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The transformation rules of d = 11 supergravity are given 1n a form which 1s manifestly covariant under local SO(16).
The bosomic fields can be assigned to representations of Eg. This construction extends previous results where the SU(8)
(and E4) structure of d = 11 supergravity was exhibited and suggests further extensions involving infinite-dimensional sym-

metries.

Some time ago 1t was shown [1,2] that simple su-
pergravity in eleven dimensions [3] admits a reformu-
lation in which the tangent space group SO(1, 10) of
the original version 1s replaced by SO(1, 3) X SU(8),
furthermore 1t was shown that the bosonic fields could
be assigned to representations of the noncompact
group Eq(, 9y, although thus E; is not a symmetry of
the new version. It is thus evident that the “hidden
symmetries” that appear after reduction to lower
dimensions [4] are not an artefact of the reduction
but rather a property of the d = 11 theory itself, be-
cause all physical degrees of freedom are retained 1n
the construction of refs. [1,2]. While the groups
SU(8) and E are linked with the reduction to four
dimensions, other groups appear in the reduction to
other dimensions [4], and 1t 1s therefore an obvious
question whether the construction of refs. [1,2] can
be extended to demonstrate the existence of yet more
versions of d = 11 supergravity. In this paper 1t is
shown that such an extension is indeed possible, and
that the d = 11 theory has a hidden SO(16) (and Eg)
structure as well ¥! . In this way a further unification
of symmetries beyond those apparent in ref. [3] 18
achieved, the d = 11 graviton and the three-index
“photon”, which are distinct fields in the formula-
tion of ref. [3], are now fused nto a single represen-
tation of the symmetry group, at least as far as their
on-shell degrees of freedom are concerned. This

*1 For earher speculations in this direction, see ref [5].

means 1n particular that there is an entirely new (and
certainly rather unusual) formulation of Einstein’s
theory of gravity which 1n this case also involves the
(stmply laced) exceptional Lie algebras and possibly
therr affine and hyperbolic extensions.

Our construction is based on a 3 + 8 split of the
indices 1n the same way as the construction of refs.
[1,2] was based on a 4 + 7 split. The necessary tech-
nology, conventions and notation have been explain-
ed at length in ref. [2], and therefore the description
here will be brief (as in refs. [1,2], higher-order fer-
mionic terms will be ignored throughout this paper).
The fields of d = 11 supergravity are the elfbein EMA,
a 32-component Majorana vector—spinor ¥,, and a
three-index gauge field Ayzp which appears only
through its invariant field strength F, MNPQ in the
equations of motion [3]. These fields depend on
eleven coordinates zM, which are subsequently split
into d = 3 coordinates x# and d = 8 coordinates Y,
Correspondingly, all d = 11 indices are decomposed
into curved and flat 4 = 3 indices u, v, . . and a, §,
...*¥2 and curved and flat d = 8 indices m, n, ... and
a,b, ..., respectively. To rewrite the theory into the
new form one follows the “standard” prescription
[4,6], which involves several redefinitions. One first
uses the local SO(1, 10) invartance of the original
theory to fix a gauge such that

*2 We underline flat d = 3 1ndices to distinguish them from
the SO(8) spinor indices which will be mntroduced below
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E, A= , 1)

where a Weyl rescaling factor has already been in-
cluded; of course, A = det e,,? *3 ., The tangent space
symmetry is thereby reduced to SO(1, 2) X SO(8)
and compensating rotations are needed in the super-
symmetry variations to maintain the gauge choice (1).
As in refs. [1,2,6] our strategy will be to enlarge this
symmetry to SO(1, 2) X SO(16) by the introduction
of new gauge degrees of freedom.

The fermionic fields must be redefined 1n a sim-
ilar manner. The d = 11 I'-matrices are represented by

TA=n2 o1 or 1el°, )

where the y2 are hermitean two-by-two matrices
which generate the d = 3 Clifford algebra. The follow-

ing relations are useful for the explicit reduction:
7‘1&1 =_ie0_‘gl’ f‘al...ag __:eal ...a8i19' (3)

For the 16-by-16 matrices ['? and I'9 we choose the
representation

[0 T ({1 o0
Fa = - h s Fg = ’ (4)
T, 0 0 -1

where I'Zs and e =14T are real. The usual Clifford
algebra 1s implied by the relation

a 7b b wa _ ngab
l"w; Fiﬁ + I‘w; F‘iﬁ =28 60‘3.
Here and in the sequel, the indices a, a, & characterize
the three fundamental SO(8) representations 8, 8
and 8, respectively. To rewrite the theory we also
need SO(16) vector and spmor indices I,J, ... and 4,
B,..ord,B, .., respectively. Under the SO(8) X

SO(8) subgroup of SO(16) these representations re-
duce as follows:

16, > (8., 1) @ (1,8), 128, (8,,8) @ (8,8 ),

128 (8., 8,) ®(8,,8.)

(these decompositions differ from the usual ones by
an SO(8) triality rotation). The tangent space group
SO(8) which leaves the gauge (1) fixed should be

*3 The Weyl rescaling factor in (1) leads to the standard Ein-
stein action in three dimensions
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identified with the diagonal subgroup of SO(8) X SO(8).
We therefore decompose the SO(16) indices in the
following manner-

I=(a,p), A=(cf,ab),

Using these decompositions one can find an explicit
representation of the SO(16) I'-matrices FfiA’ and
[ =(rhHT:

A = (aa, bp). (%)

a = b o - b,
By.8b ‘Saa Fa'y' ’ Fab,c& 8scTas
a = b & — b
Fab,{ic - abcrﬁ&’ r‘a»;,bs' - _5~;<§ Fa&’
all other components = 0. (6)

From these formulas it is readily checked that indeed
I .pd J.TL =95/

Tyelég t TyeTog = 26778 45 7

Other SO(16) quantities such as '™V = T'UTJ) can be

easily computed from (6); for instance,

af  — e pé afi  — bd
F‘ys.,ef 676F¢§[aFB] ¢’ Fab,c‘d 6acFozB ’
a)‘ = ﬁ.,a = a. b‘
I‘wpﬂb —ro =Tslos etc. (8)

The redefined fermionic fields must be assigned to
representations of SO(16) such that the supersymme-
try transformation parameter €/ and the gravitino

wI belong to the 16-dimensional vector representa-
tion and the remaining fermionic fields to the 128-
dimensional spinor representation of SO(16). The
correct form of the redefined fields can, of course,
only be determined through a careful analysis of the
supersymmetry transformation rules as in refs. [1,2].
Anticipating the final result, we have

v, =A 1/2e#&(\pg +y, POP90), €= a2,

)
As in (1) we temporarily use primes to distinguish the
redefined fields from the unredefined ones; these
primes will be dropped in the final expressions. The
spinors in (9) still have 16 internal components (and,
of course, two Dirac indices which we suppress). These
we can split into two sets of eight components in ac-
cordance with (5). Explicitly,

! = —1/2 '
Vi =07 e 2 (T, * 7grgf3 Yop)

b A-121 g =a
Vo =877, 5 (W0 — 7, T3 Vap)-

¢ (10)
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The other fermionic fields are assembled into a 128-
component spinor A 4, which according to (5) has the

components (A, A, 4). The correct choice 1s
= A—1/2 a4
Agg =4 / [2\Ilaa - (Fa r \I/b)a] ’
= A—1/2 b
g =AYV, — (T, rby,),]. (11)

The next step 1s the evaluation of the supersymmetry
variations of ML and )\A-. Before quoting the results,
we introduce some further definitions to make the
formulas less cumbersome. As in refs. [1,2], we make
use of the modified derivative operator

= m
(D”~6#—B“ Oy (12)
and the coefficients of anholonomity
! j— ! n
Qb =eg“(e,,’" Dylomp = ¢ 8B ey)s  (13)
=0 e me
anb - V D [qu] €ma (14)

Furthermore, 1t 1s convenient to define

= .af
F,=ie 1Faha, (15)
! Bx
Q. =1e, nga’ (16)
= @
F o =16, IFQ;zab (17)

A straightforward although lengthy calculation yields
the following results

5‘1/;1:[(,0 4w“aa7gé 27;7’VamB,,m]5'
-1 9 tab
— VI ATF )
~abey .
1\/"A Fopel le

-1
ATB A -Gw

[(4 gab
1 1 ~9va
tyaqQ, T

fbc)

+7;‘A—1[f9fm(am - mbe
~#V2E T — V2 F,,T

+ ”1(—1eg91 + 25%{71)6’;

Fabcd] €

(= 2=
amewl‘ e,
(18)

1 !
A%
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—1/2 S b
s[a2u, — £ 1Pw,)]
=A"IP"P [0 —1Aa713 A tw , PPe
at™m 2 m 4% mbc
+ [ V2 A7 Fypg, 1,2

+AVZIATIE(TOF,

1oy ~Irb R e
+79‘[—§ a(bc)l" r F r

b '
—45,)]e
+12 A‘lFaabf’b

1 t RbA 1 9 rbed
+§AQ, TPT, + 5V2 a7, DOT0T ¢

A},iy‘-"eggiA e’ 3, e, I W (19)
As before, we can decompose these 16-component
equations nto two sets of SO(8) spinor equations.
However, the expressions are still rather unwieldy in
the above form, and their further simplification now
requires the 1dentification of the proper SO(16) co-
variant bosonic quantities. For this step, an educated
guess is necessary, but taking the hints from refs, [1,
2], one suspects that the 56-bewn (e7f's, eMABYy of
refs. [1,2] must now be replaced by a “zweithundert-
achtundvierzigbein” (¢/7, ey’ ) with flat indices i the
248-representation of Eg. In the special SO(16) gauge
corresponding to (1), this 248-bein has the following
components.

em. m — m —
1y €ap %"

el = —ef =471
et ey =0, eZ}';:A—leamFZﬁ' (20)
The Weyl rescaling factor A~1 1n (20) 1s just as essen-
tial here as the corresponding factor of A=1/2 in refs.
[1,2]. The 248-bein 1n tself 1s not yet sufficient to
render (18) and (19) more transparent. In addition,
one also needs an “Eg-gauge connection” (QH, A)
with M = (u, m) assuming all values 1, ..., 11. The ex-
plicit expressions are found following the procedure
described 1n ref. [2]. For M = yu, one finds

B el 1 -1 ab
Q““ e 29, V2 A Fgab)l‘aﬁ,

',. o ' -1 b
0, =e 23 Q,, +1sV2ATIF, T8, (D)

+4 1 1
We define X5 = 3(Xap, — Xpg), X(g) =3(Xgpp + Xpy)
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0 af - _g be with
u b ’
(21 cont’d) o = +2 . e Y3 B™. (28)
=e'¢(1AQ. 19, — L2 Aa7F . 1% weg Chae - uls 8l Tm
w87 agtap 24 gabc” af 77 Omitting all primes, we are now able to rewrite the

PP =e e(kAQ T +&3ATIF, , 19,

aa af aabc” aff

ab _ rar 1y 1 re 1 -1
P = H(=3Qup t 50 e V2a F )
(22)

For M = m, one obtains

Qm oh = (:1’1 €an am €2b + [\/2-/(724)] €ma Fb)FZtlf)i’

.’1'3 _ 1 . b
Qma - (Zean am enb - [\/'2-/(7 24)]ema Fb)rgff’

Qm *h = —Qmﬁ’a = _%ﬁFmachZ%c’ (23)
af_, 1 abe

P "=t 192\/§Fmabcpaﬁ )
ab_. 1, n 1 n

P, = —2€, O €apy ¥ 0558 0p €pe

+ [V2/(7+12)]e,, @by (24)

Observe that P“ab and Pm”b have both a symmetric
and an antisymmetric part in gb and that the terms 1n
0,,%# and Q,,%# corresponding to the original tangent
space group SO(8) agree, but do not coincide with the
SO(8) spin connection w,,,p, .

The expressions (21)—(24) are not completely n-
dependent but subject to the SO(16) covariant con-
stramt (“generalized vielbein postulate™)

m m n n_m m
D ey t3,B,"ery 0, B Tery + 20, ki

+rip AemB =0, (25)
n IJ A _nB _
dpmerrt Qmguenix * LapPm” e =0 (26)

and a similar one for e™ 4 (in contrast to refs. [1,2],
the position of the indices does not matter here).

The consistency of the construction now requires
that all supersymmetry variations of the original d
=11 theory can be cast into a manifestly SO(16) co-
variant form. The SO(16) covariance of the field equa-
tions then follows by the usual arguments [1,2]. To
simplify the notation, we introduce the SO(1, 2) X
SO(16) covariant derivatives

I: I_l “ af I IJ_J

D“e S L€ Taw e +Q“ €, 27
I I . J ' ' I

D e =3 e +Q ¢ +},eg”8meéy'yg‘ée, 27

supersymmetry variations of d = 11 supergravity in
the following form (to arrive at (33) we have to dis-
card a local SO(16) rotation):

o1zl o, T
86” 267 dju’ (29)

syl=(D, - 19,8,

+y,(efy D, ¢ + e T PR ), (30)
- =I,J =
88, =4efye' vy +§e/’1"rfde17”>\ | (31)

A IpA _§I, _m I
8Xg ZFAAy“ePM+FAAeADme

L moll 5K pC K, mcl pA_J
+4eIJFA'BF1§CPme +eIJFAAPm y (32)
m_ 1pdJ mpK, Ky .

Sery=—sl4peq Ugp€ Ng>
_ ipld K.=K
6eA __§FABe;.nIFBB€ 7\35. (33)

From these results one can, of course, recover the
transformation rules of N = 16 supergravity in three
dimensions {7] by dropping all terms with 8,,, 0,,
and P,,,, which vanish 1n the torus reduction. In the
usual formulation of the N = 16 theory, the field

Bum does not occur since it is converted into a set

of scalar fields by duality transformations. In the pres-
ent context, this fact is expressed by the SO(16)-
nvariant constraint

" P A=ic DB, (34)

which can be easily verified from (16) and (22). How-
ever, the field B,™ cannot be eliminated in general
because of its explicit occurrence in D, see (12); it
is only in the torus reduction that B“m appears only
through its associated field strength a[”BV] M and can
be dualized.

The results described here provide further evidence
that “hidden symmetries” appear not just 1n the re-
duction of d = 11 supergravity to lower dimensions
but are present 1n the d = 11 theory 1tself; this was
already one of the main conclusions of refs, [1,2] .
An important question concerns the role of Eg in our
construction (and the role of E in refs. [1,2]). Al-
though many relations look “Eg covariant”, the theo-
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ry clearly lacks Eg mvariance. The main reason for
this 1s, of course, that the fermions belong to repre-
sentations of SO(16) but not Eg, moreover, the con-
straint (34) also violates the putative Eg invariance.
One possibility already suggested in ref. [2] is that
further gauge degrees of freedom may have to be add-
ed to unveil this invariance (if it 1s there). Further
progress in this direction will also require a better
understanding of what has happened to the usual for-
mulation of Einstein gravity.

It is rather tempting at this point to speculate
about the possibility of further extensions. Our re-
sults suggest the existence of a vastly larger symme-
try in d = 11 supergravity than hitherto expected.
There 15 little doubt that yet more versions of the
theory exist involving Eg, E5 = SO(5, 5), etc. How-
ever, these are less interesting as they are, in a sense,
already contained in the results obtained so far. It
would be far more gratifying if one could carry the
procedure still further. The next step would very like-
ly mvolve the infinite-dimensional algebras Eqg and
E; (and perhaps E if we carry the counting to the
extreme?). The emergence of Eg 1n the dimensional
reduction to two dimensions and the possible rele-
vance of E; were already pointed out in ref. [8].
However, it 1s rather doubtful that the direct dimen-
sional reduction will yield much insight below d = 2
because more and more information 1s lost as one
drops the dependence on more and more coordinates,
a defect from which a construction along the lines of
refs. [1,2] would not suffer. Another way to see that
not much is gained by a direct reduction is to note
that the tangent space group SO(9) expected 1n this
reduction is already contained in SO(16) via the non-
regular embedding of SO(9) into SO(16). More spe-
cifically, the relevant decompositions are 16, > 16,
128, — 128 (the SO(9) vector—spinor) and 128 - 44
® 84 [4,8] *5. This SO(9) coincides with the trans-

5 To be completely exphicit, the 44 and 84 representations
of SO(9) are given by

abe
{X(ab),rzéx -} and {)r[ab],qu-3 Xaé}

respectively, if the SO(8) components of the 128, repre-
sentation of SO(16) are denoted by {X { g b}
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verse subgroup of SO(1, 10) that classifies the on-
shell states of d = 11 supergravity. In the present for-
mulation there are extra fields eyt v, Tand B,m,
which, in the reduction to three d1mens1ons carry no
dynamical degrees of freedom or are dependent. We
are thus led to conjecture that extensions beyond
SO(16) will not only lead to infinite-dimensional sym-
metries but also involve off-shell classifications. Thus,
clarifying the role of the exceptional groups in the
present construction may also shed new light on the
still unsolved problem of extending d = 11 supergravi-
ty off-shell. Finally, all of this hints at a theory “be-
yond d = 11 supergravity” (not necessarily a string
theory!) whose spectrum forms a single irreducible
representation of the relevant infinite-dimensional
symmetry group. Clearly, much work remains ahead.

It is a pleasure to thank A.N. Schellekens for many
useful discussions (and some healthy skepticism).
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