$d=11$ SUPERGRAVITY WITH LOCAL SO(16) INVARIANCE

H. NICOLAI
Instttut fur theoretische Physik, Universitat Karlsruhe, D-7500 Karlsruhe 1, Fed. Rep. Germany

Recerved 19 December 1986

Abstract

The transformation rules of $d=11$ supergravity are given in a form which is manifestly covariant under local SO(16). The bosonic fields can be assigned to representations of E_{8}. This construction extends previous results where the $\mathrm{SU}(8)$ (and E_{7}) structure of $d=11$ supergravity was exhibited and suggests further extensions involving infinite-dımensional symmetries.

Some time ago it was shown [1,2] that simple supergravity in eleven dimensions [3] admits a reformulation in which the tangent space group $\mathrm{SO}(1,10)$ of the original verson is replaced by $\operatorname{SO}(1,3) \times \operatorname{SU}(8)$, furthermore it was shown that the bosonic fields could be assigned to representations of the noncompact group $\mathrm{E}_{7(+7)}$, although this E_{7} is not a symmetry of the new version. It is thus evident that the "hidden symmetries" that appear after reduction to lower dimensions [4] are not an artefact of the reduction but rather a property of the $d=11$ theory itself, because all physical degrees of freedom are retaned in the construction of refs. [1,2]. While the groups $\mathrm{SU}(8)$ and E_{7} are linked with the reduction to four dimensions, other groups appear in the reduction to other dimensions [4], and it is therefore an obvious question whether the construction of refs. [1,2] can be extended to demonstrate the existence of yet more versions of $d=11$ supergravity. In this paper it is shown that such an extension is indeed possible, and that the $d=11$ theory has a hidden $\operatorname{SO}(16)$ (and E_{8}) structure as well ${ }^{\neq 1}$. In this way a further unification of symmetries beyond those apparent in ref. [3] is acheved, the $d=11$ graviton and the three-mdex "photon", which are distinct fields in the formulation of ref. [3], are now fused into a single representation of the symmetry group, at least as far as their on-shell degrees of freedom are concerned. This

[^0]means in particular that there is an entirely new (and certainly rather unusual) formulation of Einstein's theory of gravity which in this case also involves the (simply laced) exceptional Le algebras and possibly their affine and hyperbolic extensions.

Our construction is based on a $3+8$ split of the indices in the same way as the construction of refs. [1,2] was based on a $4+7$ split. The necessary technology, conventions and notation have been explained at length in ref. [2], and therefore the description here will be brief (as in refs. [1,2], higher-order fermionic terms will be ignored throughout this paper). The fields of $d=11$ supergravity are the elfbein $E_{M}{ }^{A}$, a 32-component Majorana vector-spinor Ψ_{M} and a three-index gauge field $A_{M N P}$ which appears only through its invariant field strength $F_{M N P Q}$ in the equations of motion [3]. These fields depend on eleven coordinates z^{M}, which are subsequently split into $d=3$ coordmates x^{μ} and $d=8$ coordinates Y^{m}. Correspondingly, all $d=11$ indices are decomposed into curved and flat $d=3$ indices μ, ν, \ldots and α, β, $\ldots{ }^{ \pm 2}$, and curved and flat $d=8$ indices m, n, \ldots and a, b, \ldots, respectively. To rewrite the theory into the new form one follows the "standard" prescription [4,6] , which involves several redefinitions. One first uses the local $\operatorname{SO}(1,10)$ invariance of the orignal theory to fix a gauge such that

[^1]$E_{M}{ }^{A}=\left[\begin{array}{cc}\Delta^{-1} e_{\mu}^{\prime} \underline{\underline{\alpha}} & B_{\mu}{ }^{m} e_{m}{ }^{a} \\ 0 & e_{m}{ }^{a}\end{array}\right]$,
where a Weyl rescaling factor has already been included; of course, $\Delta \equiv \operatorname{det} e_{m}{ }^{a \neq 3}$. The tangent space symmetry is thereby reduced to $S O(1,2) \times S O(8)$ and compensating rotations are needed in the supersymmetry variations to maintain the gauge choice (1). As in refs. $[1,2,6]$ our strategy will be to enlarge this symmetry to $\operatorname{SO}(1,2) \times \operatorname{SO}(16)$ by the introduction of new gauge degrees of freedom.

The fermionic fields must be redefined in a similar manner. The $d=11 \Gamma$-matrices are represented by $\widetilde{\Gamma}^{A}=\gamma^{\underline{\alpha}} \otimes \hat{\Gamma}^{9} \quad$ or $\quad \overline{\mathbf{1}} \otimes \hat{\Gamma}^{a}$,
where the $\gamma^{\underline{\alpha}}$ are hermitean two-by-two matrices which generate the $d=3$ Clifford algebra. The following relations are useful for the explicit reduction:
$\gamma^{\underline{\alpha} \underline{\beta} \chi}=-\mathrm{i} \epsilon^{\underline{\alpha} \underline{\beta}}, \quad \hat{\Gamma}^{a_{1} \ldots a_{8}}=\epsilon^{a_{1} \ldots a_{8}} \hat{\Gamma}^{9}$.
For the 16 -by- 16 matrices $\hat{\Gamma}^{a}$ and $\hat{\Gamma}^{9}$ we choose the representation
$\hat{\Gamma}^{a}=\left(\begin{array}{cc}0 & \Gamma_{\alpha \dot{\beta}}^{a} \\ \bar{\Gamma}_{\dot{\alpha} \beta}^{a} & 0\end{array}\right), \quad \hat{\Gamma}^{9}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$,
where $\Gamma_{\alpha \dot{\beta}}^{a}$ and $\bar{\Gamma}^{a} \equiv \Gamma^{a \mathrm{~T}}$ are real. The usual Clifford algebra is implied by the relation
$\Gamma_{\alpha \dot{\gamma}}^{a} \bar{\Gamma}_{\dot{\gamma} \beta}^{b}+\Gamma_{\alpha \dot{\gamma}}^{b} \bar{\Gamma}_{\dot{\gamma} \beta}^{a}=2 \delta^{a b} \delta_{\alpha \beta}$.
Here and in the sequel, the indices $a, \alpha, \dot{\alpha}$ characterize the three fundamental $\mathrm{SO}(8)$ representations $8_{\mathrm{v}}, 8_{\mathrm{s}}$ and 8_{c}, respectively. To rewrite the theory we also need $\mathrm{SO}(16)$ vector and spinor indices I, J, \ldots and A, B, \ldots or \dot{A}, \dot{B}, \ldots, respectively. Under the $\mathrm{SO}(8) \times$ SO(8) subgroup of SO(16) these representations reduce as follows:
$16_{v} \rightarrow\left(8_{c}, 1\right) \oplus\left(1,8_{s}\right), \quad 128_{c} \rightarrow\left(8_{s}, 8_{c}\right) \oplus\left(8_{v}, 8_{v}\right)$,
$128_{s} \rightarrow\left(8_{s}, 8_{v}\right) \oplus\left(8_{v}, 8_{c}\right)$
(these decompostions differ from the usual ones by an $S O(8)$ triality rotation). The tangent space group SO(8) which leaves the gauge (1) fixed should be

[^2]identified with the dagonal subgroup of $\operatorname{SO}(8) \times \mathrm{SO}(8)$. We therefore decompose the $\mathrm{SO}(16)$ indices in the following manner-
$I=(\alpha, \dot{\beta}), \quad A=(\alpha \dot{\beta}, a b), \quad \dot{A}=(\alpha a, b \dot{\beta})$.
Using these decompositions one can find an explicit representation of the $S O(16) \Gamma$-matrices $\Gamma_{A \dot{A}}^{I}$ and $\bar{\Gamma}^{I} \equiv\left(\Gamma^{I}\right)^{\mathrm{T}}:$
$\Gamma_{\beta \dot{\gamma}, \delta b}^{\alpha}=\delta_{\beta \delta} \Gamma_{\alpha \dot{\gamma}}^{b}, \quad \Gamma_{a b, c \dot{\delta}}^{\alpha}=\delta_{a c} \Gamma_{\alpha \dot{\delta}}^{b}$,
$\Gamma_{a b, \beta c}^{\dot{\alpha}}=\delta_{b c} \Gamma_{\beta \dot{\alpha}}^{b}, \quad \Gamma_{\beta \dot{\gamma}, b \dot{\delta}}^{\dot{\alpha}}=-\delta_{\dot{\gamma} \dot{\delta}} \Gamma_{\beta \dot{\alpha} \dot{\dot{\alpha}}}^{b}$,
all other components $=0$.
From these formulas it is readily checked that indeed
$\Gamma_{A \dot{C}}^{I} \bar{\Gamma}_{C B}^{I}+\Gamma_{A \dot{C}}^{J} \bar{\Gamma}_{\dot{C} B}^{I}=2 \delta^{I J} \delta_{A B}$.
Other $\operatorname{SO}(16)$ quantities such as $\Gamma^{I J} \equiv \Gamma^{[I} \bar{\Gamma}^{J]}$ can be easily computed from (6); for instance,
\[

$$
\begin{align*}
& \Gamma_{\gamma \dot{\delta}, \dot{\zeta} \dot{\zeta}}^{\alpha, \beta}=\delta_{\gamma \epsilon} \bar{\Gamma}_{\dot{\delta}[\alpha}^{a} \Gamma_{\beta] \dot{\xi}}^{a}, \quad \Gamma_{a b, c d}^{\alpha, \beta}=\delta_{a c} \Gamma_{\alpha \beta}^{b d}, \\
& \Gamma_{\gamma \dot{\delta}, a b}^{\alpha, \dot{\beta}}=-\Gamma_{\gamma \dot{\delta}, a b}^{\dot{\beta}, \alpha}=\Gamma_{\gamma \dot{\beta}}^{a} \Gamma_{\alpha \dot{\delta}}^{b}, \quad \text { etc. } \tag{8}
\end{align*}
$$
\]

The redefined fermionic fields must be assigned to representations of $\mathrm{SO}(16)$ such that the supersymmetry transformation parameter ϵ^{I} and the gravitino ψ_{μ}^{I} belong to the 16 -dimensional vector representation and the remaining fermionic fields to the 128 dimensional spinor representation of SO(16). The correct form of the redefined fields can, of course, only be determined through a careful analysis of the supersymmetry transformation rules as in refs. [1,2]. Anticipating the final result, we have

$$
\begin{equation*}
\psi_{\mu}^{\prime}=\Delta^{-1 / 2} e_{\mu}^{\prime} \underline{\alpha}\left(\Psi_{\underline{\alpha}}+\gamma_{\underline{\alpha}} \hat{\Gamma}^{9} \hat{\Gamma}^{a} \Psi_{a}\right), \quad \epsilon^{\prime}=\Delta^{1 / 2} \epsilon \tag{9}
\end{equation*}
$$

As in (1) we temporarily use prımes to distinguish the redefined fields from the unredefined ones; these primes will be dropped in the final expressions. The spinors in (9) still have 16 internal components (and, of course, two Dirac indices which we suppress). These we can split into two sets of eight components in accordance with (5). Explicitly,
$\psi_{\mu \alpha}^{\prime}=\Delta^{-1 / 2} e_{\mu}^{\prime}{ }^{\underline{\alpha}}\left(\Psi_{\underline{\alpha} \alpha}+\gamma_{\underline{\alpha}} \Gamma_{\alpha \dot{\beta}}^{a} \Psi_{a \dot{\beta}}\right)$,
$\psi_{\mu \dot{\alpha}}^{\prime}=\Delta^{-1 / 2} e_{\mu}^{\prime} \underline{\alpha}\left(\Psi_{\underline{\alpha} \dot{\alpha}}-\gamma_{\underline{\alpha}} \bar{\Gamma}_{\dot{\alpha} \beta}^{a} \Psi_{a \beta}\right)$.

The other fermionic fields are assembled into a 128 component spinor $\lambda_{\dot{A}}$, which according to (5) has the components ($\lambda_{\alpha a}, \lambda_{a \dot{\alpha}}$). The correct choice is
$\lambda_{\alpha a}=\Delta^{-1 / 2}\left[2 \Psi_{a \alpha}-\left(\Gamma_{a} \bar{\Gamma}^{b} \Psi_{b}\right)_{\alpha}\right]$,
$\lambda_{a \dot{\alpha}}=\Delta^{-1 / 2}\left[2 \Psi_{a \dot{\alpha}}-\left(\bar{\Gamma}_{a} \Gamma^{b} \Psi_{b}\right)_{\dot{\alpha}}\right]$.
The next step is the evaluation of the supersymmetry variations of ψ_{μ}^{\prime} and $\lambda_{\dot{A}}$. Before quoting the results, we introduce some further definitions to make the formulas less cumbersome. As in refs. [1,2], we make use of the modified derivative operator

$$
\begin{equation*}
\mathcal{D}_{\mu} \equiv \partial_{\mu}-B_{\mu}{ }^{m} \partial_{m}, \tag{12}
\end{equation*}
$$

and the coefficients of anholonomity
$\Omega_{\alpha a b}^{\prime} \equiv e_{\underline{\alpha}}^{\prime}{ }^{\mu}\left(e_{a}{ }^{m} \mathcal{D}_{\mu} e_{m b}-e_{a}^{m} \partial_{m} B_{\mu}{ }^{n} e_{n b}\right)$,
$\Omega_{\underline{\underline{\alpha}} a b}^{\prime} \equiv 2 e_{\underline{\alpha}}^{\prime \mu} e_{\underline{\underline{\beta}}}^{\prime \nu} \mathcal{D}_{[\mu} B_{\nu]}^{m} e_{m a}$.
Furthermore, it is convenient to define
$F_{a} \equiv \mathrm{i} \epsilon{\underline{\underline{\alpha}} \underline{\underline{\beta} \gamma} F_{\underline{\alpha} \underline{\alpha} a^{\prime}}, ~}$,
$\Omega_{\underline{\alpha} a}^{\prime} \equiv{ }_{1 \epsilon_{\underline{\alpha}}}{ }^{\underline{\beta}} \Omega_{\underline{\underline{\alpha} a}}^{\prime}$,
$F_{\underline{\alpha} a b} \equiv 1 \epsilon_{\underline{\alpha}}^{\underline{\underline{Q}}} F_{\underline{\underline{\beta} \gamma} a b}$
A straightforward although lengthy calculation yields the following results

$$
\begin{align*}
& \delta \psi_{\mu}^{\prime}=\left[{ }^{\prime} D_{\mu}-\frac{1}{4} \omega_{\mu \underline{\alpha} \underline{\alpha}}^{\prime} \gamma^{\alpha \underline{\alpha}}-\frac{1}{2} \gamma_{\mu}^{\prime} \gamma^{\prime \nu} \partial_{m} B_{\nu}^{m}\right] \epsilon^{\prime} \\
& \quad+e_{\mu}^{\prime \underline{\alpha}}\left[\left(\frac{1}{4} \Omega_{\underline{\alpha} a b}^{\prime}-\frac{1}{16} \sqrt{2} \Delta^{-1} F_{\underline{\alpha} a b} \hat{\Gamma}^{9}\right) \hat{\Gamma}^{a b}\right. \\
& \left.\quad+\frac{1}{8} \Delta \Omega_{\underline{\alpha} a}^{\prime} \hat{\Gamma}^{9} \hat{\Gamma}^{a}-\frac{1}{24} \sqrt{2} \Delta^{-1} F_{\underline{\alpha} a b c} \hat{\Gamma}^{a b c}\right] \epsilon^{\prime} \\
& \quad+\gamma_{\mu}^{\prime} \Delta^{-1}\left[\hat{\Gamma}^{9} \hat{\Gamma}^{m}\left(\partial_{m}-\Delta^{-1} \partial_{m} \Delta-\frac{1}{4} \omega_{m b c} \hat{\Gamma}^{b c}\right)\right. \\
& \left.\quad-\frac{1}{24} \sqrt{2} F_{a} \hat{\Gamma}^{a}-\frac{1}{96} \sqrt{2} F_{a b c d} \hat{\Gamma}^{9} \hat{\Gamma}^{a b c d}\right] \epsilon^{\prime} \\
& \quad+\frac{1}{4} e_{\mu}^{\prime}{ }^{\underline{\alpha}} \Delta^{-1}\left(-1 \epsilon_{\underline{\alpha}}^{\underline{\alpha}}+2 \delta_{\underline{\alpha}}^{\hat{\beta}} \gamma^{\gamma}\right) e_{\underline{Q}}^{\prime \nu} \partial_{m} e_{\nu \chi}^{\prime} \hat{\Gamma}^{9} \hat{\Gamma}^{m} \epsilon^{\prime}, \tag{18}
\end{align*}
$$

$$
\begin{align*}
& \delta[\left.\Delta^{-1 / 2}\left(2 \Psi_{a}-\hat{\Gamma}_{a} \hat{\Gamma}^{b} \Psi_{b}\right)\right] \\
&=\Delta^{-1} \hat{\Gamma}^{m} \hat{\Gamma}_{a}\left[\partial_{m}-\frac{1}{2} \Delta^{-1} \partial_{m} \Delta-\frac{1}{4} \omega_{m b c} \hat{\Gamma}^{b c}\right] \epsilon^{\prime} \\
&+\left[\frac{1}{48} \sqrt{2} \Delta^{-1} F_{b c d e} \hat{\Gamma}_{a}^{b c d e}\right. \\
&\left.+\frac{1}{24} \sqrt{2} \Delta^{-1} F_{b}\left(\hat{\Gamma}^{b} \hat{\Gamma}_{a}-4 \delta_{a}^{b}\right)\right] \epsilon^{\prime} \\
&+\gamma^{\underline{\alpha}}\left[-\frac{1}{2} \Omega_{\underline{\alpha}(b c)}^{\prime} \hat{\Gamma}^{9} \hat{\Gamma}^{b} \hat{\Gamma}_{a} \hat{\Gamma}^{c}+\frac{1}{4} \sqrt{2} \Delta^{-1} F_{\underline{\alpha} a b} \hat{\Gamma}^{b}\right. \\
&+\frac{1}{8} \Delta \Omega_{\underline{\alpha} b}^{\prime} \hat{\Gamma}^{b} \hat{\Gamma}_{a}+\frac{1}{24} \sqrt{2} \Delta^{-1} F_{\alpha} b c d \\
&\left.\hat{\Gamma}^{9} \hat{\Gamma}^{b c d} \hat{\Gamma}_{a}\right] \epsilon^{\prime} \tag{19}\\
&-\frac{1}{4} \mathrm{i} \gamma^{\underline{\alpha}} \epsilon_{\underline{q}}^{\underline{\underline{\beta}} \Delta^{-1} e_{\underline{Q}}^{\prime \nu} \partial_{m} e_{\nu \chi}^{\prime} \hat{\Gamma}^{m} \hat{\Gamma}_{a} \epsilon^{\prime} .}
\end{align*}
$$

As before, we can decompose these 16 -component equations into two sets of $\operatorname{SO}(8)$ spinor equations. However, the expressions are stlll rather unweldy in the above form, and their further simplification now requires the identification of the proper $S O(16)$ covariant bosonic quantittes. For this step, an educated guess is necessary, but taking the hints from refs. [1, 2], one suspects that the 56 -bein $\left(e_{A B}^{m}, e^{m A B}\right)$ of refs. [1,2] must now be replaced by a "zweihundertachtundvierzigbein" $\left(e_{I J}^{m}, e_{A}^{m}\right)$ with flat andıces in the 248 -representation of E_{8}. In the special $\mathrm{SO}(16)$ gauge corresponding to (1), this 248 -bein has the following components.

$$
\begin{array}{ll}
e_{I J}^{m} & e_{\alpha, \beta}^{m}=e_{\dot{\alpha}, \dot{\beta}}^{m}=0, \\
& e_{\alpha, \dot{\beta}}^{m}=-e_{\dot{\beta}, \alpha}^{m}=\Delta^{-1} e_{a}^{m} \Gamma_{\alpha \dot{\beta}}^{a}, \\
e_{A}^{m}: & e_{a b}^{m}=0, \quad e_{\alpha \dot{\beta}}^{m}=\Delta^{-1} e_{a}^{m} \Gamma_{\alpha \dot{\beta}}^{a} . \tag{20}
\end{array}
$$

The Weyl rescaling factor Δ^{-1} in (20) is Just as essential here as the corresponding factor of $\Delta^{-1 / 2} \mathrm{in}$ refs. $[1,2]$. The 248 -bein in itself is not yet sufficient to render (18) and (19) more transparent. In addition, one also needs an " E_{8}-gauge connection" ($Q_{M}^{I J}, P_{M}{ }^{A}$) with $M=(\mu, m)$ assuming all values $1, \ldots, 11$. The explicit expressions are found following the procedure described in ref. [2]. For $M=\mu$, one finds ${ }^{\neq 4}$

$$
\begin{align*}
& Q_{\mu}^{\alpha, \beta}=e_{\mu}^{\prime} \underline{\underline{\alpha}}\left(\frac{1}{4} \Omega_{\underline{\alpha} a b}^{\prime}-\frac{1}{16} \sqrt{2} \Delta^{-1} F_{\underline{\alpha} a b}\right) \Gamma_{\alpha \beta}^{a b}, \\
& Q_{\mu}^{\dot{\alpha}, \dot{\beta}}=e_{\mu}^{\prime}{ }_{\mu}^{\underline{\alpha}}\left(\frac{1}{4} \Omega_{\underline{\alpha} a b}^{\prime}+\frac{1}{16} \sqrt{2} \Delta^{-1} F_{\underline{\alpha} a b}\right) \Gamma_{\dot{\alpha} \dot{\beta}}^{a b}, \tag{21}\\
& \neq 4 \text { We define } X_{[a b]} \equiv \frac{1}{2}\left(X_{a b}-X_{b a}\right), X_{(a b)} \equiv \frac{1}{2}\left(X_{a b}+X_{b a}\right)
\end{align*}
$$

$Q_{\mu}{ }^{\alpha, \dot{\beta}}=-Q_{\mu}^{\dot{\beta}, \alpha}$
(21 cont'd)
$=e_{\mu}^{\prime}{ }^{\alpha}\left(\frac{1}{8} \Delta \Omega_{\underline{\alpha} \alpha}^{\prime} \Gamma_{\alpha \dot{\beta}}^{a}-\frac{1}{24} \sqrt{2} \Delta^{-1} F_{\underline{\alpha} a b c} \Gamma_{\alpha \dot{\beta}}^{a b c}\right)$,
$P_{\mu}{ }^{\alpha \dot{\beta}}=e_{\mu}^{\prime}{ }^{\alpha}\left(\frac{1}{16} \Delta \Omega_{\underline{\alpha} \alpha}^{\prime} \Gamma_{\alpha \dot{\beta}}^{a}+\frac{1}{48} \sqrt{2} \Delta^{-1} F_{\underline{\alpha} a b c} \Gamma_{\alpha \dot{\beta}}^{a b c}\right)$,
$P_{\mu}^{a b}=e_{\mu}^{\prime} \underline{\alpha}\left(-\frac{1}{2} \Omega_{\underline{\alpha}(a b)}^{\prime}+\frac{1}{4} \delta_{a b} \Omega_{\underline{\alpha} c}^{\prime}{ }^{c}-\frac{1}{8} \sqrt{2} \Delta^{-1} F_{\underline{\alpha} a b}\right)$.
For $M=m$, one obtans
$Q_{m}^{\alpha, \beta}=\left(\frac{1}{4} e_{a}^{n} \partial_{m} e_{n b}+[\sqrt{2} /(7 \cdot 24)] e_{m a} F_{b}\right) \Gamma_{\alpha \beta}^{a b}$,
$Q_{m}^{\dot{\alpha}, \dot{\beta}}=\left(\frac{1}{4} e_{a}^{n} \partial_{m} e_{n b}-[\sqrt{2} /(7 \cdot 24)] e_{m a} F_{b}\right) \Gamma_{\dot{\alpha} \dot{\beta}}^{a b}$,
$Q_{m}{ }^{\alpha, \dot{\beta}}=-Q_{m}^{\dot{\beta}, \alpha}=-\frac{1}{96} \sqrt{2} F_{m a b c} \Gamma_{\alpha \dot{\beta}}^{a b c}$,
$P_{m}{ }^{\alpha \dot{\beta}}=+\frac{1}{192} \sqrt{2} F_{m a b c} \Gamma_{\alpha \dot{\beta}}^{a b c}$,
$P_{m}^{a b}=-\frac{1}{2} e_{(a}{ }^{n} \partial_{m} e_{n b)}+\frac{1}{4} \delta_{a b} e_{c}^{n} \partial_{m} e_{n c}$
$+[\sqrt{2} /(7 \cdot 12)] e_{m[a} F_{b]}$.
Observe that $P_{\mu}{ }^{a b}$ and $P_{m}{ }^{a b}$ have both a symmetric and an antisymmetric part in $a b$ and that the terms in $Q_{m}{ }^{\alpha, \beta}$ and $Q_{m}{ }^{\dot{\alpha}, \dot{\beta}}$ corresponding to the original tangent space group $\mathrm{SO}(8)$ agree, but do not coincide with the $\mathrm{SO}(8)$ spin connection $\omega_{m a b}$.

The expressions (21)-(24) are not completely independent but subject to the $\mathrm{SO}(16)$ covariant constraint ("generalized vielbein postulate")

$$
\begin{align*}
& \mathcal{D}_{\mu} e_{I J}^{m}+\partial_{n} B_{\mu}{ }^{m} e_{I J}^{n}+\partial_{n} B_{\mu}{ }^{n} e_{I J}^{m}+2 Q_{\mu K[I} e_{J] K}^{m} \\
& \quad+\Gamma_{A B}^{I J} P_{\mu}{ }^{A} e^{m B}=0, \tag{25}\\
& \partial_{m} e_{I J}^{n}+2 Q_{m K I I} e_{J] K}^{n}+\Gamma_{A B}^{I J} P_{m}{ }^{A} e^{n B}=0, \tag{26}
\end{align*}
$$

and a similar one for $e^{m}{ }_{A}$ (in contrast to refs. [1,2], the position of the indices does not matter here).

The consistency of the construction now requires that all supersymmetry variations of the original d $=11$ theory can be cast into a manifestly SO(16) covariant form. The SO(16) covariance of the field equations then follows by the usual arguments $[1,2]$. To simplify the notation, we introduce the $\operatorname{SO}(1,2) \times$ SO(16) covariant derivatives
$\mathrm{D}_{\mu} \epsilon^{I} \equiv{ }_{\mu} \epsilon^{I}-\frac{1}{4} \hat{\omega}_{\mu \mathrm{g} \mathrm{Q}} \gamma^{\underline{\underline{\alpha}}{ }_{\epsilon} I}+Q_{\mu}^{I J} \epsilon^{J}$,
$\mathrm{D}_{m} \epsilon^{I} \equiv \partial_{m} \epsilon^{I}+Q_{m}^{I J} \epsilon^{J}+\frac{1}{4} e_{\underline{\alpha}}^{\prime}{ }^{\nu} \partial_{m} e_{\underline{\beta} \nu}^{\prime} \gamma \underline{\underline{\alpha}} \underline{\epsilon}^{I}$,
with
$\hat{\omega}_{\mu \underline{\alpha} \underline{\beta}} \equiv \omega_{\mu \underline{\alpha} \underline{\beta}}^{\prime}+2 e_{\mu[\underline{\alpha} \underline{\beta}]}^{\prime} e^{\prime} \partial_{m} B_{\nu}{ }^{m}$.
Omitting all primes, we are now able to rewrite the supersymmetry variations of $d=11$ supergravity in the following form (to arrive at (33) we have to discard a local SO(16) rotation):
$\delta e_{\mu}{ }^{\underline{\alpha}}=\frac{1}{2} \tilde{\epsilon}^{I} \gamma^{\underline{\alpha}} \psi_{\mu}^{I}$,
$\delta \psi_{\mu}^{I}=\left(\mathrm{D}_{\mu}-\frac{1}{2} \partial_{m} B_{\mu}{ }^{m}\right) \epsilon^{I}$
$+\gamma_{\mu}\left(e_{I J}^{m} \mathrm{D}_{m} \epsilon^{J}+\frac{1}{2} e_{A}^{m} \Gamma_{A B}^{I J} P_{m}^{B} \epsilon^{J}\right)$,
$\delta B_{\mu}^{m}=\frac{1}{2} e_{I J}^{m} \bar{\epsilon}^{I} \psi_{\mu}^{J}+\frac{1}{8} e_{A}^{m} \Gamma_{A \dot{A}}^{I} \bar{\epsilon}^{I} \gamma_{\mu} \lambda_{\dot{A}}$,
$\delta \lambda_{\dot{A}}=2 \bar{\Gamma}_{A A}^{I} \gamma^{\mu} \epsilon^{I} P_{\mu}^{A}+\bar{\Gamma}_{A A}^{I} e_{A}^{m} \mathrm{D}_{m} \epsilon^{I}$
$+\frac{1}{4} e_{I J}^{m} \Gamma_{\dot{A} \dot{B}}^{I J} \bar{\Gamma}_{\dot{B} C}^{K} P_{m}^{C} \epsilon^{K}+e_{I J}^{m} \bar{\Gamma}_{\dot{A} A}^{I} P_{m}^{A} \epsilon^{J}$,
$\delta e_{I J}^{m}=-\frac{1}{8} \Gamma_{A B}^{I J} e_{A}^{m} \Gamma_{B \dot{B}}^{K} \tilde{\epsilon}^{K} \lambda_{\dot{B}}$,
$\delta e_{A}^{m}=-\frac{1}{8} \Gamma_{A B}^{I J} e_{I J}^{m} \Gamma_{B \dot{B}}^{K} \bar{\epsilon}^{K} \lambda_{\dot{B}}$.
From these results one can, of course, recover the transformation rules of $N=16$ supergravity in three dimensions [7] by dropping all terms with ∂_{m}, Q_{m} and P_{m}, which vanish in the torus reduction. In the usual formulation of the $N=16$ theory, the field $B_{\mu}{ }^{m}$ does not occur since it is converted into a set of scalar fields by duality transformations. In the present context, this fact is expressed by the $\mathrm{SO}(16)$ invariant constraint
$e^{m}{ }_{A} P_{\mu}{ }^{A}=\mathrm{i} \epsilon_{\mu}{ }^{\nu \rho}{ }_{C D}{ }_{\nu} B_{\rho}{ }^{m}$,
which can be easily verified from (16) and (22). However, the field $B_{\mu}{ }^{m}$ cannot be eliminated in general because of its explicit occurrence in \mathcal{D}_{μ}, see (12); it is only in the torus reduction that $B_{\mu}{ }^{m}$ appears only through its associated field strength $\partial_{[\mu} B_{\nu]} m$ and can be dualized.

The results described here provide further evidence that "hidden symmetries" appear not just in the reduction of $d=11$ supergravity to lower dimensions but are present in the $d=11$ theory itself; this was already one of the main conclusions of refs. [1,2]. An important question concerns the role of E_{8} in our construction (and the role of E_{7} in refs. [1,2]). Although many relations look " E_{8} covariant", the theo-
ry clearly lacks E_{8} invariance. The main reason for this is, of course, that the fermions belong to representations of $\mathrm{SO}(16)$ but not E_{8}, moreover, the constraint (34) also violates the putative E_{8} invariance. One possiblity already suggested in ref. [2] is that further gauge degrees of freedom may have to be added to unvell this invariance (if it is there). Further progress in this direction will also require a better understanding of what has happened to the usual formulation of Einstein gravity.

It is rather tempting at this point to speculate about the possiblity of further extensions. Our results suggest the existence of a vastly larger symmetry in $d=11$ supergravity than hitherto expected. There is little doubt that yet more versions of the theory exist involving $\mathrm{E}_{6}, \mathrm{E}_{5}=\mathrm{SO}(5,5)$, etc. However, these are less interesting as they are, in a sense, already contaned in the results obtained so far. It would be far more gratifying if one could carry the procedure still further. The next step would very likely involve the infinite-dimensional algebras E_{9} and E_{10} (and perhaps E_{11} if we carry the counting to the extreme ${ }^{9}$). The emergence of E_{9} in the dimensional reduction to two dimensions and the possible relevance of E_{10} were already pointed out in ref. [8]. However, it is rather doubtful that the direct dimensional reduction will yield much insight below $d=2$ because more and more information is lost as one drops the dependence on more and more coordinates, a defect from which a construction along the lines of refs. [1,2] would not suffer. Another way to see that not much is gained by a direct reduction is to note that the tangent space group $\mathrm{SO}(9)$ expected in this reduction is already contained in $\mathrm{SO}(16)$ via the nonregular embedding of $\mathrm{SO}(9)$ into $\mathrm{SO}(16)$. More specifically, the relevant decompositions are $16_{v} \rightarrow 16$, $128_{\mathrm{s}} \rightarrow 128$ (the SO(9) vector-spinor) and $128_{\mathrm{c}} \rightarrow 44$ $\oplus 84[4,8]{ }^{\ddagger 5}$. This SO(9) coincides with the trans-
$\not{ }^{\ddagger 5}$ To be completely explicit, the 44 and 84 representations of SO(9) are given by
$\left\{X_{(a b)}, \Gamma_{\alpha \dot{\beta}}^{a} X_{\alpha \dot{\beta}}\right\} \quad$ and $\quad\left\{X_{[a b \mid}, \Gamma_{\alpha \dot{\beta}}^{a b c} X_{\alpha \dot{\beta}}\right\}$,
respectively, if the $\mathrm{SO}(8)$ components of the 128_{c} representation of $S O(16)$ are denoted by $\left\{X_{\alpha \dot{\beta}}, X_{a b}\right\}$.
verse subgroup of $\operatorname{SO}(1,10)$ that classifies the onshell states of $d=11$ supergravity. In the present formulation there are extra fields $e_{\mu}{ }^{\underline{\alpha}}, \psi_{\mu}{ }^{I}$ and $B_{\mu}{ }^{m}$, which, in the reduction to three dımensions, carry no dynamical degrees of freedom or are dependent. We are thus led to conjecture that extensions beyond SO(16) will not only lead to infinite-dimensional symmetries but also involve off-shell classifications. Thus, clarifying the role of the exceptional groups in the present construction may also shed new light on the still unsolved problem of extending $d=11$ supergravity off-shell. Finally, all of this hints at a theory "beyond $d=11$ supergravity" (not necessarily a string theory!) whose spectrum forms a single irreducible representation of the relevant infinte-dimensional symmetry group. Clearly, much work remains ahead.

It is a pleasure to thank A.N. Schellekens for many useful discussions (and some healthy skepticism).

References

[1] B. de Wit and H Nicola1, Phys. Lett. B 155 (1985) 47
[2] B. de Wit and H. Nicolai, Nucl. Phys. B 274 (1986) 363.
[3] E Cremmer, B. Juha and J Scherk, Phys Lett. B 76 (1978) 409.
[4] E. Cremmer and B Julia, Nucl. Phys. B 159 (1979) 141; B. Julia, in' Superspace and supergravity, eds. S.W. Hawking and M. Roč̃ek (Cambrdıge U.P , Cambridge, 1980); E Cremmer, in Superspace and supergravity, eds. S.W. Hawking and M Roček (Cambridge U.P , Cambrdıge, 1980).
[5] M.J Duff, in Quantum feld theories in curved spacetime, eds. I.A. Batalin, C.J. Isham and G.A Vilkovisky (Adam Hilger, Bristol), to be published.
[6] B de Wit and H Nicolat, Nucl. Phys. B 243 (1984) 91.
[7] N Marcus and J H Schwarz, Nucl. Phys B 228 (1983) 145
[8] B. Juha, in Frontiers in partıcle physics '83, eds. D. Şyackı, N Bllić, B. Dragović and D. Popović (World Scientıfic, Singapore, 1984).

[^0]: ${ }^{\ddagger 1}$ For earlier speculations in this direction, see ref [5].

[^1]: $\not{ }^{\ddagger}$ We underline flat $d=3$ indices to distınguish them from the $\operatorname{SO}(8)$ spinor indices which will be introduced below

[^2]: ${ }^{\ddagger 3}$ The Weyl rescaling factor in (1) leads to the standard Einstem action in three dimensions

