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We give a complete proof that d =11 supergravity compactified on S’ admuts a consistent
truncation to its zero-mass sector. The resulting theory 1s shown to coincide with gauged N =8
supergravity to all orders

1. Introduction

The purpose of this paper is to resolve the longstanding problem of how gauged
N = 8 supergravity [1] is embedded in N =1 supergravity in eleven dimensions [2].
It has been known for some time that the d =11 theory possesses a solution where
seven dimensions are compactified to the seven-sphere S’ [3,4]. This solution has
N = 8 supersymmetry and an internal SO(8) symmetry and is therefore expected to
correspond to gauged N =8 supergravity in four dimensions after a suitable
truncation. At the linear level, the correspondence follows from the occurrence of
one massless N = 8 multiplet [4,5] (accompanied by an infinite tower of massive
N =8 multiplets [6]) in a small fluctuation analysis. Further evidence for the
correctness of this hypothesis has been accumulated in refs. [7-19)]. Here, we present
a complete proof that d =11 supergravity compactified on S’ admits a consistent
truncation to gauged N =8 supergravity. We believe that this consistency proof
constitutes the first example of a complete nonlinear analysis in the framework of
Kaluza-Klein theories*.

* Preliminary accounts of the work described here have appeared 1n [20, 21]
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The central problem in any Kaluza-Klein theory is how to make contact with our
four-dimensional low-energy world. One usually starts by showing (or assuming)
that the higher dimensional theory spontaneously compactifies to four dimensions
on an internal manifold whose size is small enough to prevent its immediate
experimental discovery. The fields of the higher dimensional theory are then
expanded about this background into certain harmonics on the internal manifold.
Subsequently, only those fields are kept which corresponds to massless particles in
four dimensions (in a first approximation). The massive states cannot be excited at
low energies and are therefore discarded. The determination of both massless and
massive modes involves an expansion of the higher dimensional field equations to
linear order only. Having identified the zero modes, one would then like to calculate
the residual interactions between the massless fields because those will ultimately
lead to the final low-energy symmetry breaking. However, the evaluation of these
interactions is a rather difficult problem. For its solution, the linear analysis, by
which the zero modes were identified, is not sufficient. In particular, one does not
obtain the correct couplings by substituting the linear modes back into the higher
dimensional action and integrating over the internal manifold (the case of three-point
couplings is an exception). The reason is that the correct ansitze for the massless
fields involve nonlinear modifications beyond the possible nonlinear redefinitions of
the d = 4 fields. One might argue that such effects are irrelevant at low-energy scales
since one would expect them to be suppressed by inverse factors of the compactifi-
cation scale (e.g. the Planck mass). Contrary to this naive expectation, a careful
analysis indicates that this is not always the case and that there may arise certain
renormalizable couplings of order unity through nonlinear modifications at the
compactification scale*. The higher-order (nonrenormalizable) interactions of the
massless fields are of course also sensitive to such effects, and their correct
identification inevitably requires a complete nonlinear analysis of the type per-
formed here. In fact, our results exemplify how a sigma-model structure emerges
from higher dimensions and may therefore be relevant in other contexts, too.

In general, the nonlinear modifications are difficult to determine. A crucial
ingredient turns out to be the requirement of consistency of the truncation to the
zero-mass sector. Quite generally, this means that the states, which have been
discarded in the truncation, are not reintroduced through the higher dimensional
interactions or symmetry transformations after insertion of the truncated modes. In
the case at hand, the consistency of the truncated supersymmetry transformations
implies the consistency of the remaining bosonic transformations as well as of the
truncated field equations. In the first step we therefore focus on the analysis of the
supersymmetry transformations. From the consistency requirement one can de-

* To be sure, one must distinguish between the “effective low-energy theory” and the truncated theory
The latter may have solutions at which some of the scalar fields acquire vacuum expectation values of
the order of the Planck mass and therefore does not necessanly describe low-energy physics We are
here concerned with the truncated theory.
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termine the full embedding of gauged N = 8 supergravity into d = 11 supergravity
and give a rigorous proof of the consistency of the S’ truncation at the nonlinear
level. A most important feature is that we base our proof on the recently con-
structed SU(8) covariant version of d =11 supergravity [21,22] rather than the
original one of [2]. As we have shown there the field equations and constraints of
the former are equivalent to the combined field equations and Bianchi identities of
the latter. The nonlinear ansitze derived in this paper, which constitute gauged
N = 8 supergravity embedded into d =11 supergravity, satisfy some of these con-
straints, while the remaining conditions correspond to genuine d = 4 field equations.
We now briefly review our notations and conventions* as well as some basic
results concerning the S’ compactification. The ground state is assumed to be

M,, = (AdS), X §7, (1.1)

and the (finite) fluctuations will preserve the topology of this product manifold. The
d =11 coordinates are split accordingly

M= (x", y"), (1.2)

where we distinguish between curved d =4 and d =7 indices p, »,... and m, n, ... .
Flat d=4 indices are denoted by «, ,... whereas flat d=7 indices no longer
appear in our treatment as they are replaced by SU(8) indices 4, B,C,.... Of
fundamental importance are the eight Killing spinors #/( y) on S7, which satisfy

(D, +Lim,I)9'(y)=0 (I=1,...,8) (1.3)
and are normalized to

7(y)n’(y) =8". (1.4)
Here, |m,] is the inverse S’ radius, D,, is the S7 background covariant derivative
and I, =¢,°I'* with é,°(y) the (globally defined) sicbenbein on S’. The 28 Killing
vectors K™(y) on S”can be expressed through the Killing spinors according to [4]
K™Y(y) =1, 7Ty (1.5)

Their normalization, consistent with (1.4) is given by
K™ (y)K"(y) =88""(y). (1L.6)

When lowering the index m on K™ it is understood that this is to be done with the

* See also refs [9,13-15]
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round S7 metric, i.e.
KmIJ = gcmnKnIJ . (17)

We have adopted a representation in which the d =7 charge conjugation matrix
equals the identity, so that the Killing spinors are real and the I'? are imaginary and
antisymmetric. Throughout this paper we will use a set of orthonormal Killing
spinors 7'(y) to convert “curved” SU(8) indices 4, B,C,... into “flat” SU(8)
indices* i, j, k,... (we introduce this terminology because in the truncation to
N = 8 supergravity the SU(8) transformations acting on the “flat” indices i, j, &, ...
are y-independent; hence the analogy with flat and curved indices in differential
geometry should not be taken too literally). For instance, given an SU(8) tensor
X4BC  we define

XUk =gk, XABC (1.8)

Because of the orthonormality and reality of the Killing spinors we can introduce
transpose spinors 17! (such that nn/ =8/, n'n’y = 84; see appendix) to invert (1.8):

XABC =qinPag.. XU, (1.9)
or to convert tensors with lower indices
Y =nining.. Yo - (1.10)

We also briefly remind the reader of the essential features of SU(8) invariant
d=11 supergravity [21,22). In this formulation, the tangent space symmetry
SO(1,10) of [2] is replaced by SO(1, 3) X SU(8). Consequently, the basic fields are
now SO(1, 3) X SU(8) tensors. The fermionic sector is constituted by the fields %A
and x“2€ which transform as (s = 3,8) and (s = },56) representations of SO(1, 3) X
SU(8). In the bosonic sector, we have the graviton field e,% a spin-1 field B/, a
“56-bein” (e, e™8) and two fields #,, and .«7,, which together form the adjoint
representation of E; (M = p, m). Needless to say, all these fields still depend on all
eleven coordinates and the physical degrees of freedom are still the same as before.
The new fields are interrelated by certain equations which have been given in [22].
As there 1s no room here to review this construction in more detail, some familiarity
with the preceding paper [22] will be assumed.

We conclude this introduction with an overview of the contents of this paper. In
sect. 2, we study the bosonic transformation laws and their truncation. This leads to
the identification of the fields e,% B,", e7p, ¥, and x“?¢ in terms of the fields of
N = 8 supergravity. In sect. 3, we solve the “generalized vielbein postulate” of
[21,22]; the solution is an indispensable prerequisite for the analysis of the fermionic

* There may be some confusion occasionally as SU(8) mdices 1, y,k, and d=7 world indices
m, n,... will ssmulatneously appear in certamn tensors To mmmuze this confusion d = 7 indices are
always given before SU(8) indices
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transformation laws in sect. 4. Sect. 5 is the heart of this paper: it contains the most
difficult part of the whole argument, namely the proof that the T-tensor as
identified from d =11 supergravity also becomes y-independent (this tensor char-
acterizes the extra terms induced by the gauging of SO(8) in N = 8 supergravity [1]).
At this point, the proof is already complete. Nonetheless, in sect. 6, we discuss the
y-independence of the field equations and deduce the N =28 potential [1] from
d =11 supergravity. Finally, in sect. 7, we show how to obtain the full nonlinear
ansitze for the original fields of d =11 supergravity [2] in terms of those of N =8
supergravity. The appendix contains some useful identities involving Killing spinors
and vectors.

2. The generalized vielbein and the boson transformation laws

In this section we express the fields e,% B, ef, ¥, and x*#€ in terms of the
fields of N =8 supergravity and examine the consistency of the supersymmetry

transformations for the boson fields. These transformation rules are [21, 22].

de, = 1e'y*y,, +he., (2.1)
8B = 1VZ ey (22842 + 5v,x*PC) + hec., (2.2)
Sefp=—V2Z, pcpe™ P, (2.3)
where
2 8cp= E[AX eyt 21_4€ABCDEFGHEEXFGH- (2-4)

As is well-known the massless fermionic fluctuations about the S7 background are
proportional to Killing spinors [4, 5], i.e.

Yoa(x, p) =4, () () + -+, (2.5)
XABC(X’Y)=X;,k(")’7£1()’)'7{3()’)’7’3(y)+ Tt (2.6)

where the dots indicate that this result only applies to infinitesimally small fluctua-
tions. The field ¢, and ¥, are the four-dimensional spinor fields subject to the
same chirality constraints as the fields ¢, , and X 4. The supersymmetry parame-
ter associated with ¢, , is decomposed similarly.

ea(x, y) =&, (x)ni(y) + - 2.7)

Decompositions such as (2.5)~(2.7) are not necessarily correct for finite deviations
from the S7 background. In the original version of the theory it was pointed out [9]
that the supersymmetry transformations become inconsistent when all fields are
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naively restricted to the massless modes. It was then argued that a field-dependent
chiral SU(8) transformation on the fermions was needed to obtain consistent
transformation laws, and this conjecture was verified explicitly in a class of SO(7)
invariant backgrounds [13,14]. However, in the present formulation of d=11
supergravity the theory is invariant under local (x- and y-dependent) SU(8)
transformations, so that we can directly impose a gauge condition where (2.5)-(2.7)
become exact. This requirement does not fix the SU(8) invariance completely, and
one may still perform transformations of the form

Up(x, ) = (»)np(»)U(x), (2.8)

where U’ (x) is an arbitrary x-dependent SU(8) transformation, which will turn out
to coincide with the SU(8) transformation of d =4, N = 8 supergravity. Using the
Killing spinors to convert “curved” SU(8) indices 4, B, ... to “flat” SU(8) indices
i, Jj,..., the transformations (2.1)-(2.3) take the form

de,*(x, y) =38 (x)y"y,,(x) +he., (2.9)
dB™(x,y)= %ﬁe[;'(x, y)(Z\/fE’(x)\P‘{(x) + Ek(x)yux”k(x)) +h.c., (2.10)

Seri(x, ) = =V23,y(x)e™(x, y), (2.11)

J
where
2:Ukl(x) = E[l(x)xjkll(x) + ilzeuklmnpqém(x)xnpq(x) . (212)

It follows from general Kaluza-Klein theory that the correct ansatz for the massless
SO(8) gauge fields is given to all orders by

Br(x,y) =~ 324, (x)K™"(y), (2.13)

where the proportionality constant is related to the normalization adopted for 4,".
According to (2.10) B," and e,} have the same y-dependence so that we may assume
the ansatz

el (x, y)=w, "(x)K""(y). (2.14)

Obviously, the transformations are now consistent for the ansiitze (2.5)-(2.7),
(2.13)-(2.14) provided we choose the vierbein field independent of y, i.e.

e, (x,y)=¢(x), (2.15)

in accordance with general Kaluza-Klein theory for the massless spin-2 modes.
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What remains is to express the coefficients w, "/(x) in terms of the spinless fields
of N =8 supergravity. This follows from comparing the N = 8 transformation rule*

84,7 = —(u,” +v,,,) (229, +4,x7*) + hec. (2.16)
to the one that follows from combining (2.10), (2.13) and (2.14). This yields
wUIJ(x) =u‘j]J(x) +vt/IJ(x)’ (217)

where u, j” and v, ,, are the 28 X 28 matrices that appear in the definition of the
so-called 56-bein and its inverse,

7 (x)= (t,im((f)) :kjll; LL(();)) ) ’ (2.18a)
() TG} o

which is an element of the coset space E,/SU(8) (for our notation, conventions and
useful identities for «,/ and v, ,, we refer to [1]). However, the consistency of
(2.14) and (2.17) is not directly obvious; e;; has a special form in terms of d =11
quantities, namely

e =147 eyl (DTT,D) ,p, (2.19)

with an as yet undetermined SU(8) matrix ®(x,y) and A defined by A=
dete,’/deté,°. The presence of @ in (2.19) is absolutely crucial as (2.14) is
complex whereas (2.19) is real for @ =1 (note that the normalization of (2.14) and
(2.19) is such that the unit E; matrix corresponds to ®=1, ¢,”=48,"). An
important consequence of (2.19) is that the generalized vielbein must satisfy the
“Clifford property” [21].

m,nyk n mjk _ 18k, m,niy
eye"* +ele 8 ejfem. (2.20)

This result indeed holds for the ansatz (2.14) by virtue of the E., properties of the
matrices u, J” and v, ;,, as we will now show. Obviously (2.20) is true provided that
the left-hand side vanishes when traced with an arbitrary traceless matrix A; it is
sufficient to assume A to be antihermitian, since any hermitian matrix can be
rendered thus by multiplication with i. Inserting the solution (2.14) into the
left-hand side of (2.20) we find

WUIJAzjkIwkIKL(KmIJKnKL+KnlJKmKL)’ (221)

* Note that e differs by a factor % from the ¢ used 1n [1)]
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where A, = 8l A/}, The matrix AY,, characterizes the infinitesimal transforma-
tions of the SU(8) subgroup of E,. This fact can be used to derive the E, Lie
algebra relations [1]

(uAZ)" g+ (0AD) e = 385 {(uA ) ™)+ (0AB) ™)}, (222)

(uA5) ¥ + (uAD) ¥ = antisymmetric, selfdual in [IJKL]*,  (2.23)

where u, v, % and & denote u,"”, v, ., u";, and v/Y (hence (uAv)"¥F=

u, VA, oKL etc.). Substitution of (2.17) into (2.21) yields
{(uAm)" ¢, + (0AB) KE+ (uAD) "5 + (0A7) 1y, 1)
X (KmUKnKL 4 grlVgmKLY (2.24)
Using (2.22) for the first two terms in (2.24) leads to an expression containing
KUK 4 gl mIK — ) gJKgmn (2.25)

which multiplies the term (from (2.22))

(uAT) ™ g0y + (VAD) 2™, (2.26)

whose trace vanishes because (2.26) must be an element of the SU(8) Lie algebra. In
a similar fashion the last two terms cancel; because of the antihermiticity of A, the
third and fourth term add up to 2i Im(uAo)WXL)) which is a real antiselfdual
tensor. On the other hand K™K "KLl ig selfdual, so that their product vanishes
because of opposite duality phases. Consequently (2.14) satisfies the Clifford
property (2.20) provided we make the identification (2.17).

The above result is sufficient to show that the two expressions for the generalized
vielbein, (2.14) and (2.19) are compatible. Let us first examine the case where all e,7
are real. From (2.14) and (2.17) one sees that in this case both u and v are real;
more precisely, they parametrize the SL(8, R), subgroup of E.. From the well-known
uniqueness theorem for representations of the Clifford algebra (see, e.g. [23]), it then
follows that any e, satisfying (2.20) can be written in the form

el';l:Ema(S_lFaS)u, (227)

with E™ and S elements of GL(7,R) and SL(8,R), respectively. However, e, is
manifestly antisymmetric in [if], which implies that § is actually an element of

* By selfdual we always mean complex selfdual, ie X;x; = neuximnro X "2, so the real part 1s
selfdual and the imaginary part antiselfdual
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SO(8) (i.e. ST=S"1), so that (2.27) is indeed of the form (2.19). Of course, S is
only determined up to an SO(7) rotation which may alternatively be absorbed
into E. To discuss the general case with complex u and v, we apply an SU(8)
transformation to the real versions of (2.14) and (2.19) so that @ in (2.19) becomes
an SU(8) transformation, while the matrices ¥ and v constitute an element of E,
which is the product of a real E (i.e. SL(8,R)) element with an element of its SU(8)
subgroup. However, such products cover the whole E, group as there is no proper
subgroup of E, which contains both SL(8,R) and SU(8). This proves our assertion
that the e, defined by (2.14) can indeed be written in the form (2.19)*.

Now that we have justified the ansatz for e;] we turn to the supersymmetry
transformation for w, . Combining w, " with its complex conjugate w'/;;, the
transformation rule can be written in E, covariant form

Swi’ wu)
=E , 2.28
( swu) ( Wis ( )
where we have suppressed the SU(8) indices and E is an element of the E, Lie

algebra equal to

0 _ﬁzljkl

(2.29)
-2 Z inpa 0

Equations such as (2.28) will also be encountered in sect. 3, so let us discuss them in
full generality. From (2.28) expressions for éu and 8v may be derived in the
following fashion. First consider the contraction u',,8w, XX —v, ;,6w"/s,, which
yields the equation

A+ Ak = Ef A+ gy (2.30)

where A, XL, A}, and their complex conjugates are the 28 X 28 submatrices of
¥ 18y, with
du dv
V:

5 ( du aa)’ (2.31)
while E; X%, E;;, and their complex conjugates are the 28 X 28 submatrices of
¥ "'E¥". Because E belongs to the E, Lie algebra, ¥ 'E¥  can also be decom-
posed according to the E, Lie algebra, so that E; XL characterizes the SU(8)
components and E,;,; is complex selfdual. In the case at hand, where §¥" is the

supersymmetry variation of ¥°, ¥ '§¥" is also in the E, Lie algebra. Therefore
(2.30) can be split into two separate equations

AIJKL = EIJKL s Apxr=Ekes (2-32)

* For purely scalar fluctuations the matrix @ has been computed 1n [17] For SO(7) * invanant scalar
and pseudoscalar fluctuations @ has also been determned [13,14]
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or

—1_ _ 0 thkl
(8¥)y 1= ﬁ(zmw 0 ) (2.33)

which is just the N = § result. An alternative form of (2.33) is
8u,j” - — ‘/Eztjklvkl” ,

801_}1] = ‘/2_Etjk1uklll' (234)

3. Solution of the generalized vielbein postulates

The generalized vielbeine satisfy two equations which take the form of a gener-
alized vielbein postulate which extends the one of ordinary riemannian geometry.
They are [22]

(8,~ BrD,)efs+ D,Blelis+ 3D, Brefy + B, e mc+ o, 45cpe™P =0, (3.1)
D,elp+ B, 4 k¢ +,, qpcpe™P=0. (3.2)

As already explained these equations can be converted to “flat” SU(8) indices by
employing the Killing spinors. Furthermore we can substitute the expressions (2.13)
and (2.14) for B]" and e;7, so that (3.1) and (3.2) take the following form.

1y

a“wUIJKmIJ_‘_ %\/fAFKL(KnKLI")nKmu_ KnIJI")nKmKL)W J

1

+(Brw P+ A, W ) K =0, (3.3)

Iy Va4 k n
w,D,K" +(.93m[, W+,

m

uklwkIIJ)KnU =0, (34)

where <, ., and &, ., are obtained from the tensors &, 4pcp and &, zcp bY

contracting with Killing spinors; %,, and %,, contain an additional modification
and are defined by

QI:J = ni‘"JB(ng - %iﬁm7AuKLKnKLéna(Fa)AB) ’ (35)

g""l=ntA"jB(g;:B—im7e°ma(ra)AB)' (3.6)
Using the Lie algebra relation of the SO(8) Killing vectors

K"IJb"KMKL— KnKLanmIJ = 8m78[I[KKmL]J] , (37)
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we derive from (3.3)*

k 7 K _
aw, - 2gA“K”wU”K+ BE W+ =0, (3.8)

where we have introduced the SO(8) gauge coupling constant

g=V2m,. (3.9)

Introducing the notation
Brf =8 By,) (M=p,m), (3.10)

we can write (3.4) and (3.8) and their complex conjugates as

LA wl y gml pa 'Mrm uv wmnIJ
DK™ " |+ K Y f =0, (3.11)
wkIIJ M"Ilclpq ‘ka,uv w uvH
DSO® w,j” + Quu Muz}pq W”mn =0, (3'12)
M Wi, d"klmn gpklpq WIJPII

where the SO(8) covariant derivative D7%® is defined by the first two terms in (3.8).
Using the arguments preceding (2.32) with 8w replaced by DS%®w, we conclude
that (3.8) implies

mr o
(2] ripq
D”SO(S)V= — (‘M i gk! ) < , (3.13)
[ ® pq

which shows that %, and </, have the same definition in terms of ¥ asin N = 8
supergravity (modulo a different normalization factor for &, ). The same arguments
can also be applied to (3.11). This yields

D, K™ + ( By + Ay ) K"K =0, (3.14)

where B, /%", A, ,,x; and their complex conjugates are defined by

Bp A 1! B Mm"//' 3.15
i, 3,)" 7 \z & (3.15)

* Here we have solved 07(x, y)K™¥(y) = 0by 0”(x, y) = 0; however, in general this equation only
implies that O”(x, y) is proportional to D,,K"”. Our choice is based on the assumption that the
y-dependence 15 entirely expressable in terms of Killing vectors, so that O (x, y)is y-independent.
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We now construct an ansatz for B,,;,;*" and A,,;,x, in terms of Killing vectors

K L]

B,.1s L= —am78[I[KKmJ] ’
Aprixr = _BDmK;EUK"KL]’ (3-16)

where a and B are two real coefficients. Imposing (3.14) shows that « and B are
related according to

a+48=1. (3.17)
From (3.15) it is now easy to determine %,,, *' and <, ./,
B H=am . Kmu( uUJKukIIK _ UUJKUkIIK)

mij

+Bl°)mKr[lIJKnKL](uu[IJkaKL] - U.,[n“kIKL]) , (3.18)
‘Mmukl =am 7Km”( UuJKuklIK - uszKUkIIK)

—BD, KWK KL ( u,Mu - U,J,Juk,KL) . (3.19)

Both &/, #, and %/, %,, can be written in a more suggestive form, namely

By Ay
_ M =yl M= 3.20
(MM ‘@M) OMV ( K, m) ’ ( )
where
0,= - DFSO(S) ’

o - _am76[I[KKmJ]L] —,Bi)mKn“JKnKL]
_Bme'glJKnKL] —am78[,[KKm,]L]

m

(3.21)

Note that «/, and %, are y-independent, whereas «/,, and %, explicitly depend
on y through the Killing vectors. The fermionic transformation rules that we shall
discuss in the next section require that the T tensors, which can be written as
products of e™ with &, and ,, are y-independent. In order to establish this
property the ansitze for %, and %,,, (3.18) and (3.19), are indispensable. Further-
more the coefficients a and 8 will be completely fixed by this analysis which we will
give in sect. 5. Upon taking the limit m, — 0 in (3.21), which leads to the torus
reduction of [24], we recover the expression for ungauged N =8 supergravity,
namely O,=4,, 0,,=0. One may speculate that the general structure of (3.20) is
relevant for other compactifications as well.
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4. Fermion transformation laws
The fermionic transformation rules are [21, 22]
84@‘4 = (8” - B"D, — %&”"‘Byaﬂ - %yﬂy"DmB,,'”\)eA + %QMABGB + y“By”?;BABeB

+ %emAB(SBCDm + %gmsc) Yu€c — %emcuﬂ,:BCDYuea ’ (4.1)

8XABC —_ 3ﬁyaﬂg;B[AB£c1 _ Jz_YpMFABCDeD + %ﬁem[AB(b\C]DDm + %QMC]D)ED
— V2 et PEABEC) — 2 e st ABCDEE, (4.2)
Again we convert these equations to “flat” SU(8) indices. Substituting the ansitze
for the various fields obtained in the previous section together with (1.3) we find
that the B dependent terms are again absorbed into &, (cf. (3.5)) and that also
%,,, acquires the extra term shown in (3.6). Furthermore the spin connection d:#""g
becomes the usual d = 4 spin connection which we denote by w“""’. The S7 truncated

version of (4.1) and (4.2) is then

&y, = ( 9= %wﬂaﬂyaﬂ ) e+ 3%,,8 + %ﬁy“ﬁyﬂf;}”ej

+1v,(em B, — L, Kep)e,, (4.3)
3xuk = %y"ﬁfa_ﬂ[”e"] - ‘/2_},#&{’:11(18[
+ 112 (3e™WIBK) — e o, PUISE — 4ot Per ) (4.4)
where we have introduced the definition
Fg/ = &2 mp9.4%,
(thus Efy, = 4V2n/nP%,5) - (4.5)

From its definition (cf. [22]) we know that &, ,# satisfies the identity (modulo terms
proportional to d,,e,* which vanish in this truncation)

ers Gt = —[elre| _(8,— BID,) B, (4.6)

where [ ]_ indicates that we take the part antiselfdual in [u»]. Using the ansatz
(2.13) and the SO(8) Lie algebra property of the Killing vectors (3.7) one readily



224 B. de Wit, H. Nicolar / d = 11 supergravity

shows that
(3., - B,"D,) By = -42F, k™", (4.7)

where F,) is the SO(8) field strength

7 =3,A7 — 5,49 — 2gAK U)K, (4.8)
so that (4.6) implies
Ir;l};;w—tj___[l;;wl.l] _KMIJ. (49)

The obvious solution of (4.9) is

( T+ vull) v = [ ”] _ (410)

where we again make the assumption mentioned in the footnote preceding (3.8). We
now observe that (4.10) is precisely the equation known from N =8 supergravity
(cf. (2.26) of [1]), so that solving (4.10) leads to the same expression for 17;;’1.

We have already established that "%, %, , /¥, ¢/, x/* and ¢ and y-inde-
pendent, and in direct correspondence w1th quantities that appear in N =8 super-
gravity. Now the same result also holds for F, "/, and one can verify by direct
comparison that the transformations (4.3) and (4.4) coincide with the corresponding
ones of [1] as far as the terms proportional to d,&', wg¥, .@; ,» 7%, are concerned.

The remaining terms in (4.3) and (4.4), whlch 1nvolve en, ®;,, and LU, are

evidently related to the extra terms that must be introduced in N = 8 supergravity
after the gauging of SO(8) to restore local supersymmetry. These extra variations
are [1]

By, = - +3V2g4 e, (4.11)
Ox k= .. —gd, ke, (4.12)
where 4, and 4,;/% are (irreducible) SU(8) tensors with the properties
A\ = A", (4.13)
Ay = A, [0H A,k =0. (4.14)
Together they form the “T-tensor”
T/ = = A+ 384,

- (uk1”+ Uklll)(u IKysm vszKUj’nKI) (4.15)

m
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and it will be our task to rederive this directly from d= 11 supergravity. We now
proceed as before by comparing (4.11) and (4.12) with the associated terms in (4.3)
and (4.4). This comparison will lead to expressions for 4, and A4, as functions of
e, o, i and &, . Since for arbitrary values of a and B in (3.18) and (3.19), the
new expressions will differ from the ones given above, we distinguish them by
writing A4Y(a, 8) and 4,;’*(a, B) as opposed to 4% and A4,;7*. Hence we obtain

from (4.3) and (4.4)

m
[ ¥ A4

g (a, B) = V2 (e™* B, — tMepy), (4.16)
gAy " (a, B) = 12 (= 3em Bk + 3em ot FTISH + dstRrer) . (4.17)

We may now invoke the truncated vielbein postulate (3.4) which implies (because
D, K™ =0)

emklgll — of 1 klem = (4.18)
to rewrite (4.16) in the form
gA,"(a, B) =§V2em @), . (4.19)

The symmetry property of (4.13) is now manifest. Similarly we can prove that (4.17)
is traceless in accordance with (4.14),

gy (e, B) = — W2 (—2e™ B, + 6eln 427 — 4l ) =0, (4.20)

where we used again (4.18) and Z#,,= 0. Thus we have established the properties
(4.13) and (4.14) from d = 11 supergravity for arbitrary values of a and g subject to
(3.17). The more difficult task is now to demonstrate that 4,"(a, B) and 4,/"*(a, B)
can become y-independent and coincide with (4.11) and (4.12) as calculated from
(4.15). As it turns out, this is only possible for one special value of a and B8. This is
the most subtle part of the whole consistency proof, and will be dealt with in the
next section.

5. More T-identities

In the foregoing section we have arrived at expressions for 4Y(a, ) and
A,}’*(a, B) in terms of the SU(8) quantities &7, and %, (cf. (4.19) and (4.17)). We
can now substitute the solutions (3.18) and (3.19) into them and enquire under what
conditions the result, which is now expressed through u(x) and v(x), becomes
y-independent and coincides with (4.15). It turns out that the usual arguments based
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on the Imatrix completeness relation (A.5) are not sufficient to analyze these
aspects and one must make use of further identities involving # and v which go
beyond the “T-identities” given in [1]. Again the E, group, although manifestly not
a symmetry of the theory, plays a crucial role.

The substitution of (3.18) and (3.19) into (4.17) and (4.19) leads to products of
two and three Killing vectors, namely K™K, and D, K,K"K™. These expressions
can be simplified by using the representation (1.5) and properties of I'-matrices. In
this way one proves from the I-matrix completeness relation (A.5),

K™VKKE =281 4+ KVKL (5.1)

where K 7KL is the antisymmetric selfdual tensor

KVKL = gmgKL] (5.2)
Furthermore, using
DKy = —m'T,n (5.3)
and the identity
FI'}FI'("f = FI';"FI?L_ 88[1[1(1-'1?;.]]’ (5-4)
one finds
l")meJKnKL]KmMN = 8m78[1[MKN]JKL] . (5_5)

With (5.1) and (5.5) it is straightforward to write 4Y(a, B) and 4,//%(a, B) in the
following form

: — L.kt 4 1 g KL ki kity m LM _ , jmMK,
A7(a, B) = 3aT/“ + (K {a(u ptv )(“J Mk Wim v UkmLM)

)
- 83( U+ Uk'm)( W MsVkmkr) Ujm[MJ“kaL]} 5

(5.6)
Azluk(“, B)=- %“Tlluk] - %K”KL{ a( ut+ UU”)(“kkaulmLM - UkMMKvaLM)
— 2(!( ulmIJ + UlmIJ)( ul]MKUkmLM _— UleKukmLM)

k K
- 8:3( upt+ UUIM)( ukm[MJUlmKL] -0 M[MJ"lm L])

[esk]
+ 16,3( ulmIM + UImIM)( uU[MJukaL] - U”[MJUk"'KL]) } s (5-7)

where the terms in parentheses are symmetrized in (i) and antisymmetrized in [jk],
respectively. In deriving (5.7) we dropped terms containing Kronecker symbols,
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because we have already shown that 4,;/*(a, B) is traceless (cf. (4.20)). Further-
more we used the relation [1]

(UH""UKJ = ukIIJUUKJ)( "mnIK + UmnIK) = %8{%Tn]jk” . (5.8)

According to (5.6) and (5.7) both 4, and A4, decompose into two terms: the first
one is just proportional to the T-tensor, and remarkably enough, the proportionality
constants appear in the same ratio as in gauged N =38 supergravity. Precise
agreement is obtained for

a=3,  p=3%, (5.9)

where B follows from a through (3.17). The second terms are proportional to K /XL
which is y-dependent. Therefore it remains to show that these terms cancel for «
and B given by (5.9). To prove this one must exploit the fact that u and v constitute
an element of E, according to (2.18). First consider the identities

tk KL + vtkK

KL 4 o kIKL
W, +v

err 0/ (“ Ukl Un/lJ)
= %ﬁf(“"?w“ $IM oMy kJ]M)

— 120, 8[F (u it oK EMy, ]M) (5.10)
“lliUijL + u'kKLUjkIJ - %3,'( uk[IJUkIKL + ukIKLUkIIJ)

1 MN, kP MN, kIP
—2_481]KLMNPQ(2ujk VPO — 181w, M Q)- (5.11)

Although these relations look similar to the ones given in sect. 4 of [1], they are in
fact different in that the role of SU(8) and E, (or rather SO(8)) indices has been
interchanged. Using (5.10) one easily derives

I’ By kKLY 4 yls (o, KE 1)
u MN(ulk v +uyn\uy o

_ 17,1k kIJ\ KL _ KL, nir
(“lk U Nt Ven? )Uj (ulk +U] MN)U'

_ 2 1k 1kJ1P KL
3 (ulk U Nip t Uieanp ! )UJ

I
|
[=<]
>
—_—

LiP,, jk kL)P, Ly
Uy u g 0 oy e )0
1(,, I,k KITY _ 1801 NP, ki kiS1P
s(“kl U pn UV ) 128[M(uk1] U N1p T Uiy pl

LI(1(, KL,k KIKLY _ 1 [K( LIP, ki KILP
+v (s(“k/ Uy Ut ) 0t a (S Put o+ 0ggny "7 ) )

(5.12)
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UIIMN( UIkIJquKL) + UUMN( UleL“'kIJ)

- — MN, 1k tkMN\, I MN,, 1k JkMNY , I
= (“lk uytogyv )“ KL (“lk Il 779 92 )“ I

_ __28[M NP, 1k tkN]P) i
= —35[} (“lk et Uy pt ugr
28[(M NP, jk tkN1P 1]
- 38EK(ulk YPurk o+ yerypv )“ 17
: 1 MN, ki KIMNY _ 1 8[M N1P, ki klN]P)
_quL(s(ukl Ut Uy ) 128[1 (“kl et Uinpl

+ “UU(%(“MMN““KL + UleLUkIMN) - 11_28”({( uklN]Pule]P + Ule]PUklN]P))
(5.13)

Symmetrizing (5.12) and (5.13) over (i), contracting over I and M, and antisymme-
trizing in JNKL leads to two simple identities

i M, kKL KL, jkMJ
{“'MN(“lk kKL 4y Kps )

@)
+ %UI'KL( “lkJM”'kNM + UlkNMU'kJM) } (NJKL] = 0, (5.14)

LMN k Jk
{ v (kaMJuj kLt Vi MJ)

+ %uUKL(quNMulkJM + UIkJMUIkNM)}Ex.;KL] =0. (5.15)
Substitution of these identities into (5.6) gives
AY(a, B) = SaT* + (K KL
X {(%"‘ - 83)(“’”1M + Uk'IM)(“Im[KLUkmMJl - Ujm[KL“kmM”)

1)
- %a(u"',M— v""M)(u/’”[KkamM,] + vf'"[KLukmM”)} . (5.16)

According to (5.11) the combination uw + u that appears in the last term is
antiselfdual in indices [KLMJ] (modulo terms that vanish by virtue of the (i)
symmetrization). Because KX is a selfdual tensor, one can prove that their
contraction over JKL is symmetric in /M. Consequently the contribution of the last
term in (5.16) vanishes as it is multiplied by a tensor # — v which is antisymmetric
in IM. Choosing 2a — 88 =0 cancels the other y-dependent term, and this yields
precisely the values for a and B given in (5.9). Hence with these values we have
shown that

A (e, B) = 5T (5.17)

is y-independent, and coincides with the result for gauged N =8 supergravity [1].
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We now turn to the expression (5.7) for A,/’*(a, B). For reasons already
explained we may consistently ignore all terms containing Kronecker symbols with
SU(8) indices in the subsequent manipulations. Using (5.10) one easily derives the
following two identities

(ukp” + Ukplj)(ulp[KLvuMN] + (u1p" + vlp”)(vkp[KLvuMN])
= %UU[KLS[A;( u,pN]Puk"J]P + vkpN]PUlPJ]P)
+ Uzj[KL( uIPMN]vkaJ + UkpMN]ulpIJ) , (5.18)
(ukpu + Ukp”)( vIp[KLuUMN]) + (ulpIJ + U/pu)(“U[KLukPMN)
= %ulj[Klel\; ( ukpN]PulpJ]P + Ule]PUka]P)
+ "”[KL(“kpMN]Ulpu + vlpMN]ukaJ) . (5.19)

The difference of these equations, contracted over / and K and antisymmetrized
over JLMN leads to

k kplJ ' UL UMN])
(“ P+ ot )(vlp[ILu TNy~ Uy 0

144 1y k _ . kplIL UMN])
+(u,‘p + v,p”)(u L Pyny— v v

1,17 1 JMN ( kp Lp kpLP, )

+ 3(“ mntv ) uypty, U0

: ITN( 4k L kplIL,, MN
+ (ujIJ+Uj )(“ uipmny— U F U, ])

[

+ %(u’f” - v’f’J)(u"P[,Lv,pMN] + v""[”“u,pMN]) =0. (5.20)

When contracting this result with K/“M¥ the last term vanishes because of
antiselfduality (cf. the argument following (5.16)). For the same reason the first term
in (5.20) contains only the selfdual part of uv — du, for which we can use another
identity that follows from the E, Lie algebra:

L. 1jMN

TR | 2 [z( Jim IL j]mMN)
{(vlplLu MN T UV ) 38[1 UplmIL¥" " "MnN — Upym U

+ Tlia;ﬁ(vmnlL“m"MN - “mnILU'""MN)}ULMNr =0, (5.21)

where [ILMN]* indicates that we consider only the selfdual components. Combin-
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ing (5.20) and (5.21) we thus find
JLMN 42 k k
KIEMN( (), 4 01, ) (2 gy — 02U R
+l(uu + vleJ)(ukp v _Ukp[ILUUMN])
s\U "’y 171l 1p MN]

k
+ %( uty y + UuMN)( ukpjpulpLP + UkaPvlp”,) } Lkl _ 0. (5.22)

Substituting this result into (5.7) leads to the following expression for 4,;/*(a, B8):
A21Uk(a’ B) = _ %aT[[Uk] _ _;_KIJKL
X {( —a+t 13_63)( utp + Ulﬂ])(ukaMulmLM + vkmLlemKM)
+ 2a(u1mlJ + UlmlJ)(uUKkamLM _ UuKMukmLM)
[27k]
32 IM k
- TB("UIM +o )(“ "I MrVimKL] Ukm[MJ“lmKL])} :

(5.23)

For the remaining part of the proof we need two more relations which follow from
the E, Lie algebra

ultspkNKL _ _zlzeljklmnpqvmnljuquL
= %8{}(( u[UJ]MUkI]L]M - isljklmnpqvan]MupqL]M) s (524)
u[UIJuk”KL - ElieuklmnpqvmnuquKL
= %‘HJKLMNPQ{ %euklmnpq“mnMN“quQ A } . (5.25)

Proceeding in analogy with (5.12) and (5.13) we exploit (5.10), (5.11), (5.18) and
(5.19) to obtain

[1/k]
1, kpMN KL, 1y ijL) 1 1jkprstu KL, MN
{ 1 (ulp Uy v + 3¢ UpsrgUpy Uy

k]

={1 MN, kp kpMN) 17KL L( MN, kpKL KL kpMN) g W

{2(u,p u ,,+v,puv v +3 U 0 +u,p v u,,

_ MN( [t kplKL __ 1 ijkprstu KL)

ulp (u v 24€ Ursis¥ey
[1sk]

= [18[M N1P, kp kpN]P) KL {MN, kpKL}, 1)

{38[, (u,p u"Ppp+ Uy, pU v +uy, M uy,

K kpiL1P k L1P MN
"%8{1 (u['jJ]PU PILIP 276" pmuUrsJ]P”m ] )ulp , (5.26)
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[2yk]
1,k 1JKL KL, 1) ) 1 ijkprstu KL
{2" pMN(UIpIJU tu, U ) e UrsipUes VipMN

=11 kp kp 1)KL
_{2(vp1MNu wtvpyu MN)U

[27k]
1 kpKL KL, kp ) 1y
+ Z(UIpMNU +u, " ut ey Jutyy,

kplKL __ Letjkprstu
24

_ [y KL)
UipMN ( U Orstyt ey

[ek]
18[K kpL]P LIP, k k KL
= {ESEM(UIpN]PU L tu, Pu pN]P)uUIJ+vIp[MNu 973 0ad }

28[K kplL1P _ 1 sk L1p
- 38{1 (“[UJ]PU PILIP 2¢€" pmul’rsJ]Pum ] )UlpMN’ (5.27)

where we have suppressed Kronecker symbols with index /. Upon contraction with
8% and antisymmetrization over the remaining indices one can show that the first
terms on both sides of (5.26) and (5.27) become identical. To see this one needs (4.7)
of the second work of [1]. Using (4.8) of the same reference, one subsequently
removes the e-tensors, and is left with two identities

k]
IL kpMN,i; _  kp 0L, MN\J _
{“Ip v Ui —u v Uy, }[JLMN] 0,
k]
kp Il 15 kpIL fy =
{v,p,,u MmNV ut 0P 0w Y e = 0- (5.28)

Using these identities it is straightforward to show that

! M km km{MJ KL
{(“’1M+U” )(“ (MrVmir) = V" My, ])

_ (ulmU + UImIJ)(uUKMUkmLM_ U”KMuk"‘LM)

[kl
[IJKL]

—(u",M—v”’M)(u"'”[MJv,mKL]+ vk’”[””u,m’“‘])} 0. (5.29)

Substituting this result into (5.23) the last term in (5.29) does not contribute because
of anti-selfduality, so that all terms in (5.23) proportional to K VXZ cancel provided
that 3a = 168. This yields the values given in (5.9), so that we have established that
also 4,;/% is y-dependent for this choice of parameters and equal to

Azl,jk(a’ B) [ %Tlﬁjk]’ (530)

which coincides with the result for gauged N = 8 supergravity [1}.
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6. Field equations

With the proof that there exist values of @ and B8 which render the tensors

A,"(a, B) and A,/*(a, B) y-independent, we have established that all supersymme-
try transformations can be truncated consistently to a massless supermultiplet. As
the commutator of two supersymmetry transformations yields the (full) field equa-
tions, it is clear that also the field equations must be consistent in the sense that the
field equations of the truncated theory coincide with the original d = 11 equations,
without further constraints. The latter implies that the truncated equations must
either be y-independent, or the y-dependence must factorize into a common factor.
In this section we will explicitly demonstrate in a few examples, how the field
equations of d=11 supergravity as derived in [22] become entirely equivalent to
those of gauged N = 8 supergravity after the truncation.

The first example is the Finstein equation, which, in the formulation of [22], reads

R;w - %gpr = I'MABCD‘M vABCD + 12gp.vdABCDMpBCD - 32?;4_4)/48% pAB

_1 mAB,nCD mAB,n yCDEF,
8gpl'[e D papcp— " €Ay A pran
1 ,mAB,n _yCDEF, _1H ,m ,nAB
— e e g, Ay cppr— TR mnei5e ] , (6.1)

where we have already omitted all terms that trivia]ly vanish in the truncation on
account of the Killing condition D B"=0or d,e,*= 0. The derivative 9,, differs
from the S7 derivative D,, by %", dependent terms which make 2,,%/, covariant
with respect to local SU(8) transformation. The term proportional to the Ricci
tensor of the S7 background has not been presented in [22], where (6.1) was
evaluated for a flat 7-dimensional background. The term in brackets in (6.1) is the
only one whose y-independence is not obvious. Comparison with gauged N =28
supergravity suggests that this term is nothing but the scalar field potential [1]

P(7) = —g*{314Y1> - H145,%} - (6.2)

To verify this assertion, we proceed “backwards” by substituting (4.17) and (4.19)
into (6.2). Using (4.18) and the selfduality of =/,/%/, we obtain, after a little
rearrangement,

—_ 1 muij nkl _ omiy,n ki
g(y) - - 8{8 ]e @mdmjkl e jekl-ﬂ” qu

mypq

1 my,n kipq m]}
1€ e,J.xz(m A ipg ™ R e’e

mn®1y
- éem'k " {D[mgn]ji + %g[mjlgn]ll

+ 20", R 5/ }

Ypqri mn

+te" D, o, e™ + D, B en— R,.en}, (6.3)
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where the first term in parentheses coincides with the terms exhibited in (6.1) but
now converted to “flat” SU(8) indices (2,, differs from bm by terms proportional
to 4,,, to make 9,2/, SU(8) covariant). The second set of terms can be evaluated
by exploiting the integrability condition that follows from the generalized vielbein
postulate (3.2). This condition reads

ark of

{(b[mg:]t-{- %g[mklgl n]pqrt)eﬁc- (l(_)])}

nl

+ 3¢,

m

+2D Ly 1€ " + R, Fel =0, (6.4)

mnq

where ﬁmnqp is the Riemann tensor of S”: ﬁmnq’ = —2m3,g°q[m6,{’]. Note that (6.4) is
the analogue of (5.4) of [22]), but now converted to “flat” SU(8) indices in a
nontrivial background. Using (6.4) it follows that the second set of terms in (6.3)
cancels. Also the third set of terms in parentheses cancels. To see this, we use the
vielbein postulate (3.2) and the Killing condition ﬁme,';‘ =0,

o

ki T k 5,
Dm.si”k,e'" +Dm.3‘6’n[,ej’ﬁ'k—R e’

n mn-ij
= ~[D,, D,]er- R, e =0. (6.5)

Hence we are only left with the first set of terms in (6.3), which must be
y-independent as the left-hand side of this equation is y-independent. Therefore we
conclude that the S7 truncation of (6.1) indeed leads to the Einstein equation of
gauged N = 8 supergravity.
As a second example, consider (7.7) of [22]. In the truncation, it becomes
'¢ ]+ %M[mklm'%v{klm

pvi

=V2el B F IV —2enstjk29F), — (b, trace), (6.6)
where we have again neglected terms that manifestly vanish in the S7 truncation.
The caret in (6.6) is to indicate that the SU(8) field strength in eleven dimensions
contains an extra term, namely

'g,;.w" ='94-mj+ 2(3[;4— B[np.Dn)Bmv]gmzj’ (67)
where
%,'=0,%8,-08,8,'+1]%,, 4, (6.8)

is evidently y-independent. The additional term in (6.7) is needed for SU(8)
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covariance (see [22]). In (6.6), we now write
le™ Br =V2g4,, + e ®un (6.9)
em A= —1\[2gA, P9 — Jemlpig)) — lomkirgd §) (6.10)
After a little algebra, the right-hand side of (6.6) can thus be reexpressed as
(6.6) = %g( zkIF - TZJHF;;M)
~ W2 (emyE, M+ em™EY ) B, . (6.11)

Recalling the relations (4.7) and (4.9), we recognize that the term with %,, in (6.11)
coincides with the extra term in (6.7), and we thus arrive at

Z,l + 4

(7} p.zkIm ]

klm “g(T’xktF - T ,::kl)
= g‘( utkIKquJK - U:kIKUJkJK)F;wU~ (6.12)

But this is just the integrability equation that follows from our solution for 7, and
%, in (3.13); (6.12) also coincides with (5.6) of [1]. Once more we draw the reader’s
attention to the fact that the numerical factors come out correctly, too.

The final example is the spin-1 field equation. It corresponds to (7.8) of [22], and
repeating the by now familiar steps, we obtain in the S7 truncation

Dvi+“ytj +ﬂvtjkli_'“’kl
= —3V2emgp, Pl + W2el Y, A KT (6.13)

where D, denotes the SU(8) covariant derivative. Invoking (6.9) and (6.10) once
more, it is straightforward to show that all y-dependence cancels and we are left
with

D,F*# +M,,Uk,F "”k’———gAzll . (6.14)

Npar -
This equation contains both the field equation and the Bianchi identity for the field
strength F;“,” as its real and imaginary parts. We emphasize again that the
consistency of these equations crucially relies on the y-independence of AY and
A,

We could continue with this exercise by analyzing the other equations given in
sect. 7 of [22] but we refrain from doing so because their consistency follows by
independent arguments just as for the equations discussed above. Besides it is
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almost selfevident that (7.6) and (7.9) of [22] are either trivially satisfied or
correspond to some of the T-identities derived in [1]. We therefore leave it to the
reader to verify some of these assertions.

7. The nonlinear embedding

So far, we have only investigated the relation between the new formulation of
d =11 supergravity [21,22] and gauged N =8 supergravity. However, it is also
possible to express the fields occurring in the original version [2] in terms of those
of N =8 supergravity and to derive the full nonlinear embedding. In the linearized
approximation the results will coincide with those of [4,5], but we can now also
explicitly display the deviations from the linearized behavior for finite fluctuations.
In this section, we will briefly describe how to obtain the nonlinear ansitze without
aiming at an exhaustive discussion. As it turns out the final results are rather
unwieldy expressions (such as (7.6) below), whose usefulness is limited; the diligent
reader should be able to complete the arguments wherever he wishes to do so.

The basic idea is best illustrated with the truncated metric which was already
given in [15]. To derive it, one simply combines (2.14) with (2.19) such that

8A—lgmn = emuemj = KmIJK"KL(uUIJ'l‘ UIJIJ)(uleL+ U’JKL) . (71)

The expression is already symmetric in m and n owing to the E, properties of u
and v. From (7.1), the original siebenbein e ”(x, y) may be determined up to an
SO(7) rotation. In [15], we have “tested” (7.1) by inserting the vacuum expectation
values corresponding to SO(7)*, G, and SU(4) " invariant stationary points of the
N = 8 potential [25,9] and verified that the resulting metric indeed coincides with
the respective metrics required by the d =11 field equations. It is also not difficult
to show that (7.1), when expanded to lowest nontrivial order, reproduces the
linearized metric ansatz of [4, 5].

In [15], it was also shown that the “internal” component £, ,, of the four-index
field strength Fy,yp, acquires a nonzero value for the G, imnvariant solution in
analogy with Englert’s solution [26]. However, we did not give the full nonlinear
ansatz for F,,, . there. This expression can now be determined from the results of
this paper, as well as similar expressions for the remaining components of Fy/ypgp-
Let us demonstrate this for F,, , and f= (24i)‘le"’3”8Fa575, where F,; ., and F,p 5
are the d=11 field strength components with flat indices @, b,¢,d and @, 8,v,8
taking values in the 7- and 4-dimensional subspace, respectively. These components
occur in both %, and 7, [21,22]. Because %, is not SU(8) covariant the
determination of F,, , and f from %, would require knowledge of the SU(8)
rotation @ = @(u, v)*. Hence it is more convenient to look at ./, which, in the

* We recall that ®(u, v) 1s implicitly determined through (2 14), (217) and (227), up to an SO(7)
rotation.
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gauge @ =1, contains the terms [21,22]

-’{,:BCD =+ ;Tiﬁemafrﬁf)zrgm - ;TﬁemaFabchb[ABFccidn . (7-2)
As &, is SU(B) covariant we can project out f and F,, , in an SU(8)-invariant
manner, just as in (7.1); by SU(8) invariance we are then free to adopt the gauge

® =1 as in (7.2). The projection is again accomplished by means of the generalized
vielbein. So we consider the SU(8) invariant expression

m( [n r,s) 17kl
e (el"ePete’e’l), o]

_ _3 cTab b b d
=124 ‘-’va{ ~3if T g cpy + §Fapeal P1anl€ CD]}F/;"BFC"};‘?”

gnparsiu

=%V2id %, { = 3if T 5T cpy+ 3 F a8 as TS Tan( L) e

(1.3)

where in the first step we have substituted (2.19) with @ =1. It is important here
that SU(8) covariance forces us to use a five-fold product of the vielbeine e, rather
than a two-fold one, as the latter does not have SU(8) indices in the required
position. Furthermore, note that d=7 world indices in (7.3) are related to flat
indices by use of the full siebenbein. Using ,/E = A\/g? , where g is the determinant

of the S7 metric, a little calculation yields

npqrstu
(713)=w24"* 7 {Sifg, 00+ 5F™, ) - (7.4)
Inverting (7.4) leads to
g rsiuy
28 O+ AF ™= a2 A4ﬂ—'-e,"j’(e’e‘e’e“e”)k,&ln”k’ . (7.5)

Vé

To obtain the full nonlinear expressions for F,,,, and f one simply exploits the fact
that all quantities on the right-hand side can be expressed directly in terms of the
56-bein ¥"(x) and the S” Killing vectors K™(y): A can be computed from (7.1),
and e™ and &, are known from (2.14), (2.17), (3.19) and (5.7). Direct substitution
gives

2if (%, ) 8up(x, )85 + 3F™, (%, )

Epgrstuv m r s v
= VT 4, ) ZEEE R K A () K(p) .. KI(p)

VE

X {Wz,”(x)Wkkll‘J‘(x)Wk‘kztzjz(x) e Wk411515(x)}
x {8 K KL (0 M () ub gy (x) = w7 (%) 0FFM ()
= D, KRy KV () (e (6) bl () = 02KE(x) 0HMY ()},

(1.6)
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where w = u + v was defined in (2.17). It is not obvious that the right-hand side of
(7.6) will decompose into the two tensors on the left-hand side, which are real and
have a certain symmetry. Nonetheless, our results ensure that this must be the case.
In addition f and F,,,; must also satisfy the Bianchi identities for the 11-dimen-
sional field strength Fyyp,. However, as explained in [22), the combined Bianchi
identities and field equations correspond to a number of SU(8) covariant equations
whose validity can be verified directly for the SU(8) covariant fields defined in this
paper. We have not made exhaustive attempts in that direction, but we have verified
(7.6) for the SO(8) invariant solution of N = 8 supergravity. In that case u'/;; = 8}/,
v,,17 = 0; a straightforward calculation then leads to

f= 3ﬁm7 s
Frpa=0,
gmn = gomn 2 (7-7)

which is the expected result for the sphere S”. To further analyse (7.6) it may be
convenient to rewrite it by means of the generalized vielbein postulate (3.4) into the
form

€
1 4_pqrsiuv . skk’ 1 ,ull’ v miy
iV A ene*el e e) D™,  (18)

Vé

%lfgn[p'sg]l + %anpq=

where 2, is the SU(8) covariant derivative with SU(8) connection %,,’. Finally the
full nonlinear expressions for the remaining field strength components F, g, F,,p.
and F,,,, can be obtained in a completely analogous fashion by projecting out the
appropriate components in /,“*' and F,,”", using the d=4 results for these

quantities.

Appendix

In this appendix we collect several formulae involving the Killing spinors and
vectors defined in (1.3) and (1.4). A useful explicit representation for the Killing
spinors on S’ is provided by the formula [27]

1/(y) = [exp(im,y, )] ], (A1)

where y, are local coordinates on S’ (in the neighborhood of the northpole, say),
and the 8 X 8 matrices I'® generate the d="7 Clifford algebra. From (A.1) it is
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{1MN k IJMN k
v (Ulkl.luj KL) +0v” (kaKLu‘ u)

— MN, 1k tkMN Y\, Uy __( MN, 1k JkMNY,,l1
= (“lk Uyt oV )“ KL PP T S 1% 91 )“ I3

— _28[M NP, 1k ka]P) 7
= 38[1 (“lk w5 pt Uy pt U gr
_28[M NP, jk ka]P) I
38{1((“11( et Uyerypt u'yy
gt 1 MN, ki KIMNY _ 1 M( NP, ki klN]P))
“JKL(s(“u u Vgt ) 12811 Uy U pt Ut

+ u”l.l(%(“klMNuleL + 00 M) - '112'8[1‘(’( U+ kaL]PUkIN]P))
(5.13)

Symmetrizing (5.12) and (5.13) over (), contracting over I and M, and antisymme-
trizing in JNKL leads to two simple identities

n MI, kKL KL, jkMJ
{“ MN(“/k v +u, K )

)
+ %UIIKL(quJMu'kNM + UIkNMU‘kJM) }[NJKL] =0, (5.14)

IUMN 7k 7k
{ v (UlkMJ“ kLt Oy MJ)

(1)
+ %uI/KL(quNMquJM + kaJMU‘kNM) }[NJKL] =0. (5.15)

Substitution of these identities into (5.6) gives
AY(a, B) = taTy* + LK VKL
k kiIM KL, MJ
X {(%“ - 8/3)(" iy U )(ujm[KkamMJ] — vk, l)

G)
- %a(“k'm - vk'm)(“’m[m.vkmm] + UJ'"[KL“kmMJ])} . (5.16)

According to (5.11) the combination uv + ou that appears in the last term is
antiselfdual in indices [KLMJ] (modulo terms that vanish by virtue of the (ij)
symmetrization). Because K/XL is a selfdual tensor, one can prove that their
contraction over JKL is symmetric in 7M. Consequently the contribution of the last
term in (5.16) vanishes as it is multiplied by a tensor # — v which is antisymmetric
in IM. Choosing 2a — 88 =0 cancels the other y-dependent term, and this yields
precisely the values for « and B given in (5.9). Hence with these values we have
shown that

A, B) = 5T (5.17)

is y-independent, and coincides with the result for gauged N =8 supergravity [1].
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The tensor K/XL defined in (5.2) is thus selfdual, and is invariant under the SO(7)*
subgroup of SO(8). It obeys the relation [9]

KIJKPKLMNP = 681{{{1(1\/ - 98%£KJK]MN] > (A-7)

which may be derived either by certain Fierz rearrangements or by directly sub-
stituting the explicit formula (A.1).
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