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Everyone knows that "Einstein 's greatest mistake", the cosmological constant ~ ,  is 

very close to zero 111. There have been many attempts to explain why A must be 

exact ly zero 121, but none of these ef for ts  has succeeded. In fact i t  is now fashio- 

nable to believe that during the very early history of the universe the value of A 

was quite large 131. This so-called " i n f l a t i ona ry "  epoch would have been a long pe- 

r iod of exponent ia l ly  rapid expansion, and would elegant ly explain two otherwise mys- 

terious observational truths : the universe is uncannily f l a t ,  and the cosmic micro- 

wave background radiat ion has no r ight  to be as isotropic as i t  is. 

There are three things that we would l i ke  to know. F i rs t ,  why is A zero today ? 

Second, could A have been very big in the past ? And f i n a l l y ,  i f ~  was very big in 

the past, what consequences would that have today ? Unfortunately this paper w i l l  not 

answer any of these questions, but I hope that i t  w i l l  nevertheless accomplish some- 

thing useful. I am going to show that one of the answers that has recently been given 

to the f i r s t  question above - Why is A zero ? - is not correct. However, before I 

get into the technical n i t t y - g r i t t y ,  l e t  me give you a synopsis of the kinds of ans- 

wers that have been suggested to these questions. 

One answer which has been given to the question - why is A equal to zero today?- 

has been that zero is the only consistent answer. Let me reveal my predJudices at once 

and say that I don't  believe th is .  F i rs t  of a l l ,  i t  i sn ' t  borne out by careful calcu- 

la t ion .  For example, someone once decided that A must be zero, because i f  i t  was not 

zero then a certain scatteringamplitude would not be unitary. However a more careful 

invest igat ion showed this to be false 141. A d i f fe ren t  argument, which is being wor- 

ked on by several people, is that i f  A is not zero then part ic les get created out 

of the vacuum, and damp the value of A to zero 151. 

The problem is this : What quant i t ies to you calculate to see i f  A rea l l y  decays (or 

has to be zero from the outset) ? One may show, for  example, that a scalar par t i c le  

propagating in a background with A nonzero w i l l  emit addit ional scalar par t ic les ,  

which w i l l  continue to do the same thing, and so on, ad inf in i tum. Now this sounds 
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unstable. However i f  you calculate the energy-momentum tensor of th is process, you 

f ind that i t  only shi f ts  the value of A a l i t t l e  b i t  I6L. 

Another example : you can calculate the corrections to the stress-tensor due to the 

Plank-scale quantum f luctuat ions of the vacuum. Indeed, these corrections sh i f t  the 

value of ~ , and one can study the semi-classical back-reaction to f ind out what 

e f fect  this has on the metric tensor. Do th is ,  and you f ind that the metric is grea- 

t l y  a l tered.  I t  sounds l i ke  a tremendous physical i n s t a b i l i t y  unt i l  you real ize 

that the ident ica l  argument implies that f l a t  space with A = 0 can't  be stable e i -  

ther ! 17i. So here i t  is clear that something is wrong with the argument i t s e l f ,  

since l oca l l y  our spacetime is very f l a t ,  and shows no signs of decaying away be- 

neath our feet  ! 

One of the basic problems with these arguments is that the natural ground state 

(or vacuum state) for  de S i t te r  space is t ime-reversal symmetric i81. In this so- 

cal led Gibbons-Hawking vacuum state, i t  is impossible for  par t i c le  creation to occur, 

because i f  the number of par t ic les were increasing, that would break time-reversal 

symmetry. 

I f  i t  could rea l l y  be established that A = 0 was the only consistent value, I 

don't  think that i t  would be a good thing . The cosmological constant is a measure of 

the local energy density of the empty vacuum state. I f  i t  was t ru l y  zero then there 

would be no way to generate cosmological i n f l a t i o n ,  which would be very unfortunate. 

(This is another reason why I am incl ined to bel ieve that there is nothing which is 

inconsistent about A nonzero). Because A is simply a measure of the vacuum or 

la tent  energy, i t  can change during phase t rans i t ions ,  and i t  seems certain that i f  

symmetry in gauge theories is restored at high temperatures then such phase t ransi -  

t ions must have taken place, as our universe cooled and expanded 191. So i t  seems qui- 

te possible that A was nonzero in the past-and this leads to our f ina l  question 

above. 

What kinds of effects would be associated with a large posi t ive A ? Well, f i r s t  

there would be classical "g rav i ta t iona l "  ef fects.  Separated par t ic les ,  f ree ly  f a l l i n g ,  

would accelerate away from one another. At a certain distance the recessional ve loc i -  

ty would become unity, and there would be a cosmological particle horizon Ii01. A 

given observer could not see farther than this distance. In addition to these classi- 

cal effects there would be quantum effects. The best known of these is the Gibbons- 

Hawking effect -a freely fa l l ing observer would see a thermal spectrum at temperature 

( I ~ ' ~ ' I ~ A  l j& rad ia t ing  from the imaginary surface which we have Just described- 

the observer's par t i c le  horizon i81. There are probably other interest ing effects too, 

but we don't  know what they are yet. The subject of quantum f i e l d  theory in de S i t te r  

space is s t i l l  in i t s  infancy. In fact the only real results are that we know how to 

construct the Fock space of states, and how to f ind the corre la t ion functions for 

spin O, ½ and i I i i i .  We also know a l i t t l e  b i t  about in teract ing f ie lds  in de S i t te r  

space I121. 
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Now le t  me t e l l  you the idea which I intend to spend the rest of th is  ta lk  t ry ing  

to destroy. The idea was to show that ~ must be zero because of properties of gravi-  

tons when A is nonzero. I f  we were t ry ing  to prove that ~ =  O, then, in the ab- 

sence of any exact symmetry or invariance which would force ~ to vanish, th is  would 

be the next best th ing. The reason is th is  : A is only observable through r e l a t i v i -  

ty ,  because i t  represents an otherwise completely a rb i t ra ry  zero-point  for  measuring 

the energy-density of space-time. Were i t  not for  general r e l a t i v i t y ,  or g rav i ty ,  then 

any background energy densi ty would be completely unobservable, and i t  could be set 

to zero with the stroke of a pen. However in the presence of g rav i ty ,  the vacuum ener- 

gy density A does become observable, for  example through the classical  ef fects des- 

cribed above. I t  would therefore be nice i f  the only thing (grav i ty )  that enables us 

to observe A in the f i r s t  place would also carry with i t  some quant izat ion consis- 

tency condit ion that would force A to be zero. This would be an elegant solut ion to 

our problem : i f  g rav i ty ,  the only force that allows us to observe A , demands that 

/~ vanish for  reasons of consistency. 

An argument of th is  type has recent ly been made by Antoniadis, l l iopoulos and 

Tomaras J13J. They claim that i f  one quantizes grav i ta t iona l  f luc tua t ions  in the pre- 

sence of a background energy density A , then the resul t ing theory shows a par t icu-  

la r  kind of inconsistency cal led an " in f ra- red divergence". Now these words can refer  

to any one of several d i f f e ren t  problems. For example saying that QED has in f ra- red 

divergences general ly refers to the fact  that  external l ines in Feynman diagrams emit 

an i n f i n i t e  number of low-frequency photons 1141. However th is  is not a real problem 

because the energy carr ied away by th is  process is not i n f i n i t e .  S imi la r l y ,  in the 

theory of massless scalar electro-dynamics, the e f fec t ive  action has an in f ra- red 

divergence, and a mass-scale must therefore be introduced into the theory. The gauge 

f i e lds  thus aquire a mass, and the gauge symmetry is broken j l5J.  

In the recent work by Antoniadis, l l iopoulos and Tomaras I i 3 j ,  i t  was claimed that ,  

because of an in f ra- red divergence, the two-point funct ion of grav i ta t iona l  f luc tua-  

t ions was i n f i n i t e  (regardless of the separation of the two points) .  They argued that 

th is  i n f i n i t y  caused certain t ree- level  scatter ing amplitudes to be i n f i n i t e ,  and 

thus rendered the theory of quantum grav i ty  inconsistent  unless A equaled zero. 

What I am going to do in th is  ta lk  is quite straightforward. F i rs t ,  I am going to 

ta lk  about the graviton propagator, and explain why i t  is not, in and of i t s e l f ,  a 

physical object. In fact  i t  depends upon the choice of gauge (by which, as I w i l l  

shor t ly  expla in,  I mean the choice of a gauge-f ix ing term). What th is  means in pract i -  

ce is that physical quant i t ies ( for  example scatter ing amplitudes, or the expectation 

value of the curvature tensor) depend only upon certain components of the propagator. 

This dependence is Just subtle enough so that the d i f fe ren t  graviton propagators, a r i -  

sing from d i f fe ren t  choices of gauge, give exact ly  the same physical resu l t .  

The next thing that I w i l l  do is to show that i t  is indeed true that for  certain 

choices of gauge, the graviton propagator is indeed i n f i n i t e ,  exact ly as claimed by 

Antoniadis et a l .  However I am then going to show that there are other choices ofgau- 
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ge for  which the propagator is completely f i n i t e  ! Then I w i l l  explain why th is  is so. 

The point w i l l  be that the gauge-f ix ing terms of Antoniadis et a l .  do not completely 

f i x  the gauge because they s t i l l  al low a f i n i t e  number of gauge transformations. I t  

is for  th is  reason that the propagator that they f ind is i n f i n i t e .  But th is  i n f i n i t y  

is not a real physical divergence ; i t  is an a r t i f a c t  of how the gauge-f ix ing was 

done. For a better choice of gauge, the propagator is completely f i n i t e  ! To make th is  

point absolutely c lear ,  I w i l l  then show that i f  one calculates scatter ing amplitudes 

in the Antoniadis et a l .  gauge, one s t i l l  obtains a per fec t ly  f i n i t e  resu l t ,  in spite 

of the fact  that the graviton propagator is i n f i n i t e .  The reason for  th is  is that the 

graviton propagator in t he i r  gauge is the sum of an i n f i n i t e  (unphysical gauge-art i -  

fac t )  term and a f i n i t e  part. The i n f i n i t e  term does not contr ibute to the scatter ing 

amplitude of any in teract ion whose stress-tensor is conserved, and thus physical scat- 

ter ing amplitudes remain completely f i n i t e ,  contradict ing the claims of Antoniadis et 

a l .  Although I w i l l  not show i t  here, th is  cancel lat ion takes place at higher orders 

as wel l .  The point is that for  good choices of gauge, the Fadeev-Popov ghosts are we l l -  

behaved ; for  a bad choice of gauge they introduce addit ional in f ra- red divergences 

in Just the r i gh t  way to cancel those ar is ing from the gravi tons. 

So the real point of a l l  th is  technical invest igat ion is that ,  at least so fa r ,  

there doesn't seem to be any i n t r i n s i c  problem with A ~ O. Of course i t ' s  en t i r e l y  

possible that something else w i l l  turn up in the future that w i l l  render de S i t te r  

space inconsistent  ; as things stand at the moment, i t  seems that we have to keep on 

th ink ing about i t .  

I .  Gauge-Fixing Terms and the Choice of Gauge. 

This is a straight forward subject, but one that a great many people seem to be un- 

clear about. The source of most of the trouble is confusion about the re la t ionsh ip  

between the classical  process cal led "choice of gauge" and i t s  analogue in quantum 

f i e l d  theory, which is cal led "choice of a gauge-f ix ing term" in the act ion. Let us 

begin by considering these two ideas, and the connections between them. 

Suppose that hab is a small perturbat ion of some background metric gab. Then there 

is a whole class of metric perturbations hab that represent exact ly the same physical 

perturbat ion. This is because under the in f in i tes ima l  coordinate transformation 

xi--)X i + V i the metric perturbat ion transforms into hab +~aVb). Since coordinate 

transformation does not cause any changes to phys ica l ly  observable quant i t ies ,  we can 

conclude that the perturbations hab and hab +~(aVb) are gauge-equivalent. Any physi- 

cal quant i ty ,  for  example the perturbat ion of the curvature induced by hab +~(aVb),  

wil l  not depend upon V b 1161. 
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For th is reason, in classical perturbation and s t a b i l i t y  theory, i t  is very common 

to "impose gauge condit ions". The metric perturbations obviously l i e  in equivalence 

classes ; two perturbations w i l l  be deemed equivalent i f f  they d i f f e r  by ~(aVbl for 
l l 

some vector V b. "Imposing gauge conditions" is a way to pick out one par t icu lar  mem- 

ber from each equivalence class. For example one can impose the fol lowing conditions 

on h ab' 

Vahab = 0 (transverse), 
a 

h a = 0 ( t raceless),  ( i . i )  

tahab = 0 (synchronous), 

to r es t r i c t  the gauge freedom. Here t a is some arb i t ra ry  vector f i e l d  (usually choo- 

sen to be t imel ike) .  These are not the only conditions that one could impose ; there 

are c lear ly  an i n f i n i t e  number of other poss ib i l i t i es .  

Now what about the quantum f i e ld  theory of gravi tat ional  perturbations ? Well the 

action is a scalar and i t  is thus invar iant  under coordinate transformations, so the 

perturbations hab and hab +V(aVb). have exactly the same action ; they are gauge equi- 

valent. In th is  s i tuat ion the standard thing to do is to add to the action an arb i t ra-  

r i l y  choosen term which is not invar iant  under the above transformation. This arb i t ra-  

r i l y  choosen gauge-fixing term breaks the gauge invariance. For example i t  could be, 

Sgaug e = ~ ( ~ a h a b ) 2  + ~(h~ )2 + ~(tahab)2 ] d(Vol), (1.2) 

where at least one of the posi t ive constants ( d l  ~, l~ ) was nonzero. Now of course 

we have made a very a rb i t ra ry  choice here ; the Fadeev-Popov procedure allows us to 

compensate for  th is choice in Just such a way that the scattering amplitudes are u l t i -  

mately independent of i t .  

Now suppose that we have determined the euclidean propagator, which we could wri te 

for example as the path integral I171 

Gabc,d,(X,X' ) = yd[hab]hab(X)hc,d,(X')exp(-S[hab]-Sgauge[hab]). (1.3) 

This propagator obviously depends upon the gauge-fixing parameters ~ l~ and ~ . Now 

suppose that we considered the divergence ~a Gabc,d ' as a function o f~ l  ~ and ~" . 

In general i t  would not vanish. However i f  ~ was taken to in f in i ty ,  then i t  would 

vanish. The reason is that i f  ~ is very large then the f ie ld configurations in the 

action which don't have ~/a hab = 0 are exponentially suppressed by the gauge-fixing 

term. In the l i m i t = ( - ~  such configurations would make no contribution to the pro- 

pagator. Similarly, i f ~ l  ~ and ~' were simultaneously taken to in f in i t y ,  then the 
a 

propagator would satisfy the "classical gauge conditions" (1.1) in that ~ Gabc,d,, 
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Gaac,d ,, and taGabc,d , would al l  vanish. So we can see that the classical gauge con- 

ditions are obtained in quantum theory by singular choices of gauge. This is analo- 

gous to the situation in QED. There, i f  we wanted to have a transverse propagator sa- 

t is fy ing ~a<AaAb'> = 0 we would need to choose Landau gauge ; ie use a gauge-fixing 

term ~ ( ~ A ~ )  2 in the action and take the l i m i t ~ - ) ~  . 

Now what gauge was used by Antoniadis et al. 1131 ? In fact there were two pos- 

s i b i l i t i e s  that they considered. The f i r s t  one was equivalent to the three conditions 

given before (1.1) where t a is a vector f ie ld orthogonal to a family of f l a t  spatial 

surfacer which are the standard k = 0 fo l ia t ion of de Sit ter space. In this choice of 

gauge the propagator for gravitons can be related to that of a pair of minimally cou- 

pled scalar f ie lds in a simple manner. Indeed in this gauge (corresponding to taking 

~ l ~  and ~' to i n f i n i t y  in (1.2)) the propagator is in f in i te .  However i t  was not 

clear i f  the reason for this was because the three gauge-fixing parameters were beco- 

ming i n f i n i t e ,  or i f  i t  was because the introduction of the vector f ie ld t a into the 

action was breaking de Sit ter invariance, or i f  i t  was because the gauge-conditions 

did not ent i rely determine the gauge. At that point in their work, Antoniadis et al, 

were not themselves certain i f  the infra-red divergence that they had discovered was 

a gauge ar t i fact  or not. 

To resolve this uncertainty they then considered a second choice of gauge for 

which the gauge-fixing term was 

= ~a(hab - 1/4 gab hCc )]2 d(Vol). (1.4) Sgauge 

In this case they also found an infra-red divergence in the propagator. They then car- 

ried out a tree-level scattering-amplitude calculation, and found an in f i n i t e  result. 

This, they claimed, was proof that the infra-red divergence that they had found for 

two dif ferent gauge choices was t ru ly  a physical effect and not merely a gauge ar t i -  

fact. 

We are going to concentrate on the second choice of gauge-fixing term (1.4) and 

w i l l  reach very dif ferent conclusions than those of Antoniadis et al. We are going 

to consider gauge-fixing terms of the following form, with ~ = i /2,  

Sgaug e = ~ [ ~ a  (hab _ ~gab hCc )]2 d(Vol) (1.5) 

for al l  values of the constant ~ . We are going to prove the following three state- 

ments : 

1. The graviton propagator is f i n i te  i f  

"exceptional values" (1/4, 7/10, 5/6 . . . .  ) 

does not equal one of the following 

exceptional : (n2 + 3n-3) / (n 2 + 3n) (1.6) 
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for n = 1, 2, 3 . . . .  I f  ~ has one of the exceptional values, then the propagator 

is i n f i n i t e .  

2. I f  ~ takes one of the exceptional values, then the propagator diverges because 

for that value of ~ the gauge-fixing term is not "sensi t ive" to a gauge transforma- 

t ion corresponding to a par t icu lar  ( f i n i t e  set of) vector f ie lds  V a. 

3. The scattering amplitude is f i n i t e  and independent of the value of ~ . 

While the gauge f i x ing  term that we consider has ~ = 1/2 and not ~ - ~ ( ~  , our res- 

ul ts apply equally well to the ~ = ~  gauge of Antoniadis et a l .  The reason why is 

because for  the exceptional values of ~ the gauge-fixing-term f a i l s  to f i x  the gau- 

ge for any value of ~ . In other words, when ~ takes one of the exceptional values 

(regardless of ~ ) then there exist  certain perturbations hab which are pure gauge 

ha b = ~(aVb) ~ 0 and such that Sgauge~(aVbl]  vanishes. Thus our conclusion w i l l  
% i 

be that Antoniadis et a l .  found an inf ra-red divergence only because they had the bad 

luck to choose an ine f fec t ive  gauge-fixing term, and not because the graviton propa- 

gator in de S i t te r  space has any i n t r i ns i c  physical in f ra-red divergence. For most 

choices of gauge the propagator would have been completely f i n i t e .  

2. How to f ind the Graviton Propagator. 

The basic idea of this section is to f ind a form for the graviton propagator which 

w i l l  make i t  easy for us to see how i t  depends upon the choice of a gauge-fixing term. 

For this purpose i t  turns out to be very convenient to represent the propagator as a 

mode sum. Such mode sums are very fami l i a r  in the context of Lorentzian space-time 

calculat ions of ( for  example) the commutator and symmetric functions for a scalar 

f i e l d .  Here we are doing something s l i g h t l y  less fami l ia r  - a Euclidean mode sum. 

The point is this : in the Hawking-Gibbons vacuum state, which is de S i t te r  invar iant ,  

the two-point function only depends upon the geodesic distance between the two-points. 

I t  is also an analyt ic  function for  spacelike-separated points. Therefore i f  we can 

f ind this function for  spacelike separations, i ts  analyt ic continuation to t imel ike 

separation w i l l  y ie ld  a l l  information about the physical ly in terest ing funct ion, 

which is the Lorentzian two-point function. 

Thus we w i l l  look for  the two-point function only for  spacelike separated points. 

One way to do this is to carry out the calculat ion on a Euclidean (++++) metric 4- 

sphere of radius a, whose scalar curvature R has the same constant value as the cur- 

vature of the physical Lorentzian de S i t te r  space R = 4 A .  On this four-sphere the 

distance between two points is always posi t ive,  so that spacelike separation is the 

only poss ib i l i t y .  I t  can be easi ly  shown 1181 that for  such spacelike separation the 

two-point function on the sphere, considered Just as a function of geodesic distance, 
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is exact ly the same as the Lorentzian two-point function for spatial separations. 

For that reason, from th is  moment on, we w i l l  perform al l  calculat ions on a four- 

sphere of radius a and volume 81T 2 a4/3. The cosmological constant is then A = 3a-{ 

To f ind the two-point funct ion, we need to know the quadratic part of the gravi ta-  

t ional action for  a small metric f luctuat ion hab. This has been calculated in many 

places J191. When we add to i t  the gauge-fixing term previously given (1.5),  we f ind 

that the total  gauged-fixed action is 

S + Sgaug e ( 6 4 ~ G ) - 1 S  habWabCd d(Vol) = hcd • (2.1) 

Here the second-order d i f f e ren t ia l  operator W abcd is given by 

A 
= ( [ l -2~2]gabgcd -gc(agb)d ) ~ + (2gc(agb) d + gabgcd) ~ Wabcd 

(2.1) 
+ ( 2 ~ - Z ) ( g a b ~ ( c ~ d )  + gcd ~ ( a ~ b )  ) 

where ~ is the gauge-fixing parameter. Now the propagator is defined by the d i f feren-  

t i a l  equation 

GCda'b ' a' b' 
Wabcd (X,X') = ~(a ~ b) ' (2.3) 

together with the boundary conditions that G aba'b' depend only upon the distance from 

X to X' ( in the sen6e of 1181) and that i t  only be singular i f  X = X'. 

This equation can be solved in many ways. One method that we have already exploi -  

ted is to actual ly  perform the path integral (1.3). This is done by choosing lO"coor- 

dinates" in the space of a l l  metric perturbations hab, and then integrat ing al l  of 

them from - ~ t o  ~ 120J. A simpler method w i l l  be followed here ; i t  involves using 

an ansatz which is Jus t i f ied  by the previous method. 

To use the simplest method, i t  is only necessary to have an orthogonal expansion 

of the delta function appearing on the r ight  hand side of (2.3). This orthogonal 

expansion is 

~(aa'~ b' = S h ~ , ( X ) h ~ ' b ' ( x ' ) + ~  V~,(X)v~ 'b ' (x ' )+n~ 2 W~b(X)w~'bix') 
b) n=O au n=l au , 

a 
+ = b (X)X n b(x ' )  " 

Here the tensor f ie lds  h ab ab wab ab V n , and~ are al l  eigenfunctions of I ~  and they n ' n 
form a complete set for the representation of any symmetric rank-two tensor. What th is 

means is that any such tensor, Qab' can be represented as a sum of the form 

Qab = O ~ n  hn ab +~iPnV~b +~2~nW~b +o~n](~b (2.5) 
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fo r  a unique set of constant coe f f i c ien ts  { ~ . j # , , ~ m , ~ . ~ . _  

t ions are appropr ia te ly  normalized, so that  
I f  the eigenfunc- 

= Sh b(X)hab(x)dV = . . .  , 

O :  

(2.6) 

then i t  is easy to show from equations (2.5) and (2.6) that the delta function defi- 

ned by (2.4) satisfies 

b' Qa 'b ' ( x ' )  = Qab(x) ~ a l a ( X , X ' ) ~ b  ) (X,X') dV x (2.7) 

for any symmetric tensor Qab" 

The nice thing about th is  method is that  we don't  have to e x p l i c i t l y  construct 
ab ab any of the eigenfunct ions h n . . . . .  ~ n  " We w i l l  only need basic information about 

their eigenvalues and mul t ip l ic i ty  which can be found in many articles 1211 and which 

can be obtained entirely from the group representation theory of S0(5). The basic 

facts are as follows. The details, including the normalizations and eigenvalues of 

these modes, can be found i:n reference 1201. The ten degrees of freedom in the symme- 

tr ic tensor Qab (2.5) are divided among the different modes. There are f ive degrees 

of freedom in the tensor modes h ab which are transverse and traceless (TT) n ' 

0 = h ab - ab 
n gab - ~ahn 

r~hab = ~(2)  ham 
n - , n  n 

~(~) _ A (n 2 + 7n + 8) 
3 

(2.8) 

There are three degrees of freedom in the modes V ab which are the symmetrized der iva-  n 
t i ves  of transverse vectors. 

[½ +̂>] 
a 

0 : ~ a f n  

[]vab = ~X(~)+ ~^ ) v ab 
n n 

)~(1)= _--~ (n 2 + 5n + 3) 
n 3 

b) v(a~n 
(2.9) 

There is one degree of freedom in the modes W ab which are the traceless derivatives n 
of longitudinal vectors 
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W ab = IX(On ) (3/4 ~(0 n) +A)] -I/2 (~avb-¼gab I-l)~n 

[] w ab : (X(On)+ 8/3 A) W ab 
n n " 

(2.10) 

Finally there is one degree of freedom in the pure-trace scalar modes ~ab n " 

~b = 1/2 gab ~n 

F ] ' xab  : X(On )Xabn 

~(On) = -~--n (n+3) 
3 

(2.11) 

From a detai led examination of these modes and the i r  normalizations ( for  which see 

1201) i t  can be shown that 

(gab d 

wab ~(0 )  3 4~  (0) +A)  ~n 
~ a ~ Z b  n : zl n ( / , ,  n 

(0) (0) +/~ W n + 2~(On)~n b . + gcd~a~b ) XCdn = 2[~ n (3/4% n )]½ ab 

(2.12) 

This is a l l  that we w i l l  need to know about the mode funct ions.  

As we said ea r l i e r ,  the path integral  ca lculat ion of the propagator 1201 Jus t i f i es  

our use of the fo l lowing ansatz for the propagator : 

Gaba 'b ' (x 'x ' )  = ~ I ~ n  h~ b(X) ha'b'(X')n + 

0 ~n V~ b(x) va'b'(X')n + 
~n W~ b(X) W~ 'b'(x') + (2.13) 

~ab(x ) ~a 'b ' ( x ,  ) + 
~n n " " n 

rn LnEab(x)wa'biX') + n  b(x) (X,)] 1 
Applying the wave operator Wabcd to the propagator (2.13) and demanding that i t  y ie ld  
the delta funct ion (2.4) gives l inear  equations that uniquely determine the coef f i -  

cients ~n . . . . .  ~'n to be 

~n  = K(-~(n2) + 2 / 3 • ) - i  for n > 0 

n = K( -~(~  ) - ~ )-1 for  n >~ I ,  else zero. 

~n = K( -~(On) (1-~)+A) -2 [ (2~2-E-1 /4)~(On) -A/21  for n>2, el se zero. 

(2.14) 
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(0) 1 -2  ~n : K(1/4)k(On) + A / 2 ) ( ) ~  n ( - ~ )  +/~) f o r  n >~0 
(2.14) 

= K()k(On)(1-~) +A)-2(~-1/2)( , .n)~(O)(3/4)k(~ )+A) )½ fo r  n>~2, else zero. 

Here the constant K = 64~G where G is Newton's constant.  With the propagator now 

determined by (2.13) and (2 .14) ,  we can discuss i t s  i n f ra - red  behavior.  

3. In f ra - red  Behavior of  the Graviton Propagator. 

We begin the discussion of  the i n f ra - red  behavior of the grav i ton propagator by 

asser t ing that  the propagator is f i n i t e  fo r  separated points i f  and only i f  a l l  of  

the coe f f i c i en t s  ~ n  . . . . .  (I n are f i n i t e .  This is indeed the case, provided tha t  the 

gauge- f ix ing parameter ~ does not have one of the values 

except ional  = i + ~ / ~ ( ~ )  - n2+3n-3 (3.1) 
n(n+3) 

fo r  n = 1,2 . . . . .  {m . Now l e t  us prove our asser t ion.  

The f i r s t  terms in the mode sum fo r  the propagator, corresponding to ~nhnhn' and 

~nVn~ ,  have been evaluated by A l len  and Turyn 1221 and shown to be completely f i n i -  

te.  This leaves the f i n a l  three terms, which can be re la ted to the scalar  propagator, 

fo r  d i f f e r e n t  values of the scalar  mass. Thus to understand the i n f ra - red  behavior of  

the grav i ton propagator, a l l  we have to do is understand the scalar  case. 

Here the s i t ua t i on  is very simple. For two points X and X' ,  separated by a geode- 

s ic  distance j (~ (X ,X ' ) ,  the massive scalar  propagator is  I18,20,221, 

X' 
G(m2,jL~) = ~  ~ n ( X ) ~ n  ( ) P(3 /2  + V )~ (3 /2 -V )  F(3/2+V,3/2_V;2;cos2~W,/2a)). (3.2) 

16~r 2 a 
- r l  n 

The r i g h t  hand s ide  of  t h i s  equa t ion ,  and hence the mode sum, i s  comple te ly  f i n i t e  

provided t h a t  3/2-V is  a not  a nonpos i t i ve  i n t e g e r .  Since V = (9/4 - a2m2) ½, t h i s  means 

the propagator  i s  f i n i t e  provided t h a t  m 2 does not take one of  the (nega t i ve )  va lues  

m 2 = _ i n(n+3) fo r  n = O, 1 2, (3.3) 
2 ' . . . .  a 

But these are exac t l y  the values of m 2 fo r  which the denominator -~(~)  + m 2 in the 

mode sum vanishes ! Exact ly  the same analys is  appl ies to the "sca lar "  parts of the 

grav i ton propagator. We have thus proved that  p r o v i d e d t h a t i f ~ i s  not given one of the 

"except iona l "  values given above (3 .1) ,  the propagator is completely f i n i t e .  What we 

w i l l  now do is to show why th i s  i s .  
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4. How Can The Gauge-Fixing Term Fail ? 

The infra-red divergence that occurs in the propagator for  the exceptional values 

of ~ can be eas i ly  understood. Imagine expressing the propagator as a path in tegra l ,  

or average, over a l l  f i e l d  configurations. I f  the gauge-fixing term was not present, 

then th is integral  would y ie ld  i n f i n i t y ,  because i t  would include an i n f i n i t e  number 

of gauge-equivalent f i e l d  configurations which had the same value of the action. The 

purpose of the gauge f i x ing  term is to make the integral converge by giving gauge- 

equivalent f i e l d  configurations d i f fe ren t  values of the action. Thus the gauge-fixing 

term " f a i l s  to do i t s  duty" i f  there ex is t  a d i s t inc t  pair of configurations which 

are physical ly  gauge equivalent and which have the same value of the gauge-fixed 

action. Let us now show that th is is exact ly what happens i f  ~ is given one of the 

"exceptional" values. 

We can wri te the gauge f i x ing  term (1.5) in the fol lowing form, a f ter  integrat ing 

by parts. 

Sgaug e : _=(~(hab _ ~gab he)~a V c e  (hbc - gbc h~) d(Vol). (4.1) 

Now consider the fol lowing gauge transformation : hab-~h ab +~(avb) where vb=v b~n 

for the scalar mode ~n '  and n > i .  I t  is easy to ve r i f y  that for  n > O, ~/(avb) 

is nonzero, and 

n 2 Sgauge[~(avb)] : 2 W [ ~ ( ~ ) ( I _ ~ ) + A ] 2 : 2 ~ A  2 n2(n+3)2[~_ +3n - 3]2 (4.2) 
9 n(n+3) " 

Thus, i f  ~ takes on one of the exceptional values - say the n' th exceptional value- 

then the gauge-fixing term f a i l s  to be sensi t ive to the gauge transformation 

hab")hab + ~ a V b  ~ n  induced by the n' th scalar mode~ because the r .h .s ,  vanishes! 

This is the source of the infra-red divergence that occurs for  the exceptional values 

of ~ .  We w i l l  now show that this inf ra-red divergence, should i t  happen to arise be- 

cause of a bad choice of ~ ,  is a harmless gauge a r t i f a c t  and makes no contribution 

to scattering amplitudes. 

5. The Infra-red Divergence is a Gauge-Artifact. 

Consider the tree level scattering process where two matter f i e l ds ,  which we deno- 

te ~ , in teract  by exchanging a graviton. Here ~ could be any kind of matter, not 

Just a scalar f i e l d .  Schematically th is looks l i ke  : 
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The amplitude for  th is process is determined by the stress tensor T ab of the matter. 

I t  is 

A = I ' ]Tab(x )Gabc ,d , (X ,X '  ) TC'd'(x ' )dVdV' , (5.1) 

where dV denotes the invar iant  four-volume element gJ~)d4X at the point X, and 

denotes the same thing at X'. Let us assume only that ~7a Tab = 0 ; ie that the dV' 

operator T ab , which is quadratic in the f i e l d  ~ , is conserved. This is true even 

in the presence of trace anomalies, for the renormalized operator, provided that i t  

is a matrix element between physical (on-shel l)  states 1231. We w i l l  show that th is 

amplitude is f i n i t e  regardless of the value of the gauge-fixing parameter ~ ,  and in 

par t icu lar  for the "exceptional" values of ~ , for which Gabc, d, contains infra-red 

divergences. 

The amplitudes A is a sum of f i ve  terms aris ing from the propagator (2.13). The 

f i r s t  two terms are independent of ~ .  The f ina l  three terms, upon integrat ion bypart~ 

can be expressed as 

A~ + A s + A~ : ~ I T ( X ) p ~ ( X , X ' )  T(X') dVdV' (5.2) 

where T(X) = T a a(x) is the trace of the stress tensor. The function p ~ ( X , X ' )  is 

of the form 

~(X,X' )  = CI + O2(E-1/4)-2 ~ I ( X ) ~ I ( X ' )  + C 3 n~_-2 ~n(X)~n(X') : X(O)+ 4 
n 

Here C 1, C 2 and C 3 are nonzero constants. What matter is that there appears to be a 

single term in the amplitude that depends upon ~ .Howeverfrom gauge-invariance we 

known that the amplitude can not depend upon ~ at a l l  ! We w i l l  now show that the 

second term above contributes nothing, even in the l i m i t  ~ 1 / 4  ! 
1 1241. The reason why is simple : the mode(s) ~)I(X) obey ~/aVb91 = - 3 ~ g a b ~ 1  

Thus replacing Ta~la by TabVaVb~ l ,  and integrat ing by parts 1251 to get 

Tab)~b~l,_ we see that the ~,-dependent term vanishes as long as the stress (~a 
tensor is conserved. What th is means is that even in those cases where the two-point 

function has an infra-red divergence, the scattering amplitude is f i n i t e .  This shows 
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that in those cases where i t  occurs, in f ra- red divergence is aharmlessgaugeart i fact .  

6. Conclusion. 

What has been shown in th is  ta lk  is that the graviton propagator in de S i t te r  spa- 

ce is OK. I f  one makes a bad choice of gauge ( - f i x i n g  term) then the propagator is 

in f ra- red divergent. However th is  is not a problem. You can e i ther  make a better choi- 

ce of gauge (of which there are an i n f i n i t e  number), for  which the propagator is com- 

p le te ly  f i n i t e ,  or else you can go r i gh t  ahead and use the in f ra- red divergent one. 

We demonstrated that i t  doesn't matter. Gauge-invariance is the over- r id ing p r inc ip le ,  

and i t  ensures that even i f  the propagator has an in f ra- red divergence, the physical 

scat ter ing amplitudes are f i n i t e .  

A more detai led discussion of these points can also be found in an ea r l i e r  publ is-  

hed paper 1201. The complete closed form for  the graviton propagator with ~ = 1/2 

has also been found 1221. F ina l l y  a closed form in the de S i t t e r  -non- invar iant  gauge 

( I . I )  has b e e n  recent ly obtained 126i. This form applies to any s p a t i a l l y - f l a t  

Robertson-Walker model. 
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