability, ( p  + 66, U' + 66", g a b  + S i a b )  will approximate a solution of the 
field equation, at least in a compact part of spacetime, provided the constant numerical 
factor 6 is sufficiently small. Unfortunately no rigorous effective criterion appears 
to be known to tell us when S is 'sufficiently' small. However, by estimating the orders 
of magnitude of various terms in the manner of Isaacson [4] one can guess the following. 
If one works in lowest WKB order, i.e. if one takes into account the leading-order 
amplitudes of the perturbed quantities only, S has to be taken to be of higher order 
than E' ,  say 6 = g 3 ,  since for larger amplitudes 6 2 s2 the error due to the restriction 
to linearised perturbations is expected to be larger than the leading WKB amplitudes. 
It appears to be sensible to take into account higher-order (in the WKB sense) amplitudes 
of linearised perturbations only if one imposes correspondingly stronger restrictions 
on the overall size 6 of these perturbations, or if one also adds non-linear perturbations. 
The influence of matter on gravitational wave amplitude transport will show up at the 
next WKB order which we intend to work out on the basis developed below. 

1 . 1 .  Notation and conventions 

We set the speed of light equal to unity, c = 1, and write K := ~ T G ,  G denoting Newton's 
constant of gravity. The signature of the metric is chosen as +++-, and the curvature 
tensors, etc, are as in [ 5 ] .  As usual, A(bcl := $(Abc + Acb).  Single and repeated covariant 
derivatives are indicated by V,, V b a ,  etc. The sign - stands for asymptotic equality 
for E + 0. Latin indices range and sum over 0, 1 ,2 ,3 ,  greek ones over 1 ,2 ,3 .  

2. Dynamics of dust 

Consider a spacetime ( M ,  g a b )  filled with dust, obeying the field equation 

Rab = ~ p ( u " u ~  + L  2g ab 1 (1) 

with 

P'O 

and 

U&' = - 1 .  (3) 
The velocity and density fields satisfy 

U b V b U '  = 0 

V , ( p u " )  = 0. 

and 

(4) 
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In order to gain insight into the set of solutions of the system (1) - (3)  one studies the 
Cauchy initial value problem. This requires the introduction of coordinate conditions. 
Locally it is always possible to introduce harmonic coordinates defined by 

g a b , b  = 0. (6) 

-igCdgab,,.d + Hab=Kgp(UaUb${gnb) (7) 

With respect to them, ( 1 )  takes the 'reduced' form 

where g:= -det(g,,), gab  :=Jggab, and the expressions Hab depend on gCd, gcd,e only. 
The non-linear system (4), (5) ,  (7 )  of partial differential equations is not strictly 
hyperbolic and therefore not suitable for studying the initial value problem. However, 
Choquet-Bruhat [6] recognised long ago that this system is equivalent to a strictly 
hyperbolic, diagonal Leray system. (For a concise formulation of Leray's theorem see, 
e.g., [7].) The latter is obtained by keeping (4) and (5) ,  but substituting for (7) the 
equation obtained by differentiating Einstein's equation ( 1 )  in the direction of the dust 
worldlines, i.e. by applying the operator u'V, to both sides of ( l ) ,  and simplifying 
the result by means of (4)-(6). The unknowns of the new system of 15 evolution 
equations are the 15 functions gab  (or, equivalently, gab), u a  and p. An initial data set 
for this system associated with a spacelike initial hypersurface := xo = 0 consists of 

gab, g a b , c ,  gab,cd,  U', U a , b ,  P* (8) 

The solution of the evolution equations determined by the data (8) obeys the original 
system (1 ) - (3 )  if and only if the data satisfy the constraint equations (3), (4), (6), (7) 
and the standard constraints 

GO, = RO, - f8;R = K ~ U ' U ,  (9) 

as well as the conditions that the density p is positive, gab  is Lorentzian, and the initial 
hypersurface C is spacelike with respect to the metric gab (determined by g a b ) .  (For 
a proof, see [6] and [8].) Such a data set will be called admissible. 

Every admissible data set can be obtained as follows [8]. Take 16 functions gab, 
g"' of three spatial coordinates x", with gab  Lorentzian, the corresponding gap Rieman- 
nian, and 

gabG; Gi  < 0. (10) 

In (10) the GO,, which depend on gCd, gcd,e and gcd,ap, are to be evaluated (on C, of 
course) by identifying of 
data, respectively, and by taking the needed spatial derivatives of data. Next, solve 
the system (2), (3), (9) for p, U' such that U'> 0; that is uniquely possible because of 
(10). Then, find gab,00 (and therefore all remaining gab,cd by spatial differentiation) 
from (7), and finally use (4) to get U a , b .  

Since an admissible data set determines a solution of (1) - (3)  uniquely, one can 
'parametrise' dust spacetimes in terms of the unconstrained data gab, go' which are 
subject only to inequalities that are preserved under small changes of these data. The 
unconstrained data consist of 16 functions of three variables. A change from one 
harmonic gauge to another such gauge is locally uniquely determined by initial data 
for four solutions of a wave equation, i.e. by eight functions of three variables. A dust 
solution is thus intrinsically characterised locally by eight functions of three variables, 
corresponding to four degrees of freedom-two for the gravitational field, and two for 
pressureless matter-as expected. 

and gao,o with the data gm' and the derivative 
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We have reviewed the analysis due to Choquet-Bruhat ( [ 6 ] ,  see also [SI) because 
it enables us to establish that Einstein's equation for dust is locally linearisation stable 
at any of its solutions. To prove this we first use the fact that every solution of (1) can 
locally be expressed in harmonic coordinates, and  can thus be reconstructed from 
unconstrained initial data via a Leray system by the method just described. Every 
solution ( j a b ,  U*", p* of the linearised system can of course be expressed in terms of the 
chosen (background) harmonic coordinate system, too. Moreover, by a straightforward 
generalisation of a well known argument from linearised GR (given, e.g., on p 7 5  of 
[ 5 ] ) ,  one may assume without loss of generality that the perturbation also obeys the 
harmonicity condition, 

Gab,b = 0. (11) 

Suppose now that ( jab,  U*", p* is a solution of the linearised equations corresponding to 
(1) and (3) at a background solution gab, u a ,  p, and assume the coordinate conditions 
( 6 )  and (11) to hold. Choose a spacelike hypersurface I;: x o = O  and restrict the 
functions gab + &( jab  and (gmP + ~ ( j " ~ ) , ~  to 2. The resulting functions g a b ( x h ,  E ) ,  

g e P ( x A ,  E )  can be taken as unconstrained initial data. For sufficiently small (finite) 
values of E and in a sufficiently small part of I; they satisfy the signature conditions 
and inequalities stated above. Therefore, these data determine uniquely a one-para- 
meter family of solutions of (1)-(3). The solution corresponding to E = 0 is the original 
background solution, by construction. The 'tangent' to this family at E = 0, restricted 
to E, corresponds to the data ( ( j ab ,  ( j a P , J ,  of the given perturbation, also by construction. 
Since these initial data determine a solution of the system of linearised equations 
uniquely-for that system is equivalent to the linear Leray system obtained by linearis- 
ing the full quasilinear Leray system-that solution is identical with the one which 
was assumed given at the beginning of this argument. This finishes the proof of 
linearisation stability of the system (1)-(3). 

We remark in passing that the vacuum field equation, Rab = 0, is also locally 
linearisation stable at any of its solutions [9]. 

We finally note that the solutions of the exact equations for dust as well as those 
of the corresponding linearised equations respect relativistic causality: in both cases 
the outer characteristics are the null hypersurfaces of the unperturbed metric. 

3. Linear perturbations of dust 

The equations for linear perturbations of a 'background' solution (gab, un, p )  of (1) 
and (3) are obtained by considering a one-parameter family of such solutions passing, 
for the parameter value E = 0, through the given solution, and  taking derivatives with 
respect to E at E = 0. We denote these perturbations by g a b ,  fi,, etc. Thus one has, e.g., 

g Q b  = - g a C g b d g c d  (12) 

U*" = g"bU*h - g a b U C g h c  (13) 

( v b u a ) A = V $ a  + ? & U c  (14) 

p g c  = ;gad ( v c g b d  + v bgcd - v d g b c ) .  

and 

where the perturbation of the connection rgc is a tensor fgc given by 

(15) 
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Therefore, we have 

k a b  = v c i. :b - v b f :c = V '( aibb) c - t(v ' c i a b  + v ab$cdgcd 1. (16) 

g a b  = Kp (̂ uaub + t g a b )  + KP (2G(aub) + t i a h )  (17) 

?.Ua;, = i a b U a U b  (18) 

p  ̂ = (2K -' k a b  + P i a h )  U "U (19) 

PGU = (-K-'h:& +;Pg,,.)u' (20) 

( h : h ; f - h a b U c U d ) ( 2 6 e ( c V ' d ) - 6 : S ~ V g R - g g e f V c d ) i e ~  = Kp(h:h;f+ha/,UcUd)icd. (21) 

The linearised versions of (1) and (3) are 

and 

respectively. These two equations imply 

and, with use of (15) and (16), 

In these equations we have used the tensor 

h i  := 6g.t ubua (22) 
which projects onto the subspaces of the tangent spaces that are orthogonal to U". 

Equations (19)-(21) conversely imply (17) and (18). We may therefore consider 
g a b  as the basic perturbed field from which, for a given background, p  ̂ and can be 
computed via (19) and (20). The equations obtained by perturbing (4) and (5) are 
implied by (19)-(21). (This follows without calculation from the linearisation stability 
established in 8 1.) Correspondingly we take (21) as the basic equation governing 
linearised perturbations. 

In deriving (21) we have not imposed any gauge conditions on either the background 
solutions or their perturbations. For the further study of solutions of (21) we restrict 
the perturbations by requiring 

iabu = 0. (23) 

(h:h;f  - habUcUd)(28e(cvf,d)- 6%6fdvg.g -gefVCd)fef= KPfah. (24) 

The operator on the left-hand side of this equation maps the space of symmetric 
'spatial' tensor fields into itself. 

It is always possible to satisfy the gauge condition (23). To prove this we recall 
that under the ('infinitesimal') gauge transformation generated by the vector field X " ,  
d a b  changes according to [ lo]  

This condition slightly simplifies (18)-(21). In particular, (21) reduces to 

f a b ' $ a b - ( 2 X g ) a b  =iab-2v(aXb)*  (25) 

ubV,Xa + U b V a X b  = i a b U b .  (26) 

In order to satisfy (23) one therefore needs a vector field X "  such that 

This linear system of partial differential equations for X ,  is not strictly hyperbolic. It 
can, however, be replaced by 

U b V b X a  - x b v a u  = g*abU - v a  (U bXb) (27) 
which implies, because of the geodetic nature (4) of the background flow, the relation 

(u"xa) '  = $iabuau '. (28) 
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(Here we have abbreviated the covariant differentiation along the unperturbed flow, 
uaVa ,  by a dot, a notation we shall continue to use whenever it is convenient.) One 
can now solve (27) as follows. Prescribe arbitrary initial values for X ,  on a hypersurface 
intersecting the unperturbed flow lines. Then find a function 4 by integrating 4 = 
f & , U a U b  along the flow lines, using the initial values 4 = u"X,. Afterwards, compute 
X ,  by integrating the system of ordinary differential equations X, -XbVaUb = 
&,,Ub -V& with the given initial values. Its solution obeys u"X, = ( u " X , ) ' =  
&&'Ub - 4 = f g a b U a U b  and consequently u " x ,  = 4 holds everywhere. The solution X ,  
thus satisfies (27), which finishes the proof. 

Condition (23) dnes not fix the gauge completely; the remaining gauge transforma- 
tions are generated by vector fields satisfying the homogeneous equation 

UbV(,Xb, = 0 (29) 

as follows from (26). Since this equation can be solved just as (26), the restricted 
gauge freedom is determined by initial values for X , ,  i.e. by four functions of three 
variables. (It is worth noting that the arguments used to establish that the gauge 
condition (23) can always be satisfied, and that the remaining gauge freedom is given 
by (29), do not depend on field equations, but only on the geodetic property of U , .  

The 'radiation' gauge can therefore also be chosen for vacuum perturbations.) 
The basic perturbation equation (24) restricted by (23) is an unconstrained system 

of six coupled equations of second order for six unknowns. A solution is thus specified 
by twelve functions of three variables. Since the restricted gauge freedom consists of 
four functions, the intrinsic freedom of the perturbations amounts to eight functions 
corresponding to four degrees of freedom. 

The characteristics of (24) are found by replacing the operator V ,  by a covector 
I,, the gradient of prospective characteristic hypersurfaces. Using (23) one finds as 
the characteristic equation 

( ua1,)' ' ( ghClblc) '  = 0. (30) 

(To obtain this result it is convenient to choose coordinates such that, at an event, 
gab = T a b ,  U' = 8:, 1, = i3 = 0 so that goo = 0.) The reality of the roots of (30) confirms 
that the system (24) (subject to (23)) is hyperbolic, its outer characteristics being the 
null cones; the presence of multiple roots shows that the system is not strictly hyperbolic, 
in accordance with the results reviewed in 5 1. 

4. High-frequency perturbations, gravitational waves 

We now specialise the metric perturbations &, to locally plane, monochromatic, 
high-frequency fields, i.e. we make the WKB ansatz 

m 

f a b ( X ,  E )  - 1 ( & / i ) n f a b ( X )  
e - 0  n=O n 

where - indicates that the series is to be considered as an asymptotic expansion. As 
usual, the 'physical' perturbation is taken to be the real part of the complex Yob 

introduced for computational convenience only. The parameter E serves the usual 
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purpose to express that, if E is small, the phase &-IS varies rapidly in comparison 
with the amplitude fah: the wave covector is &-' la  where 

la := vas (32) 

and the frequency relative to the unperturbed dust flow is -&- 'uala .  (At the end of 
the calculation one may put E = 1, absorbing scale factors into S and the fah.) In 
accordance with the gauge condition (23) we require n 

Inserting (31) into (24), requiring the coefficient of the highest-order term ( E - ~ )  of the 
resulting formal series to vanish, taking into account (33) and setting 

w := - U " l a  k, := h:  lb (34) 

one gets the equation 

The condition for this equation to admit a non-trivial solution fob obeying (33), the 

dispersion relation, is of course identical with the characteristic equation (30). There 
are, consequently, two modes, characterised by 

0 

12 := g " b l a l b  = 0 (mode I) (36) 
and 

--w = U"1" = 0 (mode 11) (37) 
respectively. Insertion of (32) gives the eikonal equations whose solutions S are the 
phase functions of the modes. Restricting attention to real solutions we shall, without 
loss ofgenerality, always take w 2 0. Then S and the fab in (31) are uniquely determined 

by the one-parameter family of real fields & b ( X ,  E )  which is asymptotically represented 
by the series in (31). 

The phase hypersurfaces of the first mode are null hypersurfaces belonging to 
high-frequency waves propagating without dispersion or damping with the speed of 
light. Those of the second, zero-frequency mode are arbitrary timelike hypersurfaces 
generated by flow lines of the background dust; they belong to perturbations 'carried 
along' by the dust. 

The rays (bicharacteristics of (24)) along which the amplitudes are transported are 
the spacetime projections of the solutions of Hamilton's equations 

n 

81, aH -- -- - ax" aH - 
av ala a v  ax"' 

Appropriate Hamiltonians are the left-hand sides of (36) and (37), respectively [ l l] .  
The rays are null geodesics for mode I and unperturbed dust flow lines for mode I I .  

We proceed to determine the lowest-order amplitudes (polarisation states). Inserting 
l 2  = 0 into (35) and choosing an orthonormal frame field ( e ; ,  e t )  in the plane orthogonal 
to U" and k", we get for mode I the general solution 

fab =A+e:h+Axe:b 
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wherein 

eib = (e:e; + e2,eL) (39) 2 2  e:b = (e:eL - eaeb)  

the standard transverse-traceless expression for a gravitational wave amplitude. For 
mode 11, o = 0, one obtains from (35) the general solution 

This mode corresponds, for B, = Bk,, to density perturbations and, for B, orthogonal 
to both ua and k", to vorticity perturbations. (It is instructive to take Fourier com- 
ponents of the perturbations of an Einstein-de Sitter dust model [12] and recognise 
their leading high-frequency parts as special cases of the preceding general equations.) 

To complete the lowest-order WKB approximation we have to determine how the 
amplitudes (39) and (40) are transported along the respective rays. For this purpose 
we substitute in (24) for g a b  the expression Y a b  = ei'''fRb, where s is some solution of 
one of the eikonal equations (36) and (37). This gives a partial differential equation 
for fab of the form 

(t.3 t+( ;)'t)f= 0 

where L is a linear differential operator of order n which maps spatial symmetric 
n 

tensor field fab into fields of the same kind. The L are given explicitly by 
n 

On introducing the seriesf- C(&/i)"finto (41) and requiring the terms of each power 

of E to vanish separately one obtains a sequence of equations. The first of these is 
( 3 5 ) ,  specialised to the mode to which the chosen phase function S belongs; its solutions 
are ( 3 9 )  and (40) ,  respectively. The second one is of the form 

n 

LabCdfcd + LabCd& = O.  
0 1  1 0  

(43) 

This equation admits a solution f c d  if and only if LabCdfcd is annihilated by all left null 
I I O  

'vectors' of L, i.e. by all spatial symmetric tensors p a b  such that pabLald  = O .  The 
0 0 
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number of such linearly independent tensors p a b  equals the dimension of the corre- 

sponding space of polarisation states f a h ,  given by (39) and (40), respectively. The 

solvability condition for (43) thus imposes the following condition on the lowest-order 
amplitudes: 

0 

p:b  LabCdes.dAs = 0. (44) 
1 

Here r, s label a basis of left null 'vectors' p:' and right null 'vectors' e&, and A, 
denotes the sth component of f a b  in the basis e",. r, s = 1 , .  . . , d if d is the dimension 

of the space of polarisation states; d = 2  for mode I, d = 3  for mode 11. 
One of the remarkable facts of the WKB method is that the principal part of the 

(apparently partial) differential operator acting on the 'vector' A,  in (44) always has 
the form 

0 

so that (44) reduces, in fact, to an ordinary differential equation for A,  along the rays 
given by (38). (For a proof of this assertion see the appendix which extends the 
general formalism developed, e.g., in [ 111 and [2]. For the connection of this formalism 
with the modern theory of partial differential equations see, e.g., [13].) If the matrix 
M is invertible, (44) is a transport equation for f a h  (respectively A s ) ;  if not, (44) in 

general imposes further algebraic conditions on the lowest-order amplitudes and gives 
transport equations for these restricted amplitudes; in exceptional cases (44) may be 
identically satisfied or admit no solution. 

Using the expressions for L and L from (42) and (43) yields for both modes: 

0 

0 

{-26'(,kb)kd + l26z6;+(kakb -w2kab)hCd}fcd 
1 

+{2hc , ,h~ , ' ( ldV,+Vdl , )+2h '~ ,kb~Vd - h ' ( , h b ) d ( V l + ~ 8 )  

where we have used the abbreviations 

VI  := lava v u  := u a v a  e := vaia. (47) 

This equation simplifies very much if specialised to one of the modes, and if suitable 
tetrads are used. 

Let us first consider mode I.  Then the matrix Lacd which multiplies fcd in (43) is 

annihilated if transvected with either one of the polarisation tensors occurring in (39). 
Transvecting (46) with e?', e!b and inserting (39) leads, after some manipulation, to 

1 

( V l + t 6 ) A + + ~ e ~ b ( A + v f e ~ b + A A , V f e ~ b )  = 0 

( V I  + f O ) A ,  +$e!h(A+V,e:b+ A , V , e ~ , )  = 0. 
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This pair of equations shows that the pair ( A + ,  A,)  is indeed transported along the 
rays, the matrix M of (46) being the unit matrix for this mode. By specialising (e : ,  e:) 
we can even decouple the equations (45), and simplify each of them, as follows. Along 
each null geodesic ray x " ( v )  with tangent x" = la ,  the vectors l a ,  U" span a timelike 
2-plane, and  e:, e; span its spacelike orthogonal complement. Any vector contained 
in the (e : ,  e;)  plane at  one point of a ray can be transported uniquely along the ray 
in such a way that it remains in the ( e ; ,  e;)  planes and its covariant rate of change 
has no component in those planes. This 'quasiparallel transport' (which generalises 
Fermi transport) is analytically expressed by 

V,X" = -XbV,q",  (49) 

if qab denotes the tensor which projects orthogonally onto the ( l a ,  U " )  plane; it preserves 
inner products and linear relations between vectors [2]. We now choose e:, e: such 
that they are propagated quasiparallel along the rays. Then (48) simplifies further; we 
obtain 

(V,+:s)[A'] Ax = o .  

This equation means that the change of the complex vector (A+,  A,) along a ray 
consists solely of a rescaling by a positive factor proportional to the square root of 
the cross sectional area of a small bundle of rays, just as in the case of gravitational 
or electromagnetic waves in vacuo. As in those cases, the transport preserves linear, 
circular, elliptic polarisation, helicity and ellipticity. (50) also implies the conservation 
law 

V * f a b  = 0 (51) 

for the effective energy-momentum tensor 

2 a b  1 fah =- ( I A + I * + I A , I  )i I 
4K 

of the wave, defined as in vacuo (Isaacson tensor [4]). (51) and (52) and the geodesic 
law for I" (or (50) directly) also give the conservation law 

V,N" = 0 ( 5 3 )  

for the effective 'graviton number' current 

1 
N" =- (lA+.12+IA,12)I". 

4Kh (54) 

Of course, the bending of gravitational rays by the background field is taken into 
account by the geodesic law. 

We now turn to mode II. Then w = 0, k, = l a ,  and fob is given by (40). It is easy to 
0 

verify that the left and right null 'vectors' for the matrix L in this case are given by 
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Using (40) in (46) and then transvecting it with p:b we get the three equations ( e :  = k"/ k, 
B, = B,eA + B,e: + B,e:):  

e f ( B 3 e ;  - 2 B d ) ( v , k d  -Vdk,) = o  
eS(B,eS' -2Bd)(V,kd  -Vdk,) = o  (56) 

ku'V,B,+ B'e:(V,kd -Vdk,) =o.  
However, as w = 0 implies k, = 1, = V,S, these three equations reduce to the single 
equation 

uCV,BC = 0. ( 5 7 )  
Recalling that B,uC = 0 and that U' generates geodesics, equation (57) is trivially 
satisfied. This result means that for mode 11, the matrix M in (45) vanishes and (44) 
is identically satisfied. Thus in this case there is no first-order transport equation for 
the leading amplitude, (43) can be solved for fnb irrespective of the way fob is 

transported, and the transport of fob is governed by higher-order equations. Finally 

the matter perturbations 6, 6,  which at this stage can only be determined in leading 
C2 order, may easily be verified by means of (16), (19), (20 )  and (39) to be zero for 
both modes. 

1 0 

0 
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Appendix. The transport equation for degenerate modes 

The purpose of this appendix is to show in general how transport equations arise from 
the solvability condition (44) for the next-to-lowest-order WKB equation (43). The 
argument generalises the 'lemma on bicharacteristic directions' ([ 111 ch 6, § 3, no 11) 
to systems of arbitrary order with degenerate modes; see also [2]. 

We use matrix notation as in (41). Suppose H ( x ,  I )  is a factor of the left-hand side 
of the dispersion relation det L= 0 which characterises a mode via H = 0, and assume 

that on this dispersion branch a H / a l #  0 so that H is a Hamiltonian for the correspond- 
ing rays (cf (38)). Let m denote the number of components of the vector f in (41) 
and let r (< m) denote the rank of L for the mode considered. (For the case considered 

in this paper, m = 6 ,  and r = 4  for mode I, r = 3  for mode XI.) Then, on the subset 
H = 0 of phase space, L admits m - r =: p linearly independent left null vectors N, and 

equally many such right null vectors Rj .  The mode is simple if p =  1, degenerate 

0 

0 

0 
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otherwise. (In the example treated in this paper, both modes are degenerate.) Thus 
one has, on the branch H = 0, 

N j .  L=O La R k = 0 .  (A1 1 
0 0 

Varying the second set of equations ( A l )  at a fixed point x with respect to the wave 
covector 1 gives 

L * 6Rk 4- (dL/dr) 0 ' R k 6 l =  0 (A21 

and therefore, because of the first set of equations (Al ) ,  

Since this holds for all variations 61 characterised by ( d H / d l )  61 = 0 it follows that 
there exist functions Mjk such that 

The rest of the argument concerns the relation between L and L. From the way in 

which (41) is constructed from the original perturbation equation (24) it follows that 
the principal (first-order) part L' of L is given by 

0 1 

1 1 

This relation holds generally, not only for the example considered in this paper [2, 
111. If (A5) is inserted into (43) of the main text and (A4) is used, the expression (44) 
for the transport operator arises, except for an obvious change of notation. 
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