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We gtve a complete proof that d= 11 supergravlty compactlfled on S 7 admits a consistent 
truncation to its zero-mass sector. The resulting theory is shown to colncade with gauged N = 8 
supergravxty to all orders 

1. Introduction 

The  purpose  of  this paper  is to resolve the longstanding problem of how gauged 

N = 8 supergravi ty [1] is embedded in N = 1 supergravity in eleven dimensions [2]. 

It  has  been known  for some time that the d = 11 theory possesses a solution where 

seven dimensions  are compactif ied to the seven-sphere S 7 [3, 4]. This solution has 

N = 8 supersymmet ry  and an internal SO(8) symmetry  and is therefore expected to 

cor respond  to gauged N = 8 supergravity in four dimensions after a suitable 

t runcat ion.  At  the linear level, the correspondence follows f rom the occurrence of  
one  massless N = 8 multiplet [4, 5] (accompanied by an infinite tower of  massive 

N = 8 multiplets [6]) in a small f luctuation analysis. Further  evidence for the 

correctness  o f  this hypothesis has been accumulated in refs. [7-19]. Here, we present 
a comple te  p roo f  that  d = 11 supergravity compactif ied on S 7 admits a consistent 

t runca t ion  to gauged N = 8 supergravity. We believe that this consistency proof  
const i tutes  the first example of  a complete nonlinear  analysis in the f ramework of 
Ka luza-Kle in  theories*. 

* Prelinunary accounts of the work described here have appeared in [20, 21] 
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The central problem in any Kaluza-Klein theory is how to make contact with our 
four-dimensional low-energy world. One usually starts by showing (or assuming) 
that the higher dimensional theory spontaneously compactifies to four dimensions 
on an internal manifold whose size is small enough to prevent its immediate 
experimental discovery. The fields of the higher dimensional theory are then 
expanded about this background into certain harmonics on the internal manifold. 
Subsequently, only those fields are kept which corresponds to massless particles in 
four dimensions (in a first approximation). The massive states cannot be excited at 
low energies and are therefore discarded. The determination of both massless and 
massive modes involves an expansion of the higher dimensional field equations to 
linear order only. Having identified the zero modes, one would then like to calculate 
the residual interactions between the massless fields because those will ultimately 
lead to the final low-energy symmetry breaking. However, the evaluation of these 
interactions is a rather difficult problem. For its solution, the linear analysis, by 
which the zero modes were identified, is n o t  sufficient. In particular, one does not 
obtain the correct couplings by substituting the linear modes back into the higher 
dimensional action and integrating over the internal manifold (the case of three-point 
couplings is an exception). The reason is that the correct ans~itze for the massless 
fields involve nonlinear modifications beyond the possible nonlinear redefinitions of 
the d = 4 fields. One might argue that such effects are irrelevant at low-energy scales 
since one would expect them to be suppressed by inverse factors of the compactifi- 
cation scale (e.g. the Planck mass). Contrary to this naive expectation, a careful 
analysis indicates that this is not always the case and that there may arise certain 
renormalizable couplings of order unity through nonlinear modifications at the 
compactification scale*. The higher-order (nonrenormalizable) interactions of the 
massless fields are of course also sensitive to such effects, and their correct 
identification inevitably requires a complete nonlinear analysis of the type per- 
formed here. In fact, our results exemplify how a sigma-model structure emerges 
from higher dimensions and may therefore be relevant in other contexts, too. 

In general, the nonlinear modifications are difficult to determine. A crucial 
ingredient turns out to be the requirement of consistency of the truncation to the 
zero-mass sector. Quite generally, this means that the states, which have been 
discarded in the truncation, are not reintroduced through the higher dimensional 
interactions or symmetry transformations after insertion of the truncated modes. In 
the case at hand, the consistency of the truncated supersymmetry transformations 
implies the consistency of the remaining bosonic transformations as well as of the 
truncated field equations. In the first step we therefore focus on the analysis of the 
supersymmetry transformations. From the consistency requirement one can de- 

* To be sure, one must distinguish between the "effective low-energy theory" and the truncated theory 
The latter may have solutions at wluch some of the scalar fields acqmre vacuum expectatton values of 
the order of the Planck mass and therefore does not necessarily describe low-energy physics We are 
here concerned vath the truncated theory. 
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termine the full embedding of gauged N = 8 supergravity into d = 11 supergravity 
and give a rigorous proof of the consistency of the S 7 truncation at the nonlinear 
level. A most important feature is that we base our proof on the recently con- 
structed SU(8) covariant version of d =  11 supergravity [21,22] rather than the 
original one of [2]. As we have shown there the field equations and constraints of 
the former are equivalent to the combined field equations and Bianchi identities of 
the latter. The nonlinear ans~itze derived in this paper, which constitute gauged 
N = 8 supergravity embedded into d = 11 supergravity, satisfy some of these con- 
straints, while the remaining conditions correspond to genuine d = 4 field equations. 

We now briefly review our notations and conventions* as well as some basic 
results concerning the S 7 compactification. The ground state is assumed to be 

Mll = (ADS)4 X S 7 , (1.1) 

and the (finite) fluctuations will preserve the topology of this product manifold. The 
d = 11 coordinates are split accordingly 

z M= (x  I*, y ' ) ,  (1.2) 

where we distinguish between curved d = 4 and d = 7 indices #, v . . . .  and m, n . . . . .  
Flat d = 4 indices are denoted by a, fl . . . .  whereas flat d = 7 indices no longer 
appear  in our treatment as they are replaced by SU(8) indices A, B, C . . . . .  Of 
fundamental  importance are the eight Killing spinors 71I(y) on S 7, which satisfy 

(&+½imvI ' , , , )~ l t ( y )=O ( I = 1  . . . . .  8) (1.3) 

and are normalized to 

~'( y )~lSC y ) = 8 •. (1.4) 

Here, Ira7[ is the inverse S 7 radius, /)m is the S 7 background covariant derivative 
and F,~ = ~,na_F a with ~, a(y)  the (globally defined) siebenbein on S 7. The 28 Killing 
vectors K"aS(y )  on S7can be expressed through the Killing spinors according to [4] 

KmlS( y ) = l~ am~ll~a~ J, (1.5) 

Their  normalization, consistent with (1.4) is given by 

K m l S ( y ) K " I 1 ( y )  = 8~m"(y) .  (1.6) 

When lowering the index m on K '~ it is understood that this is to be done with the 

* See also refs [9,13-15] 



214 B. de  Wit ,  H Nlco la l  / d = 11 supergrav t t y  

round S 7 metric, i.e. 

KmlJ - ~,mn K hiS. (1.7) 

We have adopted a representation in which the d = 7 charge conjugation matrix 
equals the identity, so that the Killing spinors are real and the F a are imaginary and 
antisymmetric. Throughout this paper we will use a set of orthonormal Killing 
spinors *i'(y) to convert "curved" SU(8) indices A, B,C . . . .  into "flat" SU(8) 
indices* i, j ,  k . . . .  (we introduce this terminology because in the truncation to 
N = 8 supergravity the SU(8) transformations acting on the " f la t"  indices i, j ,  k . . . .  
are y-independent; hence the analogy with flat and curved indices in differential 
geometry should not be taken too literally). For instance, given an SU(8) tensor 
X aBc , we define 

X , j k  _ ~,, ,,,,,,,k xABC (1.8) 
- -  ' I A ' I B ' I C  • • • 

Because of the orthonormality and reality of the Killing spinors we can introduce 
transpose spinors *ia (such that *IA*Ij = 8[, *I,A*I' s = 8sa; see appendix) to invert (1.8): 

x A B C  A B C x t J k  (1.9) 
= *It *i j  *i~ "" • 

or to convert tensors with lower indices 

A B c (1.10) Y, jk. = *i, % *ik ' ' '  YASC 

We also briefly remind the reader of the essential features of SU(8) invariant 
d =  11 supergravity [21,22]. In this formulation, the tangent space symmetry 
SO(l, 10) of [2] is replaced by SO(l, 3) × SU(8). Consequently, the basic fields are 
now SO(l, 3) × SU(8) tensors. The fermionic sector is constituted by the fields ~p/ 
and X A sc  which transform as (s = 3,8) and (s = -t, 56)2 representations of SO(l, 3) × 
SU(8). In the bosonic sector, we have the graviton field e~, a spin-1 field B~, a 
"56-bein" (e~'B, e '''4B) and two fields gM and ~¢M which together form the adjoint 
representation of E 7 ( M  = / ~ ,  m ) .  Needless to say, all these fields still depend on all 
eleven coordinates and the physical degrees of freedom are still the same as before. 
The new fields are interrelated by certain equations which have been given in [22]. 
As there is no room here to review this construction in more detail, some familiarity 
with the preceding paper [22] will be assumed. 

We conclude this introduction with an overview of the contents of this paper. In 
sect. 2, we study the bosonic transformation laws and their truncation. This leads to 
the identification of the fields e ~ ,  B ~ ,  e~s ,  ~p~ and X ABc in terms of the fields of 
N = 8 supergravity. In sect. 3, we solve the "generalized vielbein postulate" of 
[21, 22]; the solution is an indispensable prerequisite for the analysis of the fermionic 

* There may be some confusion occasionally as SU(8) m&ces z, j ,  k, and d = 7 world m&ces 
m, n , . . .  will s~mulatneously appear in certain tensors To numnuze thas confusmn d = 7 m&ces are 

always gtven before SU(8) radices 
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transformation laws in sect. 4. Sect. 5 is the heart of this paper: it contains the most 
difficult part of the whole argument, namely the proof that the T-tensor as 
identified from d = 11 supergravity also becomes y-independent (this tensor char- 
acterizes the extra terms induced by the gauging of SO(8) in N = 8 supergravity [1]). 
At this point, the proof is already complete. Nonetheless, in sect. 6, we discuss the 
y-independence of the field equations and deduce the N = 8 potential [1] from 
d = 11 supergravity. Finally, in sect. 7, we show how to obtain the full nonlinear 
ansiitze for the original fields of d = 11 supergravity [2] in terms of those of N = 8 
supergravity. The appendix contains some useful identities involving Killing spinors 
and vectors. 

2. The generalized vielbein and the boson transformation laws 

In this section we express the fields e~ ~, B~ m, e~'B, ~ and X ABe in terms of the 
fields of N = 8 supergravity and examine the consistency of the supersymmetry 
transformations for the boson fields. These transformation rules are [21, 22]. 

8e~ = 1-A ao ~e 7 ~,A + h.c., 

m _ _ l  m -A B 8B¢ - iv~-eaB(2v~-e ~k¢ + ecY¢X abe)  + h.c., 

(2.1) 

(2.2) 

_ mCD 8e~B= V~ZABcoe , (2.3) 

where 

1 -e_ FGH (2.4) 
~ A B C D  -~ e[AXBCD] + ~eABCIgEFGH e X • 

As is well-known the massless fermionic fluctuations about the S 7 background are 
proportional to Killing spinors [4, 5], i.e. 

~ ,A(X ,  y )  = ~¢, (X)VI~(y)  + "'" , 

X A s c ( X ,  Y )  = X,jkCx)*l~(y)*lJB(y)*ffc(y) + . . .  , 

(2.5) 

(2.6) 

where the dots indicate that this result only applies to infinitesimally small fluctua- 
tions. The field +~ and X,jk are the four-dimensional spinor fields subject to the 
same chirality constraints as the fields 4'~,~ and XABC. The supersymmetry parame- 
ter associated with ~k~A is decomposed similarly. 

e A ( x , y  ) = e , ( x ) + ~ C y ) +  . . . .  (2.7) 

Decompositions such as (2.5)-(2.7) are not necessarily correct for finite deviations 
from the S 7 background. In the original version of the theory it was pointed out [9] 
that the supersymmetry transformations become inconsistent when all fields are 
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naively restricted to the massless modes. It was then argued that a field-dependent 
chiral SU(8) transformation on the fermions was needed to obtain consistent 
transformation laws, and this conjecture was verified explicitly in a class of SO(7) 
invariant backgrounds [13,14]. However, in the present formulation of d =  11 
supergravity the theory is invariant under local (x- and y-dependent) SU(8) 
transformations, so that we can directly impose a gauge condition where (2.5)-(2.7) 
become exact. This requirement does not fix the SU(8) invariance completely, and 
one may still perform transformations of the form 

UAB(x, y) = ~l~(y)*l~(y)U;(x) ,  (2.8) 

where U'j(x) is an arbitrary x-dependent SU(8) transformation, which will turn out 
to coincide with the SU(8) transformation of d = 4, N--  8 supergravity. Using the 
Killing spinors to convert "curved" SU(8) indices A, B . . . .  to "flat" SU(8) indices 
i, j . . . . .  the transformations (2.1)-(2.3) take the form 

1-1 a 8 e ; ( x ,  y)  = 7~ (x )7  ~k~,,(x) + h.c., (2.9) 

8B~mCx, y)  = l¢~e,"j(x, y)(2C~+'(x)+/,(x) + +kCx)'l~,xukCx)) + h.c., (2.10) 

ae,~(x, y)  = -Vr27,,jkt(x)emkt(X, y) ,  (2.11) 

where 

~ , j k l ( X )  = + [ , ( x ) X j k I ] ( X  ) "t- ~44~.,jklmnpq+mCx)xnpq(x). ( 2 . 1 2 )  

It follows from general Kaluza-Klein theory that the correct ansatz for the massless 
SO(8) gauge fields is given to all orders by 

., = _ 1¢~ A U 'x 'K , .U"  , B; (x, y)  + . ~, ) tY) ,  (2.13) 

where the proportionality constant is related to the normalization adopted for A f  ~. 
According to (2.10) B~' and e,~ have the same y-dependence so that we may assume 
the ansatz 

e,7(x, Y) = w ,y (x )KmZJ(y ) .  (2.14) 

Obviously, the transformations are now consistent for the ans~itze (2.5)-(2.7), 
(2.13)-(2.14) provided we choose the vierbein field independent of y, i.e. 

e~(x ,  y) = e ~ ( x ) ,  (2.15) 

in accordance with general Kaluza-Klein theory for the massless spin-2 modes. 
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What remains is to express the coefficients w,jIJ(x) in terms of the spinless fields 
of N = 8 supergravity. This follows from comparing the N = 8 transformation rule* 

8 , / , =  - + o,,, ,) + *) + h . c  (2.16) 

to the one that follows from combining (2.10), (2.13) and (2.14). This yields 

w,y (  x ) = u,jIS( x ) + v,ats( X ), (2.17) 

where u,j *J and v,jiJ are the 28 x 28 matrices that appear in the definition of the 
so-called 56-bein and its inverse, 

~"~(X)=(utJIJ(x) OtJKL(X) ) (2.18a) 
o ' 

Y/'-l(x) = (u ' J • ( x )  - vk tn (x )  ] (2.18b) 

which is an element of the coset space E 7 / S U ( 8  ) (for our notation, conventions and 
useful identities for u,/s and v,ais we refer to [1]). However, the consistency of 
(2.14) and (2.17) is not directly obvious; e~ has a special form in terms of d = 11 
quantities, namely 

m _ _  - 1 / 2  m_A_B[ {~TPa ~) (2.19) e t j  - -  1 A  e a "lit "llJ ~ AB ' 

with an as yet undetermined SU(8) matrix ~(x ,  y)  and A defined by A = 
det ema/det ~,a. The presence of • in (2.19) is absolutely crucial as (2.14) is 
complex whereas (2.19) is real for • = I (note that the normalization of (2.14) and 
(2.19) is such that the unit E 7 matrix corresponds to ~li =11, eam=~am). An 
important consequence of (2.19) is that the generalized vielbein must satisfy the 
"Clifford property" [21]. 

e~ e ' ' k  + e,~ e''Jl' = a",x'~/'e.,te . . . .  t, . (2.20) 

This result indeed holds for the ansatz (2.14) by virtue of the E 7 properties of the 
matrices u,/J and v,jij , as we will now show. Obviously (2.20) is true provided that 
the left-hand side vanishes when traced with an arbitrary traceless matrix A'k; it is 
sufficient to assume A to be antihermitian, since any hermitian matrix can be 
rendered thus by multiplication with i. Inserting the solution (2.14) into the 
left-hand side of (2.20) we find 

W , j IJA'JkIWklKL ( K m l J K n K L  .a t- K n l J K  mKL ) , (2.21) 

* Note  that e differs by a factor ~ from the E used in [1] 



218 B de Wit, H. Nwolal / d = 11 supergrawty 

where A'Jkt = 8t'tkAJl q. The matrix A'Jkl characterizes the infinitesimal transforma- 
tions of the SU(8) subgroup of E 7. This fact can be used to derive the E 7 Lie 
algebra relations [1] 

2 [ I  - -  J I M  ( uA Il ) IJKL "}- ( oAO ) KL IJ = 38t K { ( uA u ) LI,vt+(vA~)z.lUSlM}, (2.22) 

(uA~) tJ 'KL + (uA~)  KL'tJ= antisymmetric, selfdual in [ I J K L ] * ,  (2.23) 

where u, v, il and ~ denote u,/J,  v,jis , U'Jls and v 'j1J (hence (uA~)  IJ'KL= 
u,/SA'Jktv ktKL, etc.). Substitution of (2.17) into (2.21) yields 

( (uAi l )  "K1_ + ( v A f )  KL + ( u a ~ )  . , K L  + (vAi l )  . ,KL ) 

>( ( KmIJK nKL + KnIJKmKL ) . (2.24) 

Using (2.22) for the first two terms in (2.24) leads to an expression containing 

KmlJK nIK + KnlJK turK = 28JK~ mn' (2.25) 

which multiplies the term (from (2.22)) 

( uAil)sr'tKM + (vA~)  KM sM, (2.26) 

whose trace vanishes because (2.26) must be an element of the SU(8) Lie algebra. In 
a similar fashion the last two terms cancel; because of the antihermiticity of A, the 
third and fourth term add up to 2i Im(uA~) tIJKLI, which is a real antiselfdual 
tensor. On the other hand K"tISK "IcLl is selfdual, so that their product vanishes 
because of opposite duality phases. Consequently (2.14) satisfies the Clifford 
property (2.20) provided we make the identification (2.17). 

The above result is sufficient to show that the two expressions for the generalized 
vielbein, (2.14) and (2.19) are compatible. Let us first examine the case where all e,~ 
are real. From (2.14) and (2.17) one sees that in this case both u and v are real; 
more precisely, they parametrize the SL(8, R), subgroup of E 7. From the well-known 
uniqueness theorem for representations of the Clifford algebra (see, e.g. [23]), it then 
follows that any e~ satisfying (2.20) can be written in the form 

e'~ = E ' a (  S - 1 F a S ) , j ,  (2.27) 

with E "a and S elements of GL(7,R) and SL(8, R), respectively. However, e~ is 
manifestly antisymmetric in [/j], which implies that S is actually an element of 

1 y M N P Q  * By selfdual we always mean complex selfdual, i e XIj~L ~ 2 4 ~ I J K L M N P Q  ~ , so the real part is 
selfdual and the imaginary part antiselfdual 
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SO(8) (i.e. S T= S-1), so that (2.27) is indeed of the form (2.19). Of course, S is 
only determined up to an SO(7) rotation which may alternatively be absorbed 
into E. To discuss the general case with complex u and v, we apply an SU(8) 
transformation to the real versions of (2.14) and (2.19) so that ~ in (2.19) becomes 
an SU(8) transformation, while the matrices u and v constitute an element of E 7 
which is the product of a real E 7 (i.e. SL(8, R)) element with an element of its SU(8) 
subgroup. However, such products cover the whole E 7 group as there is no proper 
subgroup of E 7 which contains both SL(8, R) and SU(8). This proves our assertion 
that the e,'~ defined by (2.14) can indeed be written in the form (2.19)*. 

Now that we have justified the ansatz for e~ we turn to the supersymmetry 
transformation for w , y .  Combining w , y  with its complex conjugate w'Jrj, the 
transformation rule can be written in E 7 covariant form 

( Sw 1J = E (  W IJ 
~$wtj ) w , j )  

where we have suppressed the SU(8) indices and 
algebra equal to 

(2.28) 

E is an element of the E 7 Lie 

0 -- V~-2~,jkt ) (2.29) 
E = - V~rnnp q 0 " 

Equations such as (2.28) will also be encountered in sect. 3, so let us discuss them in 
full generality. From (2.28) expressions for 8u and 8v may be derived in the 
following fashion. First consider the contraction u'JijSw,: KL-  v,jIjSw'JrL, which 
yields the equation 

AISKL + Atsri  " = Etj  xL + EtjKL, (2.30) 

where AtsrL, AIjXL and their complex conjugates are the 28 × 28 submatrices of 
Y/'- 18 Y/', with 

8ze-= (Su~ ~fi~v)' (2.31) 

while E~s KL, E I J K L  and their complex conjugates are the 28 × 28 submatrices of 
Y/'-IEY/'. Because E belongs to the E 7 Lie algebra, ~ " - I E U  can also be decom- 
posed according to the E 7 Lie algebra, so that Ezs rL characterizes the SU(8) 
components and EzsrL is complex selfdual. In the case at hand, where 8 U  is the 
supersyrnmetry variation of Y/', y/--18y/- is also in the E 7 Lie algebra. Therefore 
(2.30) can be split into two separate equations 

A tj xL = E1.1t~z , A1srL = EIjxL , (2.32) 

* For purely scalar fluctuaaons the mamx • has been computed in [17] For SO(7) + lnvanant scalar 
and pseudoscalar fluctuataons • has also been deternuned [13,14] 
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which is just the N = 8 result. An alternative form of (2.33) is 

~Utj IJ = -- Vf2 ~_, ,jkl OklIJ ' 

OtjIS = -- ~/-2 ~ tjkl uklIs  . 

(2.33) 

(2.34) 

3. Solution of the generalized vielbein postulates 

The generalized vielbeine satisfy two equations which take the form of a gener- 
alized vielbein postulate which extends the one of ordinary riemannian geometry. 
They are [22] 

( 0 r - B~I),)e~B + £),B~e~s+ ½1),B~e~s + ~CtAe'~lc+~C~AscoemCn=o, (3.1) 

~ . , e , ~  B + a~ c ^ .  - . ~  _ . c n  _ 
~ r n  [At;BIC -1"..~mABCD ~ -- O. (3.2) 

As already explained these equations can be converted to "flat" SU(8) indices by 
employing the Killing spinors. Furthermore we can substitute the expressions (2.13) 
and (2.14) for B~ and e,~, so that (3.1) and (3.2) take the following form. 

tV~ A KL( K n K L 1 ) n K m l J - -  ° OI~W,j I J K m l J  + ~ ~ \ Kn lJJDnKrnKL)wi j I J  

+ ( ~;kwjlk 'J + ~¢~,j,twkttj)K ' ' I =  O, (3.3) 

W t j I J b m K n I J  q_ ( ~ k. I J - -  . J  . kt ~ ~-,tJ_ (3.4) \ ~ m [ t  Wj]k "l-'~¢mljklW IJ] l~ - - 0 ,  

where .aC~,jk t and ~¢m,jkt are obtained from the tensors d~ABc n and ~¢maBCn by 
contracting with Killing spinors; ~ j  and ~ j  contain an additional modification 
and are defined by 

N~j=71~y( ~ - -  tiv~m7A~KLKnKL~na(Ya)AB), (3.5) 

l~y  = ~ltAT1jB( ~AmB -- im7~ma( Fa) AB) . (3.6) 

Using the Lie algebra relation of the SO(8) Killing vectors 

KnlSDn  K m K L -  K n K L D n K m l J =  8m7611[KK mL]Jl , (3.7) 
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we derive from(3.3)* 

a~,w,fS _ 2gA~X[gw,flK + ~ [ , w A / J  + S/~,uktW ktis = 0, (3.8) 

where we have introduced the SO(8) gauge coupling constant 

g -  7~-m 7. (3.9) 

Introducing the notation 

~Mtj kl=- ~[,tk~Mj]l] ( M =  ~, m ) ,  (3.10) 

we can write (3.4) and (3.8) and their complex conjugates as 

[W IJ~ gnlJ( ~mtjP q ,~ffmtjuol(WmnlJl ~0 ' 
b K"Z'q u I +  

m iwklj]  I~¢~mklp q ~mkluv ] wUVIJ] (3.11) 

,w,,, qtlw,, I z, o,8,1 " I + I k, = o ,  
k Wil I ~p. pq]~ W,/q ] (3.12) 

where the SO(8) covariant derivative D s°(s) is defined by the first two terms in (3.8). 
Using the arguments preceding (2.32) with 6w replaced by DS°(8)w, we conclude 

that (3.8) implies 

(3.13) 

which shows that ~ ,  and ~¢~, have the same definition in terms of ~ as in N = 8 
supergravity (modulo a different normalization factor for ~¢~). The same arguments 
can also be applied to (3.11). This yields 

Dm K"H + ( Bmls Kt" + AmmcL)K nxL -- O, (3.14) 

where BmIjKL, AmIJK L and their complex conjugates are defined by 

Am ,''m (3.15) 

* Here we have solved OrS(x, y)KmlS(y) = 0 by Oil(x, y) ~ 0; however, in general this equation only 
implies that Ot:(x, y) is proportional to Dm Knlj. Our choice is based on the assumption that the 
y-dependence xs entirely expressable m terms of Killing vectors, so that OH(x, y) is y-independent. 
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We now construct an ansatz for Bmu rL and AmZSK z in terms of Killing vectors 

Brats K L = - Otm vt~[ l[ KKmJlL ] , 

A mtJrL = -- flDmK[n IJK"KLI, (3.16) 

where a and fl are two real coefficients. Imposing (3.14) shows that a and fl are 
related according to 

a + 4/7 = 1 .  ( 3 . 1 7 )  

From (3.15) it is now easy to determine ~m,J  'l and .~¢,,,/,, 

~mtd k ,=  olm7gmIJ( u t /KukIIK--  O,jJK OkllK) 

o [IJ nKL] [IJ,, klKL]_ + r i D . K .  K ( U,g v kt v,j[Igu KLI) (3.18) 

~tmjk l  = 

Both ~¢,, ~ ,  and "~¢m, 

where 

amTK.Y( V,#jKUk/K- u,/Kv#~ttK) 

(3.19) 

D~,, can be written in a more suggestive form, namely 

NM 
"~M ~ M  =~/'-IOM3V" ( M = g , m ) ,  (3.20) 

0 = - - 3 2 0 ( 8 ) ,  

-- otm 7~t t[ K gmJl  L I 

o , .  = _ B b m K  t ,Ji<: 

-- flDmKn[1JK nKL] ) 

_am7~[ItKKmJlLl  " 
(3.21) 

Note that ~¢~, and ~ ,  are y-independent, whereas ~¢,, and ~ , ,  expliotly depend 
on y through the Killing vectors. The fermionic transformation rules that we shall 
discuss in the next section require that the T tensors, which can be written as 
products of e m with ~ , ,  and ~'m, are y-independent. In order to establish this 
property the ans~itze for ~¢m and ~ , , ,  (3.18) and (3.19), are indispensable. Further- 
more the coefficients a and fl will be completely fixed by this analysis which we will 
give in sect. 5. Upon taking the limit m 7 ~ 0 in (3.21), which leads to the torus 
reduction of [24], we recover the expression for ungauged N = 8 supergravity, 
namely O~ = 0~,, O,, = 0. One may speculate that the general structure of (3.20) is 
relevant for other compactifications as well. 
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4. Fermion transformation laws 

The fermionic transformation rules are [21, 22] 

= - B~ D m - !.~ ~/~.. _ I .° m ±~A ~B + .../~.. :e- A,~ 4wr r./~ ~Yr't DraB, ) eA + 2 rB ~ l rr"~/~ ~8 

1 c + ½e"As(SsCbm+ ~'~,.s )7.ec ,_m ..~ASCO. _ (4.1) - -  X e  CD.-V:tm Yp.•B , 

8 x 4 s c =  3v~-,/-a~-atAsec]_ v / ~ . / r s j f B c o e o  + 3 v ~ e " t . 4 s  ( ScJDD,, ' + ½~mC]o)e  D 

3_, tr io  m t ~  DE[ABcC] , i f ~ m  .../I A B C D _ E  
4 ' "  ~ D E - - m  ~ - -  • ,  ¢:DE...~m I~ . (4.2) 

Again we convert these equations to "flat" SU(8) indices. Substituting the ans~itze 
for the various fields obtained in the previous section together with (1.3) we find 
that the B :  dependent terms are again absorbed into ~ :  (cf. (3.5)) and that also 
~ j  acquires the extra term shown in (3.6). Furthermore the spin connection t3r~a 
becomes the usual d = 4 spin connection which we denote by %-a. The S 7 truncated 
version of (4.1) and (4.2) is then 

+~Yr( ,,,,t,o~ , ,..¢ ,A,t ,,, ~e, , (4.3) e ~ m k  --""~m e k l I  

= 3.,~,B~-t,jokl_ f~,i,s~y.ez ~ X  lJk 4 I  "orb 

l_ ,~-  ( a o m [ t j ~ k ]  __ A o J t j k p o m  ] ol + 4 , -  t -~  ~ , , ,  3 e ~ q s C ~ q I ' : 8 ~ l -  (4.4) ~ t n  ~"pl] c" , 

where we have introduced the definition 

(thus f f ~ t j  = 41/2~/: 7/f,~£+~.4.). (4.5) 

From its definition (cf. [22]) we know that ~-¢As satisfies the identity (modulo terms 
proportional to Omer ~' which vanish in this truncation) 

e ~ s f # ~  s =  - [e[~re/~"]] _ ( 0 r - B ; D , ) B ~ ,  (4.6) 

where [ ]_ indicates that we take the part antiselfdual in [#~,]. Using the ansatz 
(2.13) and the SO(8) Lie algebra property of the Killing vectors (3.7) one readily 
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shows that 

( G -  G"b.)  B,7 = -   rd'Km" (4.7) 

where F~ Is is the SO(8) field strength 

,7t A IJ 9oAK[IAJ] K F~,. w= O.A~ J - ~.-~, - -o--~, - .  , (4.8) 

so that (4.6) implies 

U -  I ~ v  vlJ 

The obvious solution of (4.9) is 

(4.9) 

(u,gIg +vuu)ffff/J= [F~IJ]_, (4.10) 

where we again make the assumption mentioned in the footnote preceding (3.8). We 
now observe that (4.10) is precisely the equation known from N = 8 supergravity 
(cf. (2.26) of [1]), so that solving (4.10) leads to the same expression for F~ 'J. 

We have already established that oo~ a, ~ s '  ,$~;dk', ~;, Xtj k and e' and y-inde- 
pendent, and in direct correspondence with quantities that appear in N--- 8 super- 
gravity. Now the same result also holds for ff~'J, and one can verify by direct 
comparison that the transformations (4.3) and (4.4) coincide with the corresponding 
ones of [1] as far as the terms proportional to ate', oo;/s, ~ j ,  ~¢ykt, are concerned. 
The remaining terms in (4.3) and (4.4), which involve e~, g~g and ~¢m 'Jkl, are 
evidently related to the extra terms that must be introduced in N--  8 supergravity 
after the gauging of SO(8) to restore local supersymmetry. These extra variations 
are [1] 

~ p ;  . . . .  + lvf2g~altJ'~#~], (4.11) 

- -  ~ A ~dkEl ~xtJ k . . . .  ~5~.2l , (4.12) 

where A1 'J and A2/Jk a r e  (irreducible) SU(8) tensors with the properties 

a l , J =  h l  J, ' ( 4 . 1 3 )  

A2/Jk  =A2 / ' Jk ]  , A2k  ' jk = O. (4.14) 

Together they form the "T-tensor" 

T / k l  = _ 3A4zx2tJkl .j¢_ ~ k a l l ]  J 

=(uktu+vkaJ)(U,mJKUJmKt--V,mJK vJmKI) (4.15) 
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and it will be our task to rederive this directly from d = 11 supergravity. We now 
proceed as before by comparing (4.11) and (4.12) with the associated terms in (4.3) 
and (4.4). This comparison will lead to expressions for A x and A 2 as functions of 
e,'~, S~Cm,jk t and ~ , j .  Since for arbitrary values of a and fl in (3.18) and (3.19), the 
new expressions will differ from the ones given above, we distinguish them by 
writing A'tJ(a,/3) and A2/Jk(a,/3) as opposed to A'{ and A2] Jk. Hence we obtain 
from (4.3) and (4.4) 

g a l u (  ~,  j~) = xv~ ( e"'k.~,,,~--.j~C~Jkte~ ), (4.16) 

g a 2 / j k ( a  ' / 3 )  = lyre-( _ 3emt , j~ l  + ""r'Pq ''~m'4°m ¢~pq[tJ~k]v ' "}- ~'"~mAr"~ukp°m]~"p,]. ( 4 . 1 7 )  

We may now invoke the truncated vielbein postulate (3.4) which implies (because 
b m  K mIJ = O) 

emk[t•j] ,rtjkl m 
"~mk --"~m ek! = 0 (4.18) 

to rewrite (4.16) in the form 

= 

4 v ~ "  ""~mk" (4.19) 

The symmetry property of (4.13) is now manifest. Similarly we can prove that (4.17) 
is traceless in accordance with (4.14), 

gA 'Jkla /3 )=  - Iv~-(- -2emkI '~l  k + 6e m sdPq'J--4~C,~JPqe~q) = 0 ,  (4.20) 2k k ' p-q~ m 

where we used again (4.18) and ~ , ,  = 0. Thus we have established the properties 
(4.13) and (4.14) from d = 11 supergravity for arbitrary values of a and fl subject to 
(3.17). The more difficult task is now to demonstrate that Al'J(a , fl) and A2/Jk(a, fl) 
can become y-independent and coincide with (4.11) and (4.12) as calculated from 
(4.15). As it turns out, this is only possible for one special value of a and/3. This is 
the most subtle part of the whole consistency proof, and will be dealt with in the 
next section. 

5. More T-identifies 

In the foregoing section we have arrived at expressions for A'lJ(a, fl ) and 
A2]Jk(a, fl) in terms of the SU(8) quantities ~¢,, and ~ , ,  (of. (4.19) and (4.17)). We 
can now substitute the solutions (3.18) and (3.19) into them and enquire under what 
conditions the result, which is now expressed through u(x) and v(x), becomes 
y-independent and coincides with (4.15). It turns out that the usual arguments based 
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on the E-matrix completeness relation (A.5) are not sufficient to analyze these 
aspects and one must make use of further identities involving u and v which go 
beyond the "T-identities" given in [1]. Again the E 7 group, although manifestly not 
a symmetry of the theory, plays a crucial role. 

The substitution of (3.18) and (3.19) into (4.17) and (4.19) leads to products of 
two and three Killing vectors, namely K"K,,, and bmK,  K"K ''. These expressions 
can be simplified by using the representation (1.5) and properties of E-matrices. In 
this way one proves from the F-matrix completeness relation (A.5), 

mlJ KL IJ K IJKL , K K,,, = 2t~KL + (5.1) 

where K IJKL is the antisymmetric selfdual tensor 

Furthermore, using 

and the identity 

one finds 

Km[IJKKL] KIJKL =---- --m • (5.2) 

o / j  

D,.K~ = - m 7~l Fmnl~ J (5.3) 

n m n  m n  n m F~F~I. = FFs F~L - 88tttrF{ m , (5.4) 

b,,,Kt,,HK"Kt'IK ' 'Mu= 8rn78tI[MKNlJKLl. (5.5) 

With (5.1) and (5.5) it is straightforward to write A'xJ(a, B) and A2]Jk(ot, B) in the 
following form 

a t l J ( a , ~ )  ~" 1--"~TJktq-3 ts 'at  k I K [ J K L {  ~ ( u k I J  -~ ukl IJ)(uJrnMKUkmLM--ujmMKUkmLM) 

M KL,~ (t j) %,. . 

(5.6) 

a 2 ] J k  ( ~ ,  ~ ) = __ 7 ~Tl[tJk ] __ 1 KIJKL ( 6 (  UtJIj "~- OtJIJ)( UkmMKUlmLM-- ukmMKUImLM ) 

- -2aCUlmIJ+UlmlJ ) (U ' JMKokmLM--v ' jMKukmLM ) 

- + "L')  

ij km +16fl(UlmIM+vt,,,IM)(U [MjU KI.I--V'JtMJok"KL')} t'Jkl (5.7) 

where the terms in parentheses are symmetrized in (/j) and antisymmetrized in [/jk], 
respectively. In deriving (5.7) we dropped terms containing Kronecker symbols, 
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because we have already shown that A2/Jk(a,/3) is traceless (cf. (4.20)). Further- 
more we used the relation [1] 

(vklIJutJKj__ ukl l jv tJKJ)(UmnIK+VmnlK)_D 4~[, T jkl] ( 5 . 8 )  3 ~ [ r n ~ n ]  • 

According to (5.6) and (5.7) both A x and A 2 decompose into two terms: the first 
one is just proportional to the T-tensor, and remarkably enough, the proportionality 
constants appear in the same ratio as in gauged N = 8 supergravity. Precise 
agreement is obtained for 

0 / =  4 T, /3 = 3 ,  (5.9) 

where 13 follows from a through (3.17). The second terms are proportional to K IJ~:L 
which is y-dependent. Therefore it remains to show that these terms cancel for a 
and 13 given by (5.9). To prove this one must exploit the fact that u and v constitute 
an element of E 7 according to (2.18). First consider the identities 

+ + 

81f( %Mu., L]M + (5.10) 

(5.11) 

Although these relations look similar to the ones given in sect. 4 of [1], they are in 
fact different in that the role of SU(8) and E 7 (or rather SO(8)) indices has been 
interchanged. Using (5.10) one easily derives 

U"MN(U,/ VJ KL)+U'JMN(U,:LV'k'J) 

= --(UlklJu 'kMN+OIkMNU'klJ)uIJKL--  (UlkKLuJkMN+OJkKLolkMN)O hlJ 

_2,~[I [,, J]P,,,k -- 3 V [ M ~ l k  ~ N]P'I- OikM]PU ;kJ]P)U lgKL 

_ 2_RIK3~[M~ "lk['' LIP,,jk,., NIP+ vJkLIPvlkN]P) vhIJ 

• tjIJ[ 1 [.  KL. kl "~-U ~ U k l  U MN+VkIMNI) kIKL) 1.L~[K[ 12"[M ~ UktLWUk~]P + Vkm]P vklL]p)), 

(5.12) 
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vhMN( oIkIjUJkKL) q- vIjMN( VlkKLU'kIj ) 

= -- ( U IkMNu'klj -.[- VIkljotkMN ) uIJKL -- ( u IkMNuJkKL "[- GIkKLVJkMN ) uhH 

_- - ~ [ ~ ( . .  ~ , . . . ~  ~ . . . .  , ~ , ~ . , , ~  ~lk ,~ j]p -- t~lkJ]pL, ] t4 KL 

25~[M[,, N]P,,jk -t- OlkL]pVtkNlP)uhlj -- ~U[K\'~lk " L ] P - -  

__ . t 3 [ 1 { .  MN. kl A_ 

+ + v k , . L o k ' ) -  * 

(5.13) 

Symmetrizing (5.12) and (5.13) over (tj), contracting over I and M, and antisymme- 
trizing in JNKL leads to two simple identities 

u,kK v  "J) 

.1_2. hKL[. JM. , k  ± (5.14) ~U ~Ulk u NM q- VlkNMOtkJM) ~(tj)J[NJKL]~O~ 

{ oI'MN( GIkMjUJkKL'~ VIkKLUJkMj ) 

2,,lJ [,, NM,,,k q- V V t kNM~(U)  (5.15) "}-3" KLl,~lk " JM lkJM ]J[NJKLI = 0 "  

Substitution of these identities into (5.6) gives 

A~(~,  ~)  = ~ r ~ '  + [K " ~  

X {(30/  -- 8~ ) (  uktIM @ vktIM)(  UJm[KLVkmMJ] - vJm[KLUkm "J '  ) 

--~tc['lkl2~!, ~ I g  - - v k l l g ) (  uJm[KLVkmMJ]" [_ vJm[KLUkmMJ]) } (tJ) . (5.16) 

According to (5.11) the combination fiv + ~u that appears in the last term is 
antiselfdual in indices [KLMJ] (modulo terms that vanish by virtue of the (/j) 
symmetrization). Because K IIxL is a selfdual tensor, one can prove that their 
contraction over JKL is symmetric in IM. Consequently the contribution of the last 
term in (5.16) vanishes as it is multiplied by a tensor u - v which is antisymmetric 
in IM. Choosing 2~a - 8fl ffi 0 cancels the other y-dependent term, and this yields 
precisely the values for a and fl given in (5.9). Hence with these values we have 
shown that 

Al'J(a, t )  = 4T~k' (5.17) 

is y-independent, and coincides with the result for gauged N = 8 supergravity [1]. 
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We now turn to the expression (5.7) for A2/Jk(a, fl). For reasons already 
explained we may consistently ignore all terms containing Kronecker symbols with 
SU(8) indices in the subsequent manipulations. Using (5.10) one easily derives the 
following two identities 

( ukPIj -I- I)kpIJ)( Ulp[KLotjMN] -~ - (nip IJ -]- VlpIJ )( I)kp[KLvzjMN]) 

27,~j[KL,~M[, , N]P,,kp = 3 v V[l k •lp ~ J]P -~- okpN]POIpJ]P) 

+ O'J[KL( UlpMN]o kplJ q- okpMN]UlplJ), (5.18) 

( ukPlj q- okplJ)(  OIp[KLMIJMN]) + ( Ulp IJ -I--DIpIJ)(UtJ[KLUkPMN ) 

2,,tj ,~[1( = 3 ~ [KLVM ~,ukPN]pUl/]e + OIpN]P okpJ]P) 

"[- UUIK L ( ukPMNIVlpIJ "[- DlpMN]UkPIj ) . (5.19) 

The difference of these equations, contracted over I and K and antisymmetrized 
over J L M N  leads to 

( ukPIj "4- vkpIJ)(  Vlp[ILUtJMN ] -- Ulp[ILvtjMN] ) 

÷ ÷ v' MN)(uk; u.L" ÷ 

. tjIJ~[, kp . vkp[ILUtpMN]) + l (u 'J i j+~  1~, tILVtpMNJ-- 

"}-I(u'JIJ--VtJIJ)(ukP[ILVIpMN]"~vkp[ILulpMN]) = 0 .  (5.20) 

When contracting this result with K JLMN the last term vanishes because of 
antiselfduality (cf. the argument following (5.16)). For the same mason the first term 
in (5.20) contains only the selfdual part of hv - ~u, for which we can use another 
identity that follows from the E 7 Lie algebra: 

{(VlpILUtJMN__UlpILVtJMN) 2g[t[ . . . .  J,m 3"[ll,'p]mlL ~ MN-- Up]m ILOJ]mMN ) 

1 ~tj[ mn UmnILvmngN) 1-2Vlp~.VmnlLU MN-- }[ILMN]+'~-O, (5.21) 

where [ILMN] ÷ indicates that we consider only the selfdual components. Combin- 
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ing (5.20) and (5.21) we thus find 

K JLMN( ( U lp IJ -~- O lpIj ) ( Ut J[ IL UkPMN] -- okp[ ILlfl jMN] ) 

.~ l~ .  lJ .~_ OtJIJ)( ukPtitOlpng]__ l.)kpt[LoIJMN] ) 
~ \ U  IJ 

1 t j  +~(u Ms+v'JMS)(u~pu,?~ +v~L%J~)}~'J~=O. (5.22) 

Substituting this result into (5.7) leads to the following expression for A2/Jk(ct, fl): 

X ( (--Ot"~ ~-~)(UtJzjdt-I)tJIJ)(UkmKMUlmLM-~l)kmLMolmKM ) 

+2~(U,o'~+V,~,,)(U"~MO~M--O"~Mu~M ) 

-- ~ ~( U",M + O"'M)( U*~,M,O,..,- O~''M'U, "') )"'*' 

(5.23) 

For the remaining part of the proof we need two more relations which follow from 
the E 7 Lie algebra 

l__jjklmnpq~ ~, KL U[tJIjukl]KL-- 24 ~ ~mnlJ~pq 

2R[K(,,[IJ ,,kIILIM lel jklmnpq~ , ,  t I M ]  (5.24) 
= 3 " [ 1  ~,~ J]M v 24 ~ ~mnJ]M~pq ] ' 

lt~tJklmnpqn 7~ U[tJIjukl]KL- 24 ~ VmnlJL'pqKL 

~-- 1EIJKLMNPQ ( l ~'jklmnpqumnMNU pqPQ -- U[tjMNu kl]PQ ) .  ( 5 . 2 5 )  

Proceeding in analogy with (5.12) and (5.13) we exploit (5.10), (5.11), (5.18) and 
(5.19) to obtain 

( l  l)kpMN( UlpKLutJIj..~_ OlplJVtjKL ) ..l_ l_,jkprstu.24 ~; OrsIJUtu" KL.UlpMN ) [tJk] 

__ UlpMN( U[tjIjukp]KL __ l~jkprstu,,24 ~ ~rsIJ~tu~n KL'~] 

[ 1R[M[ ,, N]P,,kp -I- UipJ]pOkpN] P) UtJ KL -~- Ulp[MN~kpKL]uIJtj } [tJkl 
= I. 3 " [  I \ ' ~ l p  '4 J ] P -  

- -  2R[K (,,[ty nkp]L]P 1 _tjkprstu. . Lle~ MS (5.26) 
3,.,[1 \ t 4  j]pL, -- ~ UrsJ]PUtu ]Ulp , 
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l c~jkprstu~ ~, KL~ } [tjk ] { l u k P M N ( V l p H O t j K L @ U l p K L U t J H ) + 2 4 ~  t~rsIJ'tu ~lpMN 

1 kp 

1 ( .  . kpKL + UlpKLU kPM N ) U 'JIJ )[,Jk] 2 ~ UIpMNU 

[ l~etJkprstul~ ~n KL ] --VlpMN~U[tJIjO k p ] K L -  24 ~ VrslJ~tu ] 

= [1,~[K ( kp , jKL} ['Jk] [ 3V[M~OIpN]P OkpL]P + UlpL]PukPN]p)UtJIj + Olp[MNU IJ] v 

2~[K(, ,[ t j  ~kp]L]P 1 tjkprstu L]P] 
- -  3 ~ [ i  \ ~  j]pv ~ e  VrsJ]pUtu )OlpMN , (5.27) 

where we have suppressed Kronecker symbols with index l. Upon contraction with 
8 /  and antisymmetrization over the remaining radices one can show that the first 
terms on both sides of (5.26) and (5.27) become identical. To see this one needs (4.7) 
of the second work of [1]. Using (4.8) of the same reference, one subsequently 
removes the e-tensors, and is left with two identities 

][,jk] 
UlplLVkpMNutJIJ -- ukPljUtjILUlp MN J [JLMN] = 0 ,  

)[,jk] 
OIpIjUkPMNUtjIL -- U~JIjokpILUlpMN J [LJMN] = O. (5.28) 

Using these identities it is straightforward to show that 

--(U,'J+V,m,j)(U'JKMokmLM--O' KMU °LM) 

- - (UtJIM--V' j IM)(ukm[MjUImKL]+Ukm[MJUlmKL])~ [tJk] = JtIJKL] O. (5.29) 

Substituting this result into (5.23) the last term in (5.29) does not contribute because 
of anti-selfduality, so that all terms in (5.23) proportional to K/sKL cancel provided 
that 3a = 16/3. This yields the values given in (5.9), so that we have established that 
also A2]# is y-dependent for this choice of parameters and equal to 

(5.30) 

which coincides with the result for gauged N = 8 supergravity [1]. 
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6. Fie ld  equat ions  

With the proof that there exist values of a and fl which render the tensors 
AiU(a , t )  a n d  A2/Jk(vt, t )  y-independent, we have established that all supersymme- 
try transformations can be truncated consistently to a massless supermultiplet. As 
the commutator  of two supersymmetry transformations yields the (full) field equa- 
tions, it is clear that also the field equations must be consistent in the sense that the 
field equations of the truncated theory coincide with the original d = 11 equations, 
without further constraints. The latter implies that the truncated equations must 
either be y-independent, or the y-dependence must factorize into a common factor. 
In this section we will explicitly demonstrate in a few examples, how the field 
equations of d =  11 supergravity as derived in [22] become entirely equivalent to 
those of gauged N = 8 supergravity after the truncation. 

The first example is the Einstein equation, which, in the formulation of [22], reads 

- ½g~,~R = - x,~,,~scn,..¢ 1 , ,  r,~ABCn,,Cp _ 32ff~-p,4a~-pAS 
6 ~ l t  "~uABCD "~ 12(~I tv~p ~ A B C D  

1 -  [ ~mAB_nCDtT~ ..,¢ ^ m A B ~ n  ...¢CDEF...¢ 
- -  8~p.u [ ~" e ~l/m,.~4tnABC D - -  e: ¢~ CD,..~ n "~ mEFAB 

1 ~ m A B _ n  .~CDEF.~¢ 1 ~  m nAB] 
- - - ~ e  ~AB.J4t m ~ n C D E F - -  2 ~ m n e A B  e J , (6.1) 

where we have already omitted all terms that trivially vanish in the truncation on 
o m 

account of the Killing condition DraB ~ = 0 or Ome~ ~ = 0. The derivative ~, ,  differs 
from the S 7 derivative/)m by ~ m A s  dependent terms which make ~m~Cn covariant 
with respect to local SU(8) transformation. The term proportional to the Ricci 
tensor of the S 7 background has not been presented in [22], where (6.1) was 
evaluated for a flat 7-dimensional background. The term in brackets in (6.1) is the 
only one whose y-independence is not obvious. Comparison with gauged N = 8 
supergravity suggests that this term is nothing but the scalar field potential [1] 

4 " ' 1  - -  ~ I A 2 j , , I  ). ( 6 . 2 )  

To verify this assertion, we proceed "backwards" by substituting (4.17) and (4.19) 
into (6.2). Using (4.18) and the selfduality of ~¢ ,jkt, we obtain, after a little 
rearrangement, 

m~j n -¢klpqr, J ~ (  Y/ ' )  = -- ~ { em'Yenkt~m..~Cn,ykt-- e ek ,~ ; ,  " ~ m t j p q  

__ l__~mtJ~,n r J  k lpq  rff - -  1 ~  p m p m j  } 
12 ~ r"lj°"Jm ~ n k l p q  2"~mn~tJ  ~ 

1 m,k n f ¢'. .~ j" ½~[mJt~n]ti  -- ~e  e)k~. ~ ' [ m ~ . l  I + 

-]- 2 t~¢ p q r J rd __ I R m n~ J } 
3.--~ [m O'~n]pqrt 

+ ~e~'J{ b , ~ m v k t e  mk' + bm~M,k,e S -- hm,e,~ ) ,  (6.3) 
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where the first term in parentheses coincides with the terms exhibited in (6.1) but 
now converted to "flat" SU(8) indices (~m differs from /),, by terms proportional 
to ~ j  to make ~,~¢~ SU(8) covariant). The second set of terms can be evaluated 
by exploiting the integrability condition that follows from the generalized vielbein 
postulate (3.2). This condition reads 

* k J ~  k ~ 1  2 qrk 
{ ( D [ m ~ l : l t  d -2"~ ' [ml~ 'n] ,  q-'~C(m~ ~ ¢ n l p q r , ) e A - - ( i c ~ ' > j ) }  

+ 2~[m~Cn].jklePk'+ R,..qPe q = O. (6.4) 

* * 2* p where Rmnq p is the Riemann tensor of $7: RmnqP = -2mTgq[mSn]. Note that (6.4) is 
the analogue of (5.4) of [22], but now converted to "flat" SU(8) indices in a 
nontrivial background. Using (6.4) it follows that the second set of terms in (6.3) 
cancels. Also the third set of terms in parentheses cancels. To see this, we use the 

o 

vielbein postulate (3.2) and the Killing condition Dme,~ = O, 

Dm~Cnt jk le  + D,.~.t.eAk- 

= - [ / ) , . , / ) .  ] e,'~ - / ~ . , . e ~  = 0 .  (6.5) 

Hence we are only left with the first set of terms in (6.3), which must be 
y-independent as the left-hand side of this equation is y-independent. Therefore we 
conclude that the S 7 truncation of (6.1) indeed leads to the Einstein equation of 
gauged N = 8 supergravity. 

As a second example, consider (7.7) of [22]. In the truncation, it becomes 

^ 4o~¢ ~ jk lm 

, [ ~ - o m ~ [ k  ~ - j ] l  , [ '~ -amnc jkpqF+ - -  (h.c.; trace), (6.6) v ~ k ~ m l ~ t l ~  v v~r.,~k..'~m ~tpa, pq 

where we have again neglected terms that manifestly vanish in the S 7 truncation. 
The caret in (6.6) is to indicate that the SU(8) field strength in eleven dimensions 
contains an extra term, namely 

4.,J = g. ,J + Br.b.) B%em,', (6.7) 

where 

a. j + / (6.8) 

is evidently y-independent. The additional term in (6.7) is needed for SU(8) 
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covariance (see [22]). In (6.6), we now write 

1 _m eTak = Vl,~J/'l~l~--Alt I + 1 _m ,'~k ~ e  zk,~Oml ~ e  k[z~Oml ] , (6.9) 

emtkd~CJmkpq : --  1 g ~  g A 2 ,  Jpq - 3-em[pqGl~J]4 - - rn ,  - -  "43~mk[p~q': ,....a mkVt~ .,1 . ( 6 . 1 0 )  

After a little algebra, the right-hand side of (6.6) can thus be reexpressed as 

(6.6) = 4 - t t (TJ  F - k l  T J k { ~ +  
3,5~, ~t zkl*p.v *t *pvk l ]  

_ _ 1 ~ l ~ (  m -- + g rk l ]  m, • e ~lF., -~l emklP + ~ (6.11) 

Recalling the relations (4.7) and (4.9), we recognize that the term with ~, ,  in (6.11) 
coincides with the extra term in (6.7), and we thus arrive at 

, ~ j , J  .4_ 4 ~  r~J klm 4 ~ . [ T J  F - k l _ _  T J k l F +  
3~[pzklm° '~v]  ~ 3 6 \  a tklXlt~ ~z ~p.vkl] 

= ~ ( u a , ' r u a S r - v . , n c v a k ' r ) F ~ / ' .  (6.12) 

But this is just the integrability equation that follows from our solution for ~¢~ and 
~ in (3.13); (6.12) also coincides with (5.6) of [1]. Once more we draw the reader's 
attention to the fact that the numerical factors come out correctly, too. 

The final example is the spin-1 field equation. It corresponds to (7.8) of [22], and 
repeating the by now familiar steps, we obtain in the S 7 truncation 

1--,f~-omkl~l~ P • l  x ..I. &,f~-o m r~g d l k l p q  (6.13) 
~-  - -  2 v ' ' ~  ~rn[t  ~ j k l ] p  --  3 v ~ r ' k [ t " ~ j ] l p q ' ~ m  " 

where D~ denotes the SU(8) covariant derivative. Invoking (6.9) and (6.10) once 
more, it is straightforward to show that all y-dependence cancels and we are left 
with 

DI, F lxv -~ d ~ v t j k l f f - g v k l =  - -1- - .A  pqre~g 
- -  t j  3 &"a  2[ t °'~j]pqr • (6.14) 

This equation contains both the field equation and the Bianchi identity for the field 
strength F~/J as its real and imaginary parts. We emphasize again that the 
consistency of these equations crucially relies on the y-independence of A] J and 
a 2 , j k l  

We could continue with this exercise by analyzing the other equations given in 
sect. 7 of [22] but we refrain from doing so because their consistency follows by 
independent arguments just as for the equations discussed above. Besides it is 
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almost selfevident that (7.6) and (7.9) of [22] are either trivially satisfied or 
correspond to some of the T-identities derived in [1]. We therefore leave it to the 
reader to verify some of these assertions. 

7. The nonlinear embedding 

So far, we have only investigated the relation between the new formulation of 
d---11 supergravity [21,22] and gauged N =  8 supergravity. However, it is also 
possible to express the fields occurring in the original version [2] in terms of those 
of N = 8 supergravity and to derive the full nonlinear embedding. In the linearized 
approximation the results will coincide with those of [4, 5], but we can now also 
explicitly display the deviations from the linearized behavior for finite fluctuations. 
In this section, we will briefly describe how to obtain the nonlinear ans~itze without 
aiming at an exhaustive discussion. As it turns out the final results are rather 
unwieldy expressions (such as (7.6) below), whose usefulness is limited; the diligent 
reader should be able to complete the arguments wherever he wishes to do so. 

The basic idea is best illustrated with the truncated metric which was already 
given in [15]. To derive it, one simply combines (2.14) with (2.19) such that 

8A- lg  . . . . . .  _ e ,je J-- KmlJKnKL(u , / J  -4- U,jIJ)(UlJKL @ V tJKL) . (7.1) 

The expression is already symmetric in m and n owing to the E 7 properties of u 
and v. From (7.1), the original siebenbein ea"(x,  y )  may be determined up to an 
SO(7) rotation. In [15], we have "tested" (7.1) by inserting the vacuum expectation 
values corresponding to SO(7)+, G 2 and SU(4)- invariant stationary points of the 
N = 8 potential [25, 9] and verified that the resulting metric indeed coincides with 
the respective metrics required by the d = 11 field equations. It is also not difficult 
to show that (7.1), when expanded to lowest nontrivial order, reproduces the 
linearized metric ansatz of [4, 5]. 

In [15], it was also shown that the "internal" component Fm,pq of the four-index 
field strength FMNPQ acquires a nonzero value for the G 2 lnvarlant solution in 
analogy with Englert's solution [26]. However, we did not give the full nonlinear 
ansatz for F, , , ,q  there. This expression can now be determined from the results of 
this paper, as well as similar expressions for the remaining components of FMNeQ. 
Let us demonstrate this for F~acd and f -  (24i)-le~/~VaF~t~ys, where F~6cu and F~avn 
are the d = 11 field strength components with flat indices a, b, c, d and a, fl, ~,, 

taking values in the 7- and 4-dimensional subspace, respectively. These components 
occur in both ~ , ,  and ~¢,, [21,22]. Because ~ , ,  is not SU(8) covariant the 
determination of Fat, c a and f from ~ , ,  would require knowledge of the SU(8) 
rotation ~ = ~(u,  v)*. Hence it is more convenient to look at "~¢m, which, in the 

* We recall that ~(u, v) is impliotly determined through (2 14), (2 17) and (2 27), up to an SO(7) 
rotation. 
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gauge • = 1 ,  contains the terms [21, 22] 
1 • ab b 1 a b cd .~¢ASCD . . . .  + -~ l~ i2ema f I " iABF~D ] -- ~V/-2e,n Fabcd F taBF~DI .  (7.2) 

As ~¢m is SU(8) covariant we can project out f and Fabcd in an SU(8)-invariant 
manner, just as in (7.1); by SU(8) invariance we are then free to adopt the gauge 

= 1 as in (7.2). The projection is again accomplished by means of the generalized 
vielbein. So we consider the SU(8) invariant expression 

e~( et%Peqere sl) k l ~  Jkt 

= ~v~A-3eoa{_x.  ab b xl: rb r, cd 5if F t.4n r CD] + ~" abed-- tan-- CD] } "l'~mAB'l"~npqrSco 
~npqrstu 

 -o od- tA.-col} r ; . ( r , . )  co, = ~v~iA-3e°~ V~ {--~ifFabtAaYbcol+ ~'~ rb rcd 

(7.3) 

where in the first step we have substituted (2.19) with ~ = 1. It is important here 
that SU(8) covariance forces us to use a five-fold product of the vielbeine e,'~, rather 
than a two-fold one, as the latter does not have SU(8) indices in the required 
position. Furthermore, note that d =  7 world indices in (7.3) are related to flat 
indices by use of the full siebenbein. Using ~ = A~/r~, where ~ is the determinant 
of the S 7 metric, a little calculation yields 

~npqrstu 

(7.3) = ix~2 A-4 { ~ifgottsuml + ½Fmvtu }. (7.4) 

Inverting (7.4) leads to 

4 m 1 i~f~A4£pqrstU°~m[~r~s~t~u~o'~ ,.~¢ljkl 
"7ShiP'q] + 1 F m n p q  = "4~ . . . .  V ~  r . , j \  . . . . .  ]kl..~n . (7.5) 

To obtain the full nonlinear expressions for F,,~,q and f one simply exploits the fact 
that all quantities on the fight-hand side can be expressed directly in terms of the 
56-bein ~ ( x )  and the S 7 Killing vectors Kin(y): A can be computed from (7.1), 
and e m and ~¢,, are known from (2.14), (2.17), (3.19) and (5.7). Direct substitution 
gives 

~if(x ,  y ) g ,  tp(x, y)8~l + ~ F m n p q ( X ,  y) 

= ~ i v ~ A 4 ( x ,  y ) ~ K m t S ( y ) K r & J ~ ( y ) K ~ & S 2 ( y ) . . .  KO'~Js(y) 

x 

-- ~,b~K'~'t XL ( y ) K ffN] ( y ) ( u'JKL ( x ) uktMN ( X ) -- VU~:L ( x ) vktMN ( x ) ) } , 

(7.6) 
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where w = u + v was defined in (2.17). It is not obvious that the right-hand side of 
(7.6) will decompose into the two tensors on the left-hand side, which are real and 
have a certain symmetry. Nonetheless, our results ensure that this must be the case. 
In addition f and Fabcd must also satisfy the Bianchi identities for the ll-dimen- 
sional field strength FMNeQ. However, as explained in [22], the combined Bianchi 
identities and field equations correspond to a number of SU(8) covariant equations 
whose validity can be verified directly for the SU(8) covariant fields defined in this 
paper. We have not made exhaustive attempts in that direction, but we have verified 
(7.6) for the SO(8) invariant solution of N = 8 supergravity. In that case uUu = 8'/s, 
vuL, = 0; a straightforward calculation then leads to 

/ =  3v~-mT, 

Fmnpq = 0 

gmn = g m n '  (7.7) 

which is the expected result for the sphere S 7. To further analyse (7.6) it may be 
convenient to rewrite it by means of the generalized vielbein postulate (3.4) into the 
form 

¢i fgntp~q~ -I- ~ F m n p q  = 4-~8oiVi-2 A4 Epqrstuv e r eSkk'e ' " ' " ' e "  ~ e " u  ~'~ ~ tk k' l  r" l ' j  n , (7.8) 

where ~n is the SU(8) covariant derivative with SU(8) connection ~'m~. Finally the 
full nonlinear expressions for the remaining field strength components Fa~avF~abc 
and F,q~ 0 can be obtained in a completely analogous fashion by projecting out the 
appropriate components in ~¢ukt and ffaa -u, using the d =  4 results for these 
quantities. 

Appendix 

In this appendix we collect several formulae involving the Killing spinors and 
vectors defined in (1.3) and (1.4). A useful explicit representation for the Killing 
spinors on S 7 is provided by the formula [27] 

= [exp( im7yor°)] ,  ', (A.1) 

where Ya are local coordinates on S 7 (in the neighborhood of the northpole, say), 
and the 8 × 8 matrices r a generate the d = 7 Clifford algebra. From (A.1) it is 
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pN 
(u IklJ” IkKL) + O’IMN( U,kKLU’k,J) 

= - ( I(,kMNdk,/ + “,~,J”‘~~~)U’~KL - ( U,kMNUJkKL + v,kKLUJkMN)U,‘,J 

= - +6/:( U,kNIP,rkJlp + “,kJ]p”‘kN’p) dJKL 

- ;a/;( U,kNIP,JkL]p + “,kL]@‘kN’P) u”IJ 

- ~JKL( ;( t+,,MNUk’,J + uk,,JUk’MN) - $/y( U,;lPUk’J], + Uk,J]‘=‘uk,NIP)) 

+ u’JrJ fj UklMNUk’KL + “k,KL”k’MN) - $8/;( Uk,NIPUk’L]p + uk,L]pUk’NIP)) 
(( 

(5.13) 

Symmetrizing (5.12) and (5.13) over (Ij), contracting over Z and M, and antisymme- 
trizing in JNKL leads to two simple identities 

{ U’lMN( UIkMJ”JkKL + Ulk%JkMJ) 

+ +,‘lKL 
3 ( U,kJ”U’kNM + U,k,t,MU’kJM)};;;KL] = O, (5.14) 

{ O’IMN( ‘hkMJUJkKL + O,kKLuJkMJ) 

+ $u’J KL ( u,kNMdkJM + u,kJ&,“lkNM)};;;KL] = 0. (5.15) 

Substitution of these identities into (5.6) gives 

A;‘( a, ,8) = $oLT~/~’ + ;KIJKL 

x (( $I - 8/3)( u~‘,~ + “‘IfM)( UJm[f&,,,&,J] - UJm[KLU,+mMJ’) 

- $.I uyM - u 
( 

,l’,)( uJ”~~~u~,,,~~~ + uJ~[~~u~~~~])](‘~). (5.16) 

According to (5.11) the combination Tie + Ou that appears in the last term is 
antiselfdual in indices [ KLMJ] (modulo terms that vanish by virtue of the (ij) 
symmetrization). because KIJKL is a selfdual tensor, one can prove that their 
contraction over JKL is symmetric in ZM. Consequently the contribution of the last 
term in (5.16) vanishes as it is multiplied by a tensor u - u which is antisymmetric 
in ZM. Choosing $a - 8fi = 0 cancels the other y-dependent term, and this yields 
precisely the values for OL and /3 given in (5.9). Hence with these values we have 
shown that 

AlfJ( a, /3) = $Tlk’ (5.17) 

is y-independent, and coincides with the result for gauged N = 8 supergravity [l]. 
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The tensor K 1"rKL defined in (5.2) is thus selfdual, and is invariant under the SO(7) + 
subgroup of SO(8). It obeys the relation [9] 

_~_ __ ~ I J K  __ 0 ~ [ 1  ?d 'JK]  
K IJKPKLMNe V ~ L M N  ~'~ [ L" • M N ] ,  (A.7) 

which may be derived either by certain Fierz rearrangements or by directly sub- 
stituting the explicit formula (A.1). 
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