GRAVITONS IN DE SITTER SPACE

Bruce ALLEN
Department of Physics and Astronomy
Tufts University
Medford, MA 02155
U.S.A.

Everyone knows that "Einstein's greatest mistake", the cosmological constant N, is
very close to zero |1]. There have been many attempts to explain why /\ must be
exactly zero |2|, but none of these efforts has succeeded. In fact it is now fashio-
nable to believe that during the very early history of the universe the value of }\
was quite large |3|. This so-called "inflationary" epoch would have been a long pe-
riod of exponentially rapid expansion, and would elegantly explain two othefwisemys-
terious observational truths : the universe is uncannily flat, and the cosmic micro-
wave background radiation has no right to be as isotropic as it is.

There are three things that we would like to know. First, why is /\ zero today ?
Second, could /\ have been very big in the past ? And finally, if A was very big in
the past, what consequences would that have today ? Unfortunately this paper will not
answer any of these questions, but I hope that it will nevertheless accomplish some-
thing useful. I am going to show that one of the answers that has recently been given
to the first question above - Why is /\ zero ? - is not correct. However, before 1
get into the technical nitty-gritty, let me give you a synopsis of the kinds of ans-
wers that have been suggested to these questions.

One answer which has been given to the question - why is /\ equal to zero today ?-
has been that zero is the only consistent answer. Let me reveal my predjudices at once
and say that I don't believe this. First of all, it isn't borne out by careful calcu-
lation. For example, someone once decided that /\ must be zero, because if it was not
zero then a certain scatteringamplitude would not be unitary. However a more careful
investigafion showed this to be false |4]. A different argument, which is being wor-
ked on by several people, is that if }\ is not zero then particles get created out
of .the vacuum, and damp the value of A\ to zero [5].

The problem is this : What quantities to you calculate to see if A really decays (or
has to be zero from the outset) ? One may show, for example, that a scalar particle
propagating in a background with /\ nonzero will emit additional scalar particles,
which will continue to do the same thing, and so on, ad infinitum. Now this sounds
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unstable. However if you calculate the energy-momentum tensor of this process, you
find that it only shifts the value of /\ a little bit 16}.

Another example : you can calculate the correc£1ons to the stress-tensor due to the
Plank-scale quantum fluctuations of the vacuum. Indeed, these corrections shift the
value of )\ , and one can study the semi-classical back-reaction to find out what
effect this has on the metric tensor. Do this, and you find that the metric is grea-
tly altered. It sounds like a tremendous physical instability until you realize
that the identical argument implies that flat space with }\ = 0 can't be stable ei-
ther ! |7]. So ‘here it is clear that something is wrong with the argument itself,
since locally our spacetime is very flat, and shows no signs of decaying away be-
neath our feet !

One of the basic problems with these arguments is that the natural ground state
(or vacuum state) for de Sitter space is time-reversal symmetric [8|. In this so-
called Gibbons-Hawking vacuum state, it is impossible for particle creation to occur,
because if the number of particles were increasing, that would break time-reversal
symmetry.

If it could really be established that /\ = 0 was the only consistent value, I
don't think that it would be a good thing . The cosmological constant is a measure of
the local energy density of the empty vacuum state. If it was truly zero then there
would be no way to generate cosmological inflation, which would be very unfortunate.
(This is another reason why I am inclined to believe that there is nothing which is
inconsistent about /\ nonzero). Because /\ is simply a measure of the vacuum or
latent energy, it can change during phase transitions, and it seems certain that if
symmetry in gauge theories is restored at high temperatures then such phase transi-
tions must have taken place, as our universe cooled and expanded {9|. So it seems qui-
te possible that /\ was nonzero in the past-and this Teads to our final question
above.

What kinds of effects would be associated with a large positive /\ ? Well, first
there would be classical "gravitational" effects. Separated particles, freely falling,
would accelerate away from one another. At a certain distance the recessional veloci-
ty would become unity, and there would be a cosmological particle horizon [10}. A
given observer could not see farther than this distance. In addition to these classi-
cal effects there would be quantum effects. The best known of these is the Gibbons-
Hawking effect -a freely falling observer would see a thermal spectrum at temperature
(,3_1]'&)-"3' /\”"" radiating from the imaginary surface which we have just described-
the observer's particle horizon |8|. There are probably other interesting effects too,
but we don't know what they are yet. The subJect of quantum field theory in de Sitter
space is still in its infancy. In fact the only real results are that we know how to
construct the Fock space of states, and how to find the correlation functions for
spin 0, % and 1 [11]. We also know a Tittle bit about interacting fields in de Sitter
space |12].
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Now let me tell you the idea which I intend to spend the rest of this talk trying
to destroy. The idea was to show that I\ must be zero because of properties of gravi-
tons when A is nonzero. If we were trying to prove that A = (, then, in the ab-
sence of any exact symmetry or invariance which would force }\ to vanish, this would
be the next best thing. The reason is this : /\ is only observable through relativi-
ty, because it represents an otherwise completely arbitrary zero-point for measuring
the energy-density of space-time. Were it not for general relativity, or gravity, then
any background energy density would be completely unobservable, and it could be set
to zero with the stroke of a pen. However in the presence of gravity, the vacuumener-
gy density /\ does become observable, for example through the classical effects des-
cribed above. It would therefore be nice if the only thing (gravity) that enables us
to observe /\ in the first place would also carry with it some quantization consis-
tency condition that would force /\ to be zero. This would be an elegant solution to
our problem : if gravity, the only force that allows us to observe /\ » demands that
/\ vanish for reasons of consistency.

An argument of this type has recently been made_by Antoniadis, ITliopoulos and
Tomaras |13|. They claim that if one quantizes gravitational fluctuations in the pre-
sence of a background energy density }\ , then the resulting theory shows a particu-
lar kind of inconsistency called an "infra-red divergence". Now these words can refer
to any one of several different problems. For example saying that QED has infra-red
divergences generally refers to the fact that external lines in Feynman diagrams emit
an infinite number of low-frequency photons |14]. However this is not a real problem
because the energy carried away by this process is not infinite. Similarly, in the
theory of massless scalar electro-dynamics, the effective action has an infra-red
divergence, and a mass-scale must therefore be introduced into the theory. The gauge
fields thus aquire a mass, and the gauge symmetry is broken [15].

In the recent work by Antoniadis, Iliopoulos and Tomaras [13f, it was claimed that,
because of an infra-red divergence, the two-point function of gravitational fluctua-
tions was infinite (regardless of the separation of the two points). They argued that
this infinity caused certain tree-level scattering amplitudes to be infinite, and
thus rendered the theory of quantum gravity inconsistent unless /\ equaled zero.

What 1 am going to do in this talk is quite straightforward. First, I am going to
talk about the graviton propagator, and explain why it is not, in and of itself, a
physical object. In fact it depends upon the choice of gauge (by which, as I will
shortly explain, I mean the choice of a gauge-fixing term). What this means inpracti-
ce is that physical quantities {for example scattering amplitudes, or the expectation
value of the curvature tensor) depend only upon certain components of the propagator.
This dependence is Just subtle enough so that the different graviton propagators, ari-
sing from different choices of gauge, give exactly the same physical result.

The next thing that I will do is to show that it is indeed true that for certain
choices of gauge, the graviton propagator is indeed infinite, exactly as claimed by
Antoniadis et al. However I am then going to show that there are other choices of gau-
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ge for which the propagator is completely finite ! Then I will explain why this is so.
The point will be that the gauge-fixing terms of Antoniadis et al. do not completely
fix the gauge because they still allow a finite number of gauge transformations. It

is for this reason that the propagator that they find is infinite. But this infinity
is not a real physical divergence ; it is an artifact of how the gauge-fixing was
done. For a better choice of gauge, the propagator is completely finite ! To make this
point absolutely clear, I will then show that if one calculates scattering amplitudes
in the Antoniadis et al. gauge, one still obtains a perfectly finite result, in spite
of the fact that the graviton propagator is infinite. The reason for this is that the
graviton propagator in their gauge is the sum of an infinite (unphysical gauge-arti-
fact) term and a finite part. The infinite term does not contribute to the scattering
amplitude of any interaction whose stress-tensor is conserved, and thus physical scat-
tering amplitudes remain completely finite, contradicting the claims of Antoniadis et
al. Although I will not show it here, this cancellation takes place at higher orders
as well. The point is that for good choices of gauge, the Fadeev-Popov ghosts arewell-
behaved ; for a bad choice of gauge they introduce additional infra-red divergences

in just the right way to cancel those arising from the gravitons.

So the real point of all this technical investigation is that, at least so far,
there doesn't seem to be any intrinsic problem with /\ # 0. Of course it's entirely
possible that something else will turn up in the future that will render de Sitter
space inconsistent ; as things stand at the moment, it seems that we have to keep on
thinking about 1it.

I. Gauge~Fixing Terms and the Choice of Gauge.

This is a straightforward subject, but one that a great many people seem to be un-
clear about. The source of most of the trouble is confusion about the relationship
between the classical process called "choice of gauge" and its analogue in quantum
field theory, which is called "choice of a gauge-fixing term" in the action. Let us
begin by considering these two jdeas, and the connections between them.

Suppose that hap is a small perturbation of some backgfound metric gap. Then there
is a whole class of metric perturbations hzp that represent exactly the same physical
perturbation. This is because under the infinitesimal coordinate transformation
Xi~)Xi + Vi the metric perturbation transforms into hab'+WﬁVb)' Since coordinate
transformation does not cause any changes to physically observable quantities, we can
conclude that the perturbations hab and hab +S7(avb) are gauge-equivalent. Any physi-
cal quantity, for example the perturbation of the curvature induced by hab +\7(avb),
will not depend upon Vi |16].
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For this reason, in classical perturbation and stability theory, it is very common
to "impose gauge conditions". The metric perturbations obviously 1ie in equivalence
classes ; two perturbations will be deemed equivalent iff they differ by ‘7(avb) for
some vector Vb. "Imposing gauge conditions" is a way to pick out one particular mem-
ber from each equivalence class. For example one can impose the following conditions

on hab’
‘7ahab =0 {transverse),
hz =0 (traceless), (1.1)
a -
t hab =0 (synchronous),

to restrict the gauge freedom. Here t§ is some arbitrary vector field (usually choo-
sen to be timelike). These are not the only conditions that one could impose ; there
are clearly an infinite number of other possibilities.

Now what about the quantum field theory of gravitational perturbations ? Well the
action is a scalar and it is thus invariant under coordinate transformations, so the
perturbations hab and hab +-VQaVb) have exactly the same action ; they are gauge equi-
valent. In this situation the standard thing to do is to add to the action an arbitra-
rily choosen term which is not invariant under the above transformation. This arbitra-
rily choosen gauge-fixing term breaks the gauge invariance. For example it could be,

S auge - g‘[x(vahab)z £ g%+ ¥(efh,)? | aton), (1.2)

where at least one of the positive constants (¢, B, ¥ ) was nonzero. Now of course
we have made a very arbitrary choice here ; the Fadeev-Popov procedure allows us to
compensate for this choice in Just such a way that the scattering amplitudes are ulti-
mately independent of it.

Now suppose that we have determined the euclidean propagator, which we could write
for example as the path integral |17}

Gabc'd‘ (X,X') = S\d[hab] hab(x)hc'd'(xl )eXp('S[hab]'sgauge [hab] ). (1.3)

This propagator obviously depends upon the gduge-fixing parameters al,p and ¥ . Now
suppose that we considered the divergence ‘]a Gabc'd' as a function of o, p and ¥ .
In general it would not vanish. However if o was taken to infinity, then it would
vanish. The reason is that if e is very large then the field configurations in the
action which don't have ‘7a hab = (0 are exponentially suppressed by the gauge-fixing
term. In the limit o =200 such configurations would make no contribution to the pro-
pagator. Similarly, if d, F and ¥ were simultaneously taken to infinity, then the
propagator would satisfy the "classical gauge conditions" (1.1) in that vaGabc'd"
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Gaac‘d" and taGabc'd' would all vanish. So we can see that the classical gauge con-
ditions are obtained in quantum theory by singular choices of gauge. This is analo-
gous to the situation in QED. There, if we wanted to have a transverse propagator sa-
tisfying ‘7;<AaAbl> = 0 we would need to choose Landau gauge ; ie use a gauge-fixing
term  A( V“,‘A““)2 in the action and take the 1imit A\->00 .

Now what gauge was used by Antoniadis et al. |13] ? In fact there were two pos-
sibilities that they considered. The first one was equivalent to the three conditions
given before (1.1) where t® is a vector field orthogonal to a family of flat spatial
surfacer which are the standard k = 0 foliation of de Sitter space. In this choice of
gauge the propagator for gravitons can be related to that of a pair of minimally cou-
pled scalar fields in a simple manner. Indeed in this gauge (corresponding to taking
a(,p and ¥ to infinity in (1.2)) the propagator is infinite. However it was not
clear if the reason for this was because the three gauge-fixing parameters were beco-
ming infinite, or if it was because the introduction of the vector field t? into the
action was breaking de Sitter invariance, or if it was because the gauge~conditions
did not entirely determine the gauge. At that point in their work, Antoniadis et al.
were not themselves certain if the infra-red divergence that they had discoveredwas
a gauge artifact or not.

To resolve this uncertainty they then considered a second choice of gauge for
which the gauge-fixing term was

Sqauge = :(1;100 «j‘[va(hab - 1/4 g, 1€ )12 d(vol). (1.4)
In this case they also found an infra-red divergence in the propagator. They then car-
ried out a tree-level scattering-amplitude calculation, and found an infinite result.
This, they claimed, was proof that the infra-red divergence that they had found for
two different gauge choices was truly a physical effect and not merely a gauge arti-
fact.

We are going to concentrate on the second choice of gauge-fixing term (1.4) and
will reach very different conclusions than those of Antoniadis et al. We are going
to consider gauge-fixing terms of the following form, with o{ = 1/2,

Sqauge " etg[va (hap = €9,p hcc)lz d(vol) (1.5)

for all values of the constant £ . We are going to prove the following three state-
ments :

1. The graviton propagator is finite if € does not equal one of the following
"exceptional values" (1/4, 7/10, 5/6, ...)
( 2

eexceptiona] = (n® + 3n-3) / (nz + 3n) (1.6)
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forn=1, 2, 3 .... If £ has one of the exceptional values, then the propagator
is infinite.

2. If § takes one of the exceptional values, then the propagator diverges because
for that value of § the gauge-fixing term is not "sensitive" to a gauge transforma-
tion corresponding to a particular (finite set of) vector fields ve,

3. The scattering amplitude is finite and independent of the value of £ .

While the gauge fixing term that we consider has o = 1/2 and not o0 = 00 , our res-
ults apply equally well to the o =00 gauge of Antoniadis et al. The reason why is
because for the exceptional values of § the gauge-fixing-term fails to fix the gau-
ge for any value of o . In other words, when & takes one of the exceptional values
(regardless of o{ ) then there exist certain perturbations hab which are pure gauge
hap = <7(avb) # 0 and such that Sgauge[‘7(avb)] vanishes. Thus our conclusion will
be that Antoniadis et al. found an infra-red divergence only because they had the bad
luck to choose an ineffective gauge-fixing term, and not because the graviton propa-
gator in de Sitter space has any intrinsic physical infra-red divergence. For most
choices of gauge the propagator would have been completely finite.

2. How to find the Graviton Propagator.

The basic idea of this section is to find a form for the graviton propagator which
will make it easy for us to see how it depends upon the choice of a gauge-fixing term.
For this purpose it turns out to be very convenient to represent the propagator as a
mode sum. Such mode sums are very familiar in the context of Lorentzian space-time
calculations of (for example) the commutator and symmetric functions for a scalar
field. Here we are doing something slightly less familiar - a Euclidean mode sum.

The point is this : in the Hawking-Gibbons vacuum state, which is de Sitter invariant,
the two-point function only depends upon the geodesic distance between the two-points.
It is also an analytic function for spacelike-separated points. Therefore if we can
find this function for spacelike separations, its analytic continuation to timelike
separation will yield all information about the physically interesting function,
which is the Lorentzian two-point function.

Thus we will look for the two-point function only for spacelike separated points.
One way to do this is to carry out the calculation on a Euclidean (++++) metric 4-
sphere of radius a, whose scalar curvature R has the same constant value as the cur-
vature of the physical Lorentzian de Sitter space R = 4. On this four-sphere the
distance between two points is always positive, so that spacelike separation is the
only possibility. It can be easily shown |18| that for such spacelike separation the
two-point function on the sphere, considered Just as a function of geodesic distance,
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is exactly the same as the Lorentzian two-point function for spatial separations.

For that reason, from this moment on, we will perform all calculations on a four-

sphere of radius a and volume 811'2 a4/3. The cosmological constant is then A = 3a'%
To find the two-point function, we need to know the quadratic part of the gravita-

tional action for a small metric fluctuation hab‘ This has been calculated in many

places |19]. When we add to it the gauge-fixing term previously given (1.5), we find

that the total gauged-fixed action is

- -1 abcd
S + sgauge = (64TG) S habw hcd d(vol). (2.1)

abcd

Here the second-order differential operator W is given by

A
wabcd ([1-2¢ ]gabgcd gc gb D * (ch(agb) gabgcd) 3

(26 -1)(9,, V(¢ V) * 9ed V(aVb)

(2.1)

where € is the gauge-fixing parameter. Now the propagator is defined by the differen-
tial equation

N PO g(aa'g b)b', (2.3)
together with the boundary conditions that Gabalbl depend only upon the distance from
X to X' (in the sense of [18]) and that it only be singular if X = X'.

This equation can be solved in many ways. One method that we have already exploi-
ted is to actually perform the path integral (1.3). This is done by choosing 10 "coor-
dinates" in the space of all metric perturbations hab’ and then integrating all of
them from - ¢ to & {20|. A simpler method will be followed here ; it involves using
an ansatz which is Justified by the previous method.

To use the simplest method, it is only necessary to have an orthogonal expansion
of the delta function appearing on the right hand side of (2.3). This orthogonal
expansion is

-4
B8 o = By 00 0004 B 00 V00 B 0 )
+,§3(2b(x)xﬁ bix) | (2.4)

Here the tensor fields hab Vab ab aij are all eigenfunctions of [, and they
form a complete set for the representat1on of any symmetric rank-two tensor. What this
means is that any such tensor, Qab’ can be represented as a sum of the form

o n o n 4 n a n
Q b~ %"dn hab * %:anab +%mnwab +:)L‘-"gn'xab (2.5)
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for a unique set of constant coefficients {"l‘n} Fn,fn,sn}- If the eigenfunc-
tions are appropriately normalized, so that

Shgb(x)h:]b( )dv = . f'x (X)av ,
= fh:b(x)v;b(x)dv X =Sw2b(x) ’X;b(x)dv ,

then it is easy to show from equations (2.5) and (2.6) that the delta function defi-
ned by (2.4) satisfies

Snm

(2.6)

o
|

¢®'P'(x) = j-Qab(X) § 2 a0LXIE D) (X vy (2.7)

for any symmetric tensor Qab
The nice thing about this method is that we don't have to explicitly construct

ab .,Xﬁb. We will only need basic information about

any of the eigenfunctions h
their eigenvalues and mu1t1p11c1ty which can be found in many articles |21] and which
can be obtained entirely from the group representation theory of S0(5). The basic
facts are as follows. The details, including the normalizations and eigenvalues of
these modes, can be found in reference |20]/. The ten degrees of freedom in the symme-
tric tensor Q ab (2.5) are divided among the different modes. There are five degrees

of freedom in the tensor modes h , which are transverse and traceless (TT).

_ nab - ab
0 hn 9ab Vahn

On = \&) b (2.8)

n n
}\(ﬁ) - _ (nz

+7n + 8)

w >

ab

There are three degrees of freedom in the modes V which are the symmetrized deriva-

tives of transverse vectors.

b - [_%( 1) +l\)] -1/2 V(agg)
0 =V, fﬁ (2.9)
av® = O Sh P
)\(,f)- -1—3\( 2450+ 3)

There is one degree of freedom in the modes wﬁb which are the traceless derivatives
of longitudinal vectors
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wzb= [)\(0) (3/4>\(0 +A]-l/2 V Vb_%gab D) ¢

O w0 = (NO+grzp) w®

(2.10)

Finally there is one degree of freedom in the pure-trace scalar modes ’Xﬁb

IRV XA
Ox® - A0 x2® (2.11)
)\(2) = - % n (n+3)

From a detailed examination of these modes and their normalizations (for which see
|20]) it can be shown that

VYW - A‘ﬁ)wmA‘ﬂ“
(9 VcVa * 9caVaVb) XCd '2[)\ (3/4>\(0 + 17 2)\(0 X -

(2.12)

This is all that we will need to know about the mode functions.
As we said earlier, the path integral calculation of the propagator |20| justifies

our use of the following ansatz for the propagator :
0

62020 (x,x1) =Z o, h220X) n2P(x)
b 'b' o
MR TR R L
¥ W00 R () (2.13)
b b 1
§, 60 %P ()
o, [P 00u Plxe) + wE(x) ocﬁ'b'(x')]}

n

Applying the wave operator wabcd to the propagator (2.13) and demanding that it yield
the delta function (2.4) gives linear equations that uniquely determine the coeffi-
cients '(n’ ...,o"n to be

o, K(-)(,zl) + 273K )71 forn >0

Bn (-)\(%) -A )L for n » 1, else zero.

¥ K(')\(g)(l'ﬁ )+A)_2[(282-E-1/4))\(?‘) -A/Z] for n32, else zero.
(2.14)
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(0 (0) -2
R GVZ) n) + M2y (N -g) +A) 72 fornvo (2.14)

e = x(NO-g) +0) 2 e-u2 N0 (N0 A))% for n2, etse zero.

"

Here the constant K = 641G where G is Newton's constant. With the propagator now
determined by (2.13) and (2.14), we can discuss its infra-red behavior.

3. Infra-red Behavior of the Graviton Propagator.

We begin the discussion of the infra-red behavior of the graviton propagator by
asserting that the propagator is finite for separated points if and only if all of
the coefficients e(n,..., o’n are finite. This is indeed the case, provided that the
gauge-fixing parameter € does not have one of the values

2
1+ A/AO) - nrsnd (3.1)

€ exceptional ~ n(n+3)

for n=1,2,..., 0 . Now let us prove our assertion.

The first terms in the mode sum for the propagator, corresponding to o(nhnhr" and
FnVnVr'\’ have been evaluated by Allen and Turyn |22| and shown to be completely fini-
te. This leaves the final three terms, which can be related to the scalar propagator,
for different values of the scalar mass. Thus to understand the infra-red behavior of
the graviton propagator, all we have to do is understand the scalar case.

Here the situation is very simple. For two points X and X', separated by a geode-
sic distance /u(X,X'), the massfve scalar propagator is [18,20,22],

© v (X)p (X ‘
6(n, @) = Pl P sz + ni(3/2-0) F(3/2+,3/2-V;2;c052 W/ 2a)). (3.2)
° —)\(2)+ m2 16‘1\'2 a2

The right hand side of this equation, and hence the mode sum, is completely finite
2 2\%
a™m°)

provided that 3/2-V is anot a nonpositive integer. Since V= (9/4 - , this means

the propagator is finite provided that m2 does not take one of the (negative) values

m2=-%n(n+3) forn=0,1,2, ... . ’ (3.3)
a

2 2

for which the denominator -A(?l) +m
mode sum vanishes ! Exactly the same analysis applies to the "scalar" parts of the

But these are exactly the values of m in the
graviton propagator. We have thus proved that provided that ifgis not given one of the
“exceptional" values given above (3.1), the propagator is completely finite. What we
will now do is to show why this is.
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4. How Can The Gauge-Fixing Term Fail ?

The infra-red divergence that occurs in the propagator for the exceptional values
of £ can be easily understood. Imagine expreséing the propagator as a path integral,
or average, over all field configurations. If the gauge-fixing term was not present,
then this integral would yield infinity, because it would include an infinite number
of gauge-equivalent field configurations which had the same value of the action. The
purpose of the gauge fixing term is to make the integral converge by giving gauge-
equivalent field configurations different values of the action. Thus the gauge-fixing
term "fails to do its duty" if there exist a distinct pair of configurations which
are physically gauge equivalent and which have the same value of the gauge-fixed
action. Let us now show that this is exactly what happens if € 1is given one of the
"exceptional" values.

We can write the gauge fixing term (1.5) in the following form, after integrating
by parts.

Sqauge * '“S(hab - €9 hV,VC (hy - gy, hY) dlvol). (4.1)

ab b_ b

-)hab +v(avb) where V'=¢
for the scalar mode \fn’ and n > 1. It is easy to verify that for n > 0, ‘J(avb)
is nonzero, and

Now consider the following gauge transformation : h

n

' 2 2
b) (0) 2_, N 2 2 n® +3n - 3,2
S (ayb)y - 2o 1-€)+A1%= 2/ D nf(ne3)c[g - L2916 0 (4.2
qaugel TV = 2o [N (1-€)+ A Snfea)fle- TRt ()
Thus, if E takes on one of the exceptional values - say the n'th exceptional value-

then the gauge-fixing term fails to be sensitive to the gauge transformation

hab-) hab + vaVb ‘Pn induced by the n'th scalar mode, because the r.h.s. vanishes!
This is the source of the infra-red divergence that occurs for the exceptional values
of & . We will now show that this infra-red divergence, should it happen to arise be-
cause of a bad choice of £, is a harmless gauge artifact and makes no contribution
to scattering amplitudes.

5. The Infra-red Divergence is a Gauge-Artifact.

Consider the tree level scattering process where two matter fields, which we deno-
te ‘p , Tinteract by exchanging a graviton. Here ‘P could be any kind of matter, not
Just a scalar field. Schematically this Tooks like :
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¥

The amplitude for this process is determined by the stress tensor Tab of the matter.
It is

A = J‘[Tab(x) Bypcrgr (XX < xy avay (5.1)

where dV denotes the invariant four-volume element ngX) d4X at the point X, and
dV' denotes the same thing at X', Let us assume only that VaTab = 0 ; ie that the
operator Tab, which is quadratic in the field ‘P , is conserved. This is true even
in the presence of trace anomalies, for the renormalized operator, provided that it
js a matrix element between physical (on-shell) states [23]. We will show that this
amplitude is finite regardless of the value of the gauge-fixing parameter £, and in
particu]ar‘ for the "exceptional” values of € , for which Gabc'd' contains infra-red
divergences.

The amplitudes A is a sum of five terms arising from the propagator (2.13). The
first two terms are independent of & . The final three terms, upon integration by parts,
can be expressed as

AY + As + Ao’ = g(%’(X)/OE(X,X') T(X') dvdv' (5.2)

where T(X) = 78 a(X) is the trace of the stress tensor. The function /OE(X,X') is
of the form

00
N -2 . P (0P, (x*)
ﬁ;(x’x ) =€+ Cp(E-1/8)7 9 () P (x') + ¢y znzz W

n'3

Here Cl’ C2 and C3 are nonzero constants. What matter is that there appears to be a
single term in the amplitude that depends upon € . However from gauge-invariance we
known that the amplitude can not depend upon € at all ! We will now show that the
second term above contributes nothing, even in the limit £-<%1/4 !

The reason why is simple : the mode(s) LPI(X) obey vavb \pl= - %/\gabvl |24].
Thus replacing Tg \Pl by Tabvavb lPl, and integrating by parts |25/ to get
(Va Tab)vbtpl, we see that the § -dependent term vanishes as long as the stress
tensor is conserved. What this means is that even in those cases where the two-point
function has an infra-red divergence, the scattering amplitude is finite. This shows
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that in those cases where it occurs, infra-red divergence is a harmless gauge artifact.

6. Conclusion.

What has been shown in this talk is that the graviton propagator in de Sitter spa-
ce is OK. If one makes a bad choice of gauge (-fixing term) then the propagator is
infra-red divergent. However this is not a problem. You can either make a better choi-
ce of gauge (of which there are an infinite number), for which the propagator is com-
pletely finite, or else you can go right ahead and use the infra-red divergent one.

We demonstrated that it doesn't matter. Gauge-invariance is the over-riding principle,
and it ensures that even if the propagator has an infra-red divergence, the physical
scattering amplitudes are finite.

A more detailed discussion of these points can also be found in an earlier publis-
hed paper |20|. The complete closed form for the graviton propagator with € = 1/2
has also been found |22|. Finally a closed form in the de Sitter -non-invariant gauge
(1.1) has been recently obtained 126/. This form applies to any spatially-flat
Robertson-Walker model.
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