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We find the propagator for gravitons in spacetimes with homogeneous and isotropic flat 
(k = 0 )  spatial sections. The method also appfies to the k = +1 and k = - 1  cases. The vacuum 
state is assumed to be homogeneous and isotropic in the same way as the spacetime. In the four 
most interesting physical cases, which are de Sitter space, the radiation and dust dominated 
models, and flat space, we obtain the graviton propagator in closed form for the adiabatic vacuum 
state. 

1. Introduction 

Spacetimes with homogeneous and isotropic spatial sections appear to be excel- 
lent models of large-scale cosmology [1,2]. To investigate certain outstanding 
questions, i.e., the creation of gravitons during cosmological expansion, or the 
behavior of particle detectors, it is useful to have closed form expressions for the 
propagator functions. (These are also known as Green functions or two-point 
correlation functions [3].) If hab(x) denotes the metric perturbation at x, and 
ha'b'(x ') the perturbation at x', then the propagators are quantum averages such as 
<Olhabha'b'[O ). In this paper, we will find 

aaba'b'(x, X') = <Olhab(x)ha'b'(x ') + h~'b'(x')hab(x)[O>, (1.1) 

which is called the symmetric function. 
In order to define the propagator it is necessary to impose gauge conditions upon 

the metric perturbations. We require that eight conditions be satisfied [4]: 

traceless: haa = 0, (1.2a) 

t r a n s v e r s e :  tTa hab = 0, (1.2b) 

synchronous: t~h ~b = 0. (1.2c) 
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Here t a is a vector orthogonal to the homogeneous and isotropic spacelike surfaces, 
and all tensor operations such as trace and V~ are carried out with respect to the 
unperturbed metric. In the case where the state I 0) of the gravitational field is also 
homogeneous and isotropic, we will obtain a simple closed form for G aba'b'. T h e  key 

observation is that neither the state 10) nor the gauge conditions (1.2) have singled 
out a preferred direction in the spatial sections. Furthermore, because of the gauge 
condition (1.2c), the propagator bitensor has only "spatial" components. Thus, if 

the metric is written as 

ds 2 = - d'r 2 + a 2(~.) d•2, (1.3) 

then the propagator G aba'b' ( ' r ,  o ;  "r t, ( I ' )  is a bitensor in 27 which is invariant under 
all orientation preserving isometries that map the maximally symmetric space 2? to 
itself*. 

If we further assume that the + 2 and - 2  helicity states of the graviton are 
identically occupied, then there is no preferred (right- or left-handed) orientation on 
the spatial sections. It then follows from the work of Allen and Jacobson [5] that 
G aba'b' is a maximally symmetric bitensor for z and ~' fixed. For fixed z and ~-', 
there are ten possible bitensors, which are 

f l ( r ) n a n b n a ' n  b' , f s ( r ) n a n a ' q  bb' , f 9 ( r ) q a a ' q  bb" , 

f 2 ( r ) n a n b q  a'b" , 

f 3 ( r ) q a b n a ' n  b' , 

f r (  r )nbnb 'q  aa' , 

f T ( r ) n a n b ' q  a'b, 

f l o ( r ) q ~ b ' q  ~'b. 

A ( r ) q a b q  a'b' , f s ( r ) n b n a ' q  ab' , 

f rom these ten bitensors, one can form five which have the correct index symmetries 
a ~ b, a '  ~ b ' ,  and (ab )  ~ ( a ' b ' ) .  Of those five bitensors, only three are traceless 
on the indices a and b. Thus for arbitrary "r and ~", the propagator must be of the 
form 

G"b"'b'( ~, O; ~', a ' )  = P1 ( ?, ~', r )( nan b -  ~qab )(  n . ' n  b' -- ±qa'b'3 ] ~ 

+ P2('r, 'r ', r ) ( q a a ' q b b ' +  qab'qba" 2 _abqa'b' ~ 

+ e 3 ( . . . ' .  + + q O'nO,  ' 

+ qab'na'nb + qbb'nana')  • (1.4) 

* This is not the same as a maximally symmetric bitensor, as defined in ref. [5]. A maximally 
symmetric bitensor is invariant under both orientation reversing (disconnected) isometries and 
orientation preserving isometries. 
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Here r is the geodesic distance between the points o and o '  in the metric 
d Z  2=  q o b d x ° d x  b, n ° (n a') is the unit tangent vector at the point o ( o ' )  to the 

b' geodesic from o to o '  in the metric dZ  2, and qa (X, X')  is the parallel propagator in 
the metric d ~  2. Thus, the problem of finding the graviton propagator is reduced to 
the simpler one of finding the scalar functions P1, P2 and /3- 

An important  notational point is the use of primed indices, as introduced in ref. 
[5]. An unprimed index on a bitensor field is an index in the tangent space at the 
point x; a primed index is an index in the tangent space at the point x ' .  

The functions Pi(o, o', r) can be found because the mode functions for gravitons 
are the same as those of a massless minimally coupled scalar field [4]. In this paper 
we will restrict ourselves to the k = 0 case where dZ  2 is the metric on flat 3-space, 
and we will find Pi explicitly for the flat, dust, radiation and inflationary models. 
The k = + 1 and k = - 1  cases, in which the maximally symmetric space Z is a 
sphere or hyperbolic sheet, will be treated in a separate paper. 

Note: throughout this paper we set h = c = 1. However, we retain explicitly all 
factors of the gravitational constant G. 

2. Geometric bitensors in k = 0 Robertson-Walker spacetimes 

In this short section, we define bitensors like those that appear in the ansatz (1.4) 
for the graviton propagator. In the spatially flat (k  = 0) case there are certain 
advantages to using a different set of objects than those defined in the introduction. 
The difference is entirely in normalization factors of a( t )  and a( t ' ) .  To avoid any 
confusion, we will give these objects new names. 

Let the spacetime metric be that of a Robertson-Walker model with flat spatial 
sections. Thus, 

ds 2= a2( t ) ( - d t  2 + dx  2) -- gab dxa dx  b. (2.1) 

In this section we will describe the necessary tensors and bitensors both geometri- 
cally, and in cartesian coordinates (t, x 1, x2, x3). Thus in coordinates 

g a b = a 2 ( t ) d i a g ( - 1 , 1 , 1 , 1 ) .  (2.2) 

Now let t ° be a unit timelike vector field orthogonal to the spatial sections. In 
coordinates, 

t a =a - l ( t ) ( 1 ,O ,O ,O) .  (2.3) 

The normalization of t a is tato = - 1 .  
Now define the projection operator Pab = gab + totb which projects tensors into 

the flat spatial section, and is the metric on a spatial surface at fixed time. In 
coordinates, the projection operators at x and x '  are 

Pat, = a2(t)diag(O, 1 ,1 ,1 ) ,  Pa'b' = a2 ( t ' )d i ag (0 ,1 ,1 ,1 )  • (2.4) 
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The propagator G~ba'b'(x, X') has two points x and x '  as arguments. We will call 
the coordinates of these two points 

x = (t ,  x) = ( t , x  1, x 2,x3) ,  

x ' = ( t ' , x ' ) = ( t ' , x ~ , x ~ , x ~ ) .  (2.5) 

Note again the convention that primed coordinates and indices are always associ- 
ated with the point x ' ,  and that unprimed coordinates and indices are always 
associated with the point x. 

We next define the comoving spatial separation of x and x' .  We call this function 
r(x, x ' ) ;  it is the geodesic separation of the points x and x '  in the time-indepen- 
dent static metric a-2(t)Pab . Since the spatial sections are flat, in terms of our 
coordinates, the distance r is 

r(x,x') = ~ / ( x  1 - x ( )  2 + ( x  2 - x ~ )  2 + ( x  3 - x J )  2 . (2.6) 

Now consider the geodesic 7 from x to x '  in the four-dimensional spacetime. We 
can take the tangent vectors to 7 at x and x', project them into the spatial sections 
with Pab and Pa'b', and then normalize them to unit length, as shown in fig. 1. In 
this way, we obtain a vector Va(x, X') at the point x and another vector V~'(x, x')  
at the point x ' .  These vectors point away from each other, and thus away from the 

/ /,, 
. . . . . . . . . . . . . . . . . . . .  

I / / / 
\ / 

Q(t) 

Fig. 1. Shown are two points x = (t, x)  and x' = (t', x ' )  in a spatially flat Robertson-Walker model. 3' 
is the geodesic curve joining x to x'. The vector Va(x, x')(V°'(x, x')) is obtained by projecting the 
tangent vector to "t at x(x ' )  onto a spacelike surface at time t (t'), and then normalizing it to unit 
length. Note that V a' has the same direction as the geodesic in the spatial surface at time t from (t', x) 

to (t', x'). 
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In coordinates ,  if Ax  a = (t - t', x -- x ' )  then V a = 

V a= a - l ( t ) r - l ( O ,  x x -  x~, x 2 -  x~, x 3 -  x~),  

V a ' =  a - l ( t ' ) r - ' ( O ,  x~ - x l ,  x~ - x 2, x;  - x3) .  (2.7) 

W e  can  also def ine  a paral le l  p ropaga to r  8c ¢' for the t ime- independen t  spat ia l  metr ic  

a-2  Pab" In  coord ina tes  

6~'  = d i a g ( 0 , 1 , 1 , 1 ) .  (2.8) 

Thus,  no te  tha t  V ~" = - a (  t ) a -  l (  t '  )Sa~' V a. 

I t  is also convenient  to define the bivector,  Pa b, : a(t )a- l ( t ' )~b 'bPa b 

Pa b' = a( t ) a -  l( t '  )diag(0,1,1,1)  . (2.9) 

In  m a n i p u l a t i n g  this bivector,  note  that  the index a t ransforms as a vector  at x, and  

the index  b' t ransforms as a vector  at x' .  F r o m  these different  tensors  and  

b i tensors ,  we can  now form the gravi ton propaga tor .  

N o t e  tha t  in  the next sect ion of  this paper ,  the dot  p roduc t  of two spat ia l  vectors  

p a  = a - l ( t ) ( 0 ,  p )  and  Qa = a-X(t)(O, Q) will of ten be deno ted  by  PaQa = P .  Q. 

3. Representation of G ab"'b' as a mode sum 

I t  has  been  shown by  F o r d  and  Parker  that  in a k = 0 Robe r t son -Walke r  space 

wi th  met r ic  d s  2 =  a E ( t ) ( - d t 2 +  dx2) ,  the field ope ra to r  for  gravi ta t ional  f luctua-  

t ions  gab --> gab + hab can be  represented  as [4] 

hab(x)  = ~_~ma(k )mb(k  ) F R ( k ,  X)aR + ma*(k )mb*(k ) F ~ ( k ,  x)a~t 
k 

+ E r n a ' ( k ) m b * ( k ) F L ( k ,  x ) a  L + m a ( k ) m b ( k ) F ~ ( k ,  x ) a [ .  (3.1) 
k 

Here  the  opera to r s  aR and a~t des t roy  and  create  gravi tons of  f ight-c i rcular  

po l a r i z a t i on  and  the opera tors  a L and  a [  pe r fo rm the same opera t ion  for left-cir-  

cu la r ly  po la r i zed  gravi tons*.  The sum over k denotes  a sum over a th ree-d imen-  

* This differs from Ford and Parker [4] in certain details. We use a circularly polarized basis rather 
than linear polarizations, we use a metric d s 2 = a 2 ( t )( - d t 2 + d x 2 ) rather than d t 2 _ a 2 ( t ) d x2, and 
we do not set 16~rG = 1. 
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sional set of spatial wave vectors, 

E = v f  (3.2) 
k 

In coordinates k a = a- l ( t ) (o ,  k). V is a constant comoving volume, which will be 
taken to infinity later. The complex vector m a is [6, 7] 

m a = (2 ) - l / 2 [e~ (k )  + ie~(k)] ,  (3.3) 

where e~(k)  and e~(k)  are arbitrary vectors such that* 
(a) e~ and e~ are purely spatial (i.e., Pabe ~ = e~); 
( b )  a b _ a b a b __ 

e l e l g a b  - -  e2e2gab = 1 a n d  e l e 2 g a b  --  0; 

(c) e~ and e~ are orthogonal to k (i.e., e~k a = 0); 
(d) e~, e~ and k form a right-handed triad. 

Finally the mode functions F R and F L are of the form 

FR(k,  x )  = (16~rG)l/2fa(k,  t)eit"x/(4~r3/2kl/Ev 1/2) (3.4) 

and similarly for F L, where F a satisfies the massless minimally coupled wave 
equation [4], and G is the gravitational constant (see first footnote in this section), 

[:]ta = rqFL = O. (3.5) 

Note  also that k a x a = k ' x .  The wave equation t 2 F = 0  implies that the time 
functions f a  and fL obey 

2 t i .  
f '+ - - f  + gEl = 0, (3.6) 

a 

where k =  ( k a k a ) l / 2 = ( k ' k )  1/2 and • = d / d t .  The time functions f ( k ,  t) are 
normalized by ( f * f - i f * )  = - 2 ika-  E( t ). 

Now the symmetric two-point function in the vacuum state defined by a L l 0  ) ---- 

a a l 0  ) = 0 is given by** 

Gaba'b'= E ( m a m b r a a " m b " [ F R ( x ) F ~ ( x ' )  + F ~ ( X ) F L ( X ' ) ]  
k 

+ma*mb*ma'rnb ' [F~(x )Fa(x  ' )  + F L ( x ) F ~ ( x ' ) ]  } . (3.7) 

Here m a' = a ( t ) a - l ( t ' ) m a ~  a'. If we assume that the vacuum states of the left and 
right-handed gravitons are the same, then FL(X ) = Fa(x  ) = F(x )  and we have 

G aoa'b'= E(m~mOma'*m b'* + m " * m b * m a ' m b ' ) [ F ( x ) F * ( x ' )  + F * ( x ) F ( x ' ) ] .  
k 

(3.8) 

* This defines e~ and e~ up to a rotation by angle ~ about the k axis. Under such a rotation 
mare b --~ e x p ( 2 i ~ ) m a m  b as discussed in ref. [6]. 

** Since G aba'b' is proportional to mambmc'*md'*,  it is independent of the choice of polarisation 

vectors e~ and e~. 
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If we further assume that the state DO) is homogeneous and isotropic, then the time 
functions f ( k ,  t) can only depend upon k via its length k. This is because any 
dependence of the time functions upon the direction of k would single out a 
preferred direction in the spatial section, thus violating the maximal symmetry of 
t h a t  three-dimensional space, and destroying the (assumed) homogeneity and 
isotropy of the graviton vacuum state. 

As we explained in the introduction, the mode sum (3.8) now defines a maximally 
symmetric bitensor in the spatial section. We thus need to evaluate 

Gab~'b'= f (mambm~'*m b'* + m~*mb*ma'mb')w(k, t, t ' )cos k - ( x  - x ' )  d3k. 

(3.9) 

The term which is proportional to sin k .  (x - x ' )  has been dropped from (3.9) since 
it vanishes after integration over all k. Note also that k - ( x -  x ' ) =  r k y  ~. The 
function w (k, t, t ' )  is symmetric in (t, t ' )  and is 

w(k ,  t, t ') = G(~r2k)- t[ f (k ,  t ) f * ( k ,  t ') + f * ( k ,  t ) f ( k , / ' ) ] .  (3.10) 

Because the propagator (3.9) is a maximally symmetric bitensor in the spatial 
sections, it must be of the form 

G ~b"'b' =f l ( t ,  t', r)O~ ba'b' +fz(t ,  t', r)e~ ba'b" +f3(t, t', r)O] b~'b' . (3.11) 

This is the form that was derived in (1.4) for the specific case where the spatial 
sections 2? are fiat. Here the bitensors oaba'b'(X, X') which carry the tangent space 
indices are: 

o ~ b a ' b ' = ( v a v b - - l p a b ) ( v a ' v b ' - - 1 3 e a ' b ' ) ,  

o~ba'b" = paa'pbb" _1. pba'pab' _ Zl~abpa'b' 

Off ba'b' = 4 v a v b v a ' v  b' + paa ' vbvb '  + pba ' vavb '  + pab ' vbva '  

+pbb'vava'. (3.12) 

Then denoting oaba'b'Gaba, b, by 0. G and inverting (3.11) one finds* [27, !][01!] 
1"2 = ~ - 3  1 0 2 • . 

f3 -- 3 1 0 3 • 

(3.13) 

To evaluate the quantities ~,i ~ ' " , ' "b ' "a  . . . .  b,+mambma,mb,) it now helps to 

4 01 4 01 0 3 = 0 , 8 2  . 8 2 = 2 0 ,  * T h i s  i n v e r s i o n  i s  a s s i s t e d  b y  t h e  f o l l o w i n g  c o n t r a c t i o n s :  01 • 01 = ~ ,  "02 = 7 ,  " 

0 2 " 0 3 = --  8, 0 3 " 0 3 = 8. 
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introduce a special set of ef and e~. Choose e~ to be orthogonal to both k a and V a, 

and e~ to be orthogonal to both e~ and k a (see the discussion following (3.3) and 
the first footnote in this section). Then 

Vae 2 ) w ( k, t, t" )cos k" (x - x ' )  d3k, (3.14a) o~ .G=  ½f( a 

02" a = 4 fw  (~, t, t')COS I,- (X -- X') d3k, (3.lab) 

03"G= 2 f[(Vae~) 4- 2(V~e~)2]w(k,t,t')cosk.(x -x')d3k. (3.14c) 

Since w(k, t, t') does not depend upon the direction of k, these integrals are easily 
evaluated. 

To do this, first note that k'(x-x')=rkaVa=krcoseo where q) is the angle 
between k a and V a. Because of the above choice of ef and e~ it then follows that 
(Vae~) z --- sin2~ = 1 - cos2~. Since the measure d3k = 21rk 2 dk sin~ d~b for k ~ [0, ~ )  
and ~ ~ [0, ¢r], we obtain, for example 

f (Vaq)2w(k)cos t~ . (x_x , )d3k= 27rfo~w(k)k2{fo'~Sin3eoeik . . . .  ~d~) dk .  

The integral over ~ may be evaluated by letting u = cos ~ and integrating over u. 
The integral over ~ (in curly brackets above) then becomes, for example, 

sin kr cos kr 1 
4 k3r3 k2r2 ]. 

In this way we obtain for the different integrals in (3.14) 

fw(k)eikXd3k = 4~r f ~  -T Jo w( k )(sin kr )k dk 

4¢r ,~w(k [2sinkr 2cosk r ]  f(vae~)2w(~)e"'Xd3k=--;-Jo ) k2r 2 kr kdk,  

4__~fo [24sinkr 24coskr 8sinkr 
a 4 ~w(k) k4r4 k3r3 k2r2 f(Vae2) w(k)ei* Xd~k = - - ] k d k .  

(3.15) 
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Thus from (3.13) and (3.14) we find, for the functions fl ,  f2 and f3 

751 

f l ( t ,  t ' ,  r)  

f 2 ( t , t ' , r )  
f 3 ( t , t ' , r )  

=2~" 
9 6 

1 - 3  3 2 - 
1 - 9  15 4 - 1 5 1  

Sl(t  , t r, r )  

s3(t , t ' ,r  ) 
ss(t, t', r) 
c2(t , t ' ,r  ) 
c4(t , t ' ,r  ) 

, (3.16) 

where 

. ~  sin kr 
s , ( t , t ' , r ) =  Jo --~y~ w ( k , t , t ' ) k 2 d k ,  

c, ( t, t', r) (oo coskr = w ( k , t , t ' ) k 2 d k .  
"10 k"r" 

(3.17) 

Thus to obtain the graviton propagator in a homogeneous and isotropic spacetime, 
one must carry out the following steps: 

(i) Choose the time-parts of the mode functions f (k ,  t) such that 
(a) f ( k ,  t) only depends upon the length k of k, 
(b) f ( k ,  t) satisfies f'+ 2(d /a) /+ k2f = O, 
(c) f (k ,  t) is normalized so that f * f  - f f  * = -2ika-2(t) .  

(ii) Form the quantity w(k, t, t') from f (k ,  t): 

w(k ,  t, t ' )  = G(~r2k)- l[ f*(k ,  t ) f ( k ,  t ')  + f ( k ,  t ) f * ( k ,  t ' ) ] .  

(iii) Evaluate the five one-dimensional integrals sa, s3, ss, c2, c4 defined by (3.17). 
(iv) Use (3.16) to find fl ,  f2 and f3. The symmetric function Gaba'b'(x, X')  is then 

given by (3.11). 
The choice of a vacuum state 10) is implicit in step 1 above. This is because the 

requirement that the state 10) be Robertson-Walker invariant (i.e., homogeneous 
and isotropic) does not single out a unique state. In fact, there are an infinite 
number of choices of functions f (k ,  t), and corresponding "vacuum" states 10), 
that satisfy the necessary conditions given above. 

4. Special cases: de Sitter, radiation and dust models 

In this sectior, we evaluate the graviton propagator in closed form for four special 
spacetimes. They are de Sitter space, the radiation dominated model, the dust 
dominated model, and flat space. In each of these models the vacuum state is 
chosen to be the infinite-order adiabatic vacuum state [3]. In the de Sitter model this 
vacuum state is also called the Bunch-Davies vacuum state [8]. In the radiation 
model, it is the same state as the Minkowski conformal vacuum state [3]. 
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The scale factors a(t) and mode function f ( k ,  t) are as follows: 

de Sitter space: 

radiation dominated: 

dust dominated: 

a(t)  = (Ht)  -1, 

f (k ,  t) = ( a - l ( t )  - iHk-1)exp(- ik t )  ; 

a( t )  = Ht,  

f ( k ,  t) = a - l ( t ) e x p ( - i k t ) ;  

a( t )  = (Ht)  2, 

(4.1a) 

(4.1b) 

(4.2a) 

(4.2b) 

(4.3a) 

f ( k, t) = ( a-  l( t ) - iHk-  la- 3/2( t ) ) e xp ( -  ikt ) ; 

(4.3b) 

flat space: a ( t)  = 1, (4.4a) 

f ( k ,  t) = exp( -  ikt).  (4.4b) 

Here the constant H determines the expansion rate: in the case of de Sitter space it 
is equal to the Hubble constant. Note that since the metric is ds 2= a 2 ( t ) ( - d t 2 +  
dx2), the coordinate t is "conformal" time and not the more physical "comoving" 
time. 

For these four spacetimes, the ilanction w(k, t, t ' )  defined in (3.10) takes the 
simple form 

w(k ,  t, t ' )  = 2G~r-2A(t, t ' ) [ k - a c o s k ( t -  t ' )  + k - 2 ( t -  t ')sin k ( t - / ' ) ]  

+ 2G~r-2B(t, t ' )k- lcos  k ( t -  t ' ) .  

The functions A(t, t ') and B(t, t ')  can be found from (4.1)-(4.4). These 
follows: 

de Sitter space: A ( t, t ' )  = H 2 , 

radiation: 

dust: 

flat: 

B(t,  t') = a - l ( t ) a - l ( t ' ) ;  

A ( t , t ' ) = O ,  

B(t,  t ')  - - a - l ( t ) a - l ( t ' ) ;  

A(t ,  t') = H2a-3/z( t )a-3/2( t ' ) ,  

B(t,  t ')  = a - l ( t ) a - l ( t ' ) ;  

A ( l , t ' ) = O ,  

B ( t , t ' ) = l .  

(4.5) 

are as 

(4.6a) 

(4.6b) 

(4.7a) 

(4.7b) 

(4.8a) 

(4.8b) 

(4.9a) 

(4.9b) 
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Now, in order to find the propagator, we need to find the functions fx, f2 and f3 
that appear in (3.11). They are given by (3.16) in terms of integrals that we can now 
evaluate. 

In particular, we need to know the integral 

~m k-6s in  krcos kt dk  

r + t )  
= ¼rm -4 -- ~ r ( 3 t  2 + r2)m -2 _ 4~sot(t 4 + 10t2r 2 + 5r4)log 

- ~ r ( r  4 + 10r2t 2 + 5t4)[log(m4(t  2 -  r2) 2) + 4 " t -  11357 ] + O(m2) .  (4.10) 

Here m is an infra-red cutoff which we would like to take to zero, and "t is Euler's 
constant ~ = 0.5772 . . . .  By taking repeated derivatives of this integral with respect 
to r and t we can find all of the integrals necessary to evaluate fl ,  f2 and f3 when 
w(k ,  t, t ' )  has the form (4.5). 

Evaluating the integrals sl, s3, s5, c 2 and c 4 we thus obtain, 

f2 = 2G~r-IA( t, t ' )  - 

A 

¼V2(V 2 - 3 )~  2 - ~(15V 4 - 40V 2 - 12) 

±~5 1 + ~oV2( V2+  5 ) ~ 2 -  ~ (  15V4+ 8 0 V 2 -  32) 

~V:(V:+ 1 ) ~ -  ~ ( 1 5 V '  + 2OVa+ 8) 

¼(5V - 9)~k2 + (1 - V2)-1(15V 4 -  37V2+ 16) 

+ 2 G ~ r ' l B ( t , t ' ) r  -2 ¼(V2 + 3 ) ~ 2 +  ~(1 - V 2 ) - 1 ( 3 V 4 + 7 V 2 - 4 )  

~(5V 2+ 3)~b 2+ 3 ( 1 -  V 2 ) -1 (15V4-  V 2 -  8) 

(4.11) 

where the variable V and functions fix and 1~2 a te  defined as follows: 

V =  ( t -  t ' ) / r ,  

~b I = log(m4r4(1 - V2) 2) + 4~, 

[ I + V ~  2 
~2 = V l o g [ ~ )  . 

(4.12a) 

(4.12b) 

(4.12c) 

Notice that the infra-red cutoff m 2 appears only in the function ~kl and thus that it 
has disappeared from the propagator except for appearing in a single term of rE. 
What is the physical significance of this term? 
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It is well-known that the minimally coupled massless scalar field suffers from an 
infra-red divergence in the de Sitter and dust models, where A(t ,  t ' )  is nonzero 
[4, 9-12]. It is easy to see that the following trace of the graviton propagator, 

Pbb ' P aa ' Gaba , b  , = 2fl + 10f2 - 4f3 = ( 1 6 ~ r G ) 2 G ~  (4.13) 

is (apart from a factor of 16~rG) exactly twice the massless minimally coupled scalar 
propagator G~I)~. Thus, the infra-red divergence of the scalar field appears in the 
graviton propagator also. This means that for the choice of gauge which we have 
made (1.21), the graviton propagator has an infra-red divergence in de Sitter space 
and in the dust model. That is to say, in the limit m ~ 0, the graviton propagator (in 
our gauge) is infinite in these models. 

It has been shown that in de Sitter space there are certain "bad"  choices of gauge 
for which the graviton propagator contains infinite terms; however, for these choices 
of gauge the infinite terms do not contribute to any physical process [13]. Indeed, 
there exist other choices of gauge, for which the graviton propagator is completely 
finite. It follows that for a "bad"  choice of gauge, an infinite term in the graviton 
propagator  cannot contribute to the scattering amplitude. This is because the 
scattering amplitude is a physical, and thus gauge-independent, quantity. In our 
present case, we can write the graviton propagator in the form 

a aba' b' = "° finitel'~'~aba'b' __ 457. - 1GA (t ,  t '  )log( m 2 ) O~ ha' b', (4.14) 

where O~ b~'b' is the tensor defined in (3.12) which is formed entirely from the 
projected metric tensor, and vf~te~aba'b' is a finite term, independent of m. 

In de Sitter space, the second term on the right-hand side of (4.14) does not 
contribute to tree-level scattering amplitudes. Thus it is a gauge artifact - this term 
contributes nothing, for any value of the cutoff parameter m 2. This is because the 
tree-level scattering amplitude is given by a double integral of the form [13] 

s= f f Ta~(x)Gaba'b'(x,x')T~,h,(x')c~ d'xv~Z d'x '. (4.15) 

The stress-energy tensor Tab, for any interaction, is conserved VaTab = 0 and 
symmetric Tab = Tba. In de Sitter space A(  t, t ' )  = constant and O~ ba'b' = ~ 7 ( a O  b)a 'b '  

where the bitensor Qba'b' is* 

Qba'b'= H-X(~tbpa'b'  2 ( r / t )Va 'pbb ' ) .  (4.16) 

* This is easily verified with the formulae (true for any scale-factor a(t)) 

~7~tb=6(t)a-2(t)P~b, 

~Tapbb'=5(t)a z(t)tbpa b', 

Here "denotes d/dt. 

V.(rV b' ) = -a-1(t)p~ b' " 
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Thus one can integrate by parts in (4.15) to show that the second term in (4.14) does 
not contribute to the scattering amplitude (4.15) - it is a gauge artifact! 

It is interesting to examine the behavior of the propagator for large spacelike 
separations, i.e., as r ~ oe with t and t '  held fixed. We then find that for large r, 

~rr - lGA( t ,  t ' )  ~ - 2log(m2r2)  - 4y 
8 Lf3 

+ O ( 1 / r 2 ) .  (4.17) 

It is not clear what the significance of this is. In particular, the fact that f2 grows 
logarithmically at large r may be a gauge artifact because the rate of growth 
depends upon m z, and as we have already argued, at least in de Sitter space, any 
scattering diagram is independent of m 2. Unfortunately, in de Sitter space, one can 
prove that log r20~ ba'b' is not of the form v ( a w  b)a'b' for any choice of W ba'b'. 
Thus one can not show that the logarithmically growing part of the propagator 
makes no contribution to tree-level scattering amplitudes. Equally curious is the fact 
that the remaining part of the propagator approaches a constant value at large r. If 
one thinks of the propagator as giving the response of the metric to a small 
perturbation, then this means that instead of dying out at large separations, the 
small metric perturbations "freeze". 

5. Conclusion 

We have shown how to find the graviton propagator in any k = 0 Robertson- 
Walker spacetime. Our method requires only that the state be invariant under the 
six-parameter isometry group of the spacelike surfaces. We have further assumed 
that there is an identical occupation of right-handed and left-handed graviton 
modes. This amounts to demanding that the state in question be invariant under 
parity transformations, which have the effect of reversing the orientation of the 
three-surfaces. This last assumption can be removed, but there are then additional 
terms beyond the three which we have given, that appear in the graviton propagator. 
These terms have an appearance similar to (3.12) b u t  involve in addition the 
orientation tensor e abe of the three-surface*. They will be treated in a later 
publication. 

The method which we have given can be generalized to the k = + 1 and k = - 1  
cases. In particular, provided that the state is parity-invariant, homogeneous, and 
isotropic, the propagator will take the form (1.4) of a maximally symmetric bitensor 
in the three-space. Formulae analogous to (3.16), which give the coefficient func- 

* The existence of such terms is a consequence of the identity 2roam b* = pab _ ~a~cb + ieabCfcc. Here 
rn ~ is defined in (3.3), and ~a is the unit vector ka/k. If the graviton state is not parity invariant, 
then the propagator contains terms such a s  VeV(b£ :a)e(c vd)~ca'sb'. 
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tions of the three bitensors appearing in the propagator, will also be given in a later 
publication. 

In the k = 0 case the graviton propagator is given in terms of three scalar 
functions fi(t ,  t', r). These functions are ordinary one-dimensional integrals of the 
massless scalar mode functions, which we have evaluated in dosed form for the flat, 
dust, de Sitter and radiation models. In fact, the integrals can probably be 
performed in closed form for any scale factor a which is a power law a -  t k in 
conformal time t [14]. 

This work may be of importance in regard to recent claims that de Sitter space is 
unstable, either intrinsically [15] or in the presence of matter fields [11,16-20]. In 
particular, the propagator has an infra-red divergence, and it grows logarithmically 
for large spacelike separations. The (infinite) infra-red divergence is a harmless 
gauge artifact [13], but the large-distance behavior of the propagator may well be 
symptomatic of some fundamental physical instability. However, since the propa- 
gator itself is not a gauge-invariant object, further investigation will be necessary to 
understand this point. 

I would like to thank Larry Ford and Ted Jacobson for several helpful conversa- 
tions. This work has been partly supported by NSF grant 83-51860 and by a grant 
from the General Electric Company. 
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