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The graviton propagator in four-dimensional de Sitter space is found in closed form. The 
vacuum state is taken to be the de Sitter-invariant "euclidean" or "Gibbons-Hawking" vacuum. 
The gauge-fixing term used is the standard choice introduced by Christensen and Duff. The 
propagator is given explicitly in this gauge, and is found to be finite for points that are not 
null-related. The method used is new: mode-sums on the four-sphere are expressed as maximally 
symmetric bitensors. The result is then given in a completely geometric and coSrdinate-free form. 
This same method can easily be used for maximally symmetric spaces of general dimension, 
including anti-de Sitter space with supersymmetric boundary conditions, and for different choices 
of gauge. 

1. Introduction 

1.1. DE SITTER SPACE 

D e  Sit ter  space interests  different  people  for di f ferent  reasons.  I t  descr ibes  an 

o therwise  e m p t y  spacet ime in the presence of  a constant ,  s tat ic energy dens i ty  [1]. 

F o r  some,  it  is of  interest  on pure ly  pedagogica l  grounds:  the space t ime is as 

symmet r i c  as o rd ina ry  Minkowski  space, but  it also has a cons tan t  non-zero  

curvature .  As  such, it provides  a t rac table  example  i l lus t ra t ing the effects of  

curva ture ,  mos t  no tab ly  the G i b b o n s - H a w k i n g  rad ia t ion  [2]. F o r  others,  it  is of  

in teres t  because  the observed cosmological  cons tan t  A is so small.  Since de Si t ter  

space  is essent ia l ly  "Minkowsk i  space in the presence of  a non-zero  A " ,  there is 

hope  that  one  might  f ind therein some inconsis tency whose only resolut ion  forces A 

to vanish  [3]. 
F ina l ly ,  for  the major i ty  of  physicists,  de Sit ter  space becomes of in teres t  in the 

l ight  of  cu r ren t  unders tand ing  of  gauge theories. Both s imple and  unif ied gauge 

theor ies  suggest  the presence of  phase  t ransi t ions  in the ear ly universe,  and  that  the 
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unbroken-symmetry phase has a "latent  heat" which would act exactly like a 
non-zero A [4]. It is further known (modulo certain technical details and difficulties) 
that such theories give rise to "inflationary" models of the universe, which are to 
date the most successful and predictive theories available about the origins of the 
universe. In these models, spacetime is not exactly de Sitter space, but does pass 
through a long period for which A is non-zero; the space then approaches de Sitter 
space in an exponentially asymptotic fashion. Thus if we wish to understand (for 
example) the physics of elementary particles at energies not likely to be produced in 
the laboratory, we would do well to understand de Sitter space. 

1.2. THE PROPAGATOR 

The purpose of this paper is to present, for the first time, a formula for the 
graviton propagator in four-dimensional de Sitter space. In the linearised or 
semiclassical theory of gravity, which is believed to be a good approximation to a 
true theory of quantum gravity at energy scales lower than that of the Planck scale 
of 1019 GeV, the propagator for two spacetime points x and x '  gives the tree-level 
amplitude for a graviton to get from x to x'.  For this reason it is also referred to as 
the two-point function. 

Here, we calculate the "coordinate space" two-point function for spacelike 
separated points. The Feynman (time-ordered) correlation function can then be 
obtained trivially by analytic continuation. The other correlation functions - com- 
mutator, anti-commutator, advanced, and retarded - can then be easily found [5]. 
Because the propagator for spacelike points is found first, all our calculations can be 
done on a riemannian 4-sphere of radius a such that a 2 = 3/A 2. There, the metric 
signature is ( +  + + + ), and the two-point function so obtained is exactly the same 
as that for spacelike-separated points in the physical spacetime (with lorentzian 
signature ( -  + + + )) [6]. 

In de Sitter space, there exists a one-parameter family of vacuum states which are 
invariant under the group of spacetime isometries [7]. However, within this family 
only one vacuum state has a two-point function with either of the following 
(desirable) properties: 

(i) It has the Hadamard form for short distances. 
(ii) It is nonsingular for two points that are not null-related. 

We will find the two-point function for this vacuum state, which is often called the 
"euclidean" or "Gibbons-Hawking" vacuum. It is singled out in our calculation by 
virtue of the technique employed in finding the propagator: it is the sum over 
mode-functions regular on the euclidean section of de Sitter space (the 4-sphere). It 
remains to be verified that the corresponding Fock state exists, but this is almost 
certainly true, as the nonexistence of such a state generally means that the two-point 
function is either extremely pathological or simply fails to exist. 
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The potential usefulness of the graviton propagator seems clear. First of all, there 
are unresolved technical questions about this two-point function in the existing 
literature [3]. The most outstanding of these concern the infrared or long-distance 
behavior of the two-point function. We will have more to say about this later, but 
our results clearly answer at least one of these questions: the two-point function has 
no intrinsic infrared divergence, although poor choices of gauge can give rise to 
them. Our choice of gauge, the "standard" gauge of Christensen and Duff [8], is free 
of any such divergence. Unlike the case of flat space, the absence of these 
divergences turns out to be unrelated to the behavior of the two-point function at 
large distances. In fact, although the propagator is free of infrared divergences, it 
still grows in an unbounded fashion for large spacelike separations. Another 
important feature of the gauge chosen is that it does not break de Sitter invariance. 

Another interesting application of the propagator will present itself in the 
examination of the behavior of idealised gravitational wave (i.e., graviton particle) 
detectors in de Sitter space. This can be done by generalising the work of Unruh [9] 
and others to the spin-two case. For the inflationary universe, the two-point 
function can thus be used to study the spectrum of the gravitational-wave noise 
background. In inflationary models this backround is believed to arise entirely from 
the zero-point fluctuations (equivalently, the Gibbons-Hawking radiation) during 
the de Sitter epoch. Thus our results can be applied to a systematic study of the 
microwave radiation induced (via the Sachs-Wolfe effect [10]) from the backround 
spectrum of gravity-wave noise. 

This work will also permit a critical examination of some of the ideas which can 
be loosely described as "the decay of the cosmological constant" [11]. One way to 
do this is via a study of the unitarity of certain scattering amplitudes. This can most 
easily be done using dimensional regularisation, and it is for this reason that our 
paper will shortly be followed by a similar one generalising our results to a de Sitter 
space of arbitrary dimension. 

Our paper contains one new technique. Typically, there are two ways to find 
correlation functions: mode-sums, and position space methods; in flat space, these 
two methods correspond to the complementary momentum- and coiSrdinate-space 
representations. In our calculation, we were forced to use both methods together, 
and were thus led to the remarkably simple connection between them. In the 
mode-sum method, the two-point function is realised as an infinite sum over a set of 
irreducible representations of SO(5), which are labelled by the d'alembertian ([3). 
De Sitter invariance forces all degenerate representations labelled by a given 
eigenvalue of [] to appear with equal weight in the mode-sum. In the co/3rdinate-space 
method, de Sitter invariance implies that the two-point function is a maximally 
symmetric bitensor [6]. A maximally symmetric bitensor is a geometrical object 
carrying spacetime indices, which depends on one-dimensional functions of the 
geodesic distance/x(x, x') between x and x'. What we found permits one to express 
each term in the mode-sum (which is sum over all the degenerate modes for a given 
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eigenvalue of D) as a maximally symmetric b i t en so r -  roughly speaking, as a 
function of geodesic distance alone. A complete and systematic development of this 
correspondence would require yet another paper, and will not be attempted here. 
The reader interested in such technical matters may note, however, that the 
expression of a single term in the mode-sum as a bitensor allows us to sidestep 
certain obstacles that would otherwise present formidable impasses in our calcula- 
tion. This is the case whenever previously-obtained objects, such as the scalar 
propagator  for de Sitter space, must be modified by the removal of particular terms 
in their mode-sum expressions. As a final technical point, note that all of our 
calculations are done in a completely co6rdinate-free manner. Similarly, we make 
extensive use of scalar, vector, and tensor eigenfunctions of the d'alembertian 
operator  [], but not of their forms in any particular coordinate system. Only general 
formal properties of these eigenfunctions are needed for the calculation. 

1.3. S T R U C T U R E  

This paper is organised as follows. In sect. 2 we derive expressions for the 
graviton propagator, both as a formal infinite sum over tensor modes on the 
4-sphere, and as a maximally symmetric bitensor depending on five undetermined 
functions of the geodesic distance/~. The propagator can be naturally represented as 
a sum of four terms. We call them the TT (transverse-traceless), T (transverse-vec- 
tor), L (longitudinal scalar), and PT (pure-trace scalar) terms. In sect. 3, we find the 
PT part  to be simply related to a standard result for the propagator of a scalar field. 
In sect. 4, we find the longitudinal part of the propagator. In this case, one can use a 
partial fraction decomposition of the mode-sum to relate the longitudinal piece of 
the propagator  to the same standard scalar-field result. In sect. 5, we find the 
transverse part of the propagator by exploiting the relationship between the mode- 
sum obtained in sect. 2, and a recent result of Allen and Jacobson for the massive 
vector propagator expressed as a maximally symmetric bitensor [6]. In sect. 6, we 
find the transverse-traceless part of the propagator. It is in a certain sense the only 
fundamentally new object found herein, since it cannot be related to the spin-0 and 
spin-1 propagators already available. This calculation is complicated by the inhomo- 
geneous equation of motion obeyed by the transverse-traceless term, which is in fact 
analogous to the case of the propagator for a massless vector field in de Sitter space 
[6]. Finally, in sect. 7 we add together the terms that we have found to obtain the 
full graviton propagator. In this section, we also examine the flat space (A ~ 0), 
short distance (x ~ x'), antipodal (t~ ~ ~ra), and large distance (/z ~ ~ )  limits, and 
discuss the analytic structure of the propagator. This is followed by a concluding 
section. There are two technical appendices. The first (appendix A) contains useful 
calculational results for maximally symmetric spacetimes, and explicit details of the 
eigenfunctions of [] employed in the text. In the second (appendix B), the source-term 
for the inhomogeneous equation of motion obeyed by the transverse-traceless piece 
of the propagator is evaluated in terms of elementary functions. 
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2. The graviton propagator 

In this section, we define the graviton propagator on the 4-sphere, where a 
standard choice of gauge has been made for the second-order graviton action. 
Maximally symmetric bitensors are defined for the 4-sphere, and their relevance to 
the symmetric function is established. Finally, the propagator is found formally as 
the inversion of the action by making use of a set of tensor mode-functions on the 
sphere, and the relationship between the bitensors and the mode-sums is explored. 

2.1. THE ACTION AND THE PROPAGATOR 

We start with the standard gravitational action 

1 
S= 1--~fv(R- 2a)dV, (2.1) 

where ff is Newton's constant (we work in units for which h---c = 1, but ff is 
retained explicitly), V the manifold over which the integration is performed, and R 
the Ricci scalar for that manifold. A is the cosmological constant of the Einstein 
equation obtained from the first-order variation of the action (2.1). We consider the 
second-order effect of a small perturbation hQb on this action for a maximally 
symmetric spacetime with background metric g,b. A maximally symmetric space- 
time is an n-dimensional manifold admitting the maximum number of global 
Killing fields; there is no preferred direction selected at any point [6]. Curvature 
identities for maximally symmetric spaces (for which see appendix A) allow us to 
write the second-order variation in the action (2.1) on a C-sphere of radius a as 
[12,131 

~(2)S -4- SGF m-. 1 _ f l. T~rzabcd,. g p J n a b r r  ncd dV, (2.2) 

for 

W'~b¢a-~½(g"~gbd+g"dgb~)(--Q+~A)+½g'~bg~d(E]+~A), (2.3) 

with p = (32rrff) -1, and A = 3a -2. This action incorporates the gauge-fixing term 

g " k 6  11 dV. (2.4) 

A more general choice of gauge will be considered in a future paper, as well as a 
general number of dimensions. It is sufficient to note that this choice of gauge-fixing 
term actually fixes the gauge, corresponding to the choice ~ = ½ in the language of 
[141. 
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We are looking for the de Sitter space two-point function 

G~bc'd'( x ,  X') = (Olhab( x )hC'd'( x ')lO) , (2.5) 

where 10) is the euclidean vacuum state [7]. Defined in this way, the two-point 
function can be represented as a maximally symmetric bitensor [6]. 

2.2. MAXIMALLY SYMMETRIC BITENSORS 

A bitensor T "  b'c.., d'... (X, X') is any function of two points that transforms as a 
tensor under corrdinate transformations at either point. It can have any number of 
primed or unprimed indices, associated with the two points. In general, a prime on 
an index indicates that the index "lives" in x"s  tangent space; unprimed indices live 
at x. When we do not need to explicitly show an object's spacetime indices, the 
object will appear in a boldface type (e.g. T, X)- 

A maximally  symmetric bitensor is a bitensor that remains invariant under all 
isometries of the manifold [6]. The expectation value (2.5) is an example of such an 
object, because the euclidean vacuum state is maximally symmetric, and the 
operator inside does not break de Sitter invariance. We can further restrict the set of 
possible maximally symmetric bitensors making up the propagator (2.5) by noting 
that they must possess the index symmetries 

a ~ b, c ' ~  d '  and [(ab)  ~ ( c ' d ' ) & x  ~ x ' ] .  

For  any maximally symmetric space, there are five distinct maximally symmetric 
objects possessing these index symmetries. Thus the propagator can be expressed as 
a sum of the form 

olO~ bc'd' .a t- 02o~bc'd'  .4- 03o~bc'd'  .a t- O40~bc 'd' nt- 0 5 0 ~  bc'd' ' 

where { 0 ~  bc'd', . . . .  O~ b`''d') is a basis set of five bitensors with the requisite 
symmetries, and {o1(/,) . . . .  ,05(/,)} are undetermined functions of the geodesic 
distance /, between x and x'*. When we wish to represent an object with the 
propagator 's  symmetries, we will use a capital letter for the object, and the 
equivalent small letter for its coefficient functions. For example, we will say "G T is 
given by g l  ___ c 1 . . . . .  g~- = c 5 ", meaning 

G ~ bc'd' = clOfbc'd' + "'" -t- C50~ bc'd' . 

Our five basis bitensors can be built-up from the metric and three simple objects 
[6], which are shown in fig. 1. 

These objects are: 
(i) the metric tensor, g~b; 
(ii) the unit tangents at x and x', n " =  V~/z and / , / a '  ~Ta'~; 

* In this paper, "a function of ~" should be taken to mean a function of/~(x, x') when a geodesic does 
in fact connect the points x and x', or the analytic extension of that function otherwise [6, 27]. 
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Fig. 1. The 4-sphere - a maximally symmetric space. Two points x and x '  in a maximally symmetric 
space determine preferred directions at those points. They are tangent vectors to the geodesics joining x 
and x ' .  The unit  vectors n~ at x and n a, at x '  point away from the geodesic. The vector Vagu b' at x '  is 

obtained by parallel transport of the vector V" along the geodesic from x to x ' .  Hence n ,  = --guh'nb,. 

(iii) the parallel propagator gae', which has the following properties: 

gae'~ a = --H e' and gae'ne,= - - n  a , 

g ae'ge, b = g ~ .  

The basic rules for manipulation of these bitensors can be found in table I below, 
and other useful results can be found in appendix A. In this paper, we will denote 
the basis bitensors by {Ok: k = 1...  5}, defining them via 

Of~C'a' = gO~g~'~', 

o~bc'd" ~ nanbnc'nd" 

o ~ ,  ,t" = gO~'gb.,' + g., , 'gh~' , 

O~bC'a' = gabn~'nd" + n.n6gC'a ' ' 

O~bed'= 4n{agb)~c'na'). 

(2.6a) 

(2.6b) 

(2.6c) 

(2.6d) 

(2.6e) 

These have been defined in order of increasing difficulty of manipulation. Note that 
O,f bc'd' stands alone in that it cannot be reproduced by the separate symmetrisation 
of the primed and unprimed indices of a single bitensor term, as in the definition of 
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TABLE 1 
Bitensor manipulation rules 

where 

Note  that 

W~n b = A(g  o h -  n ,n  b) 

V,~n," = C(g,," + n~n ~') 

lung bC' = - (  A + C)(g~bn ~'' + ga"nb) 

A = a  lcot (# /a)  

C = - a -  lcsc( t~/a ) 

C 2 _ A 2 = a  -2 

dA 
- -  ~ - C  2 

dt~ 

dC 
- -  = - A C  
d~ 

Off bc'd'. This makes it convenient for us to define an auxiliary object 0 6 via 

O~ bc'd'= gabnc'nd'-- n~nbg c'd' . (2.7) 

No object with our propagator's index symmetries can have a non-zero 0 6 term. 
Since this is so, we will not bother to give the 0 6 term for objects found in this 
paper - it can be assumed to be 0 unless otherwise noted. 

2.3. E Q U A T I O N  OF MOTION A N D  M O D E  - SUM INVERSION 

The propagator G defined in (2.5) obeys the equation of motion [5,15] 

w a b c % f  S'( X, X')  = a°be'S'( x ,  = x ,  x ' )  . (2.8) 

The factor of O has been set equal to 1, and will be restored in the final results. 
Using a set of tensor mode functions defined on the 4-sphere, (2.8) can be inverted, 
and the inverted expression evaluated using the vector and scalar propagators found 
in [6,14]. We will obtain the propagator as a sum of five tensor mode-sum pieces in 
this section, and spend the rest of this paper evaluating them. 

We start with ( ~ } ,  ( ~ } ,  and (l, , iab ~ the spin-0, spin-l, and spin-2 eigenfunc- "k "~TTn 3, 
tions of [] on the 4-sphere. Details of their respective spectra and degeneracies can 
be found in [14,19, 21], and in appendix A of this paper. Their eigenvalues will be 
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denoted by 
r q ~ ,  = ),(okp/,  

ia I--]~ n = ~ ( 1 ) f f i a  
- - n  ~ n  , 

i--] i,,iab _ ), (2) l~iab 
' ~ T T n  - -  ""n ' ~ T T n  • 

The modes are orthogonal in the following sense: 

(2.9a) 

(2.9b) 

(2.9c) 

ftpJ(x)tp'~(x) d V =  f~/ , ,a(x)~, , (x)  dV 

= f h ~ b ( x ) h ~ T T . a b ( X ) d V =  8JIB,.., (2.10) 

where the integrals are over the 4-sphere (as are all integrals in this paper involving 
mode functions). We will usually drop the degeneracy index i used in (2.9); all 
summations over the spectral index (n = 0,1, 2, 3 . . .  in the above) will then include 
an implicit sum over the degenerate modes. 

Starting with the scalar and vector eigenfunctions, one can obtain tensor mode 
functions using the gradient operator and the backround metric tensor gab. They are 
defined by 

x,~b l_~b_ (2.11a) = $ g  q,,, n = 0 ,1 ,2 ,3  . . . . .  

1 ab ( r a y  b -  ~ g  I ' -[)~ n 
W, "b = = (2.118) dX(°)(-3)~ (°) + A) ' n 2, 3,4 . . . .  

I/ n \ 4  n 

V ab = = (2.11c) 
~ - I - ( X ( 1 ) + A )  ' 2 k ' ' n  n 1 , 2 , 3  . . . .  

The X'S will be referred to as the "pure-trace" tensor modes; the traceless W and 
V modes will be called the longitudinal and transverse tensor modes. These modes 
are orthonormal in the same sense as the ~iab ,o that is ~ T T n  o ,  

job , f wzob(x)W;ab(x)dV fXm (x)X.ab(x)dV= 

= fvgab(X)VLb(X) dV= 8J'Sm.. (2.12) 

In addition, the four types of modes X, W, V and hTT are orthogonal to each 
other*. 

* Note that the lower bounds on n for these modes are necessary - we could not have defined the W 
and V modes for all non-negative n's,  since W0(x ), W/(x) ,  and Vd(x ) are all identically zero. 
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It will be necessary to calculate t3V and tqW, as the eigenvalues of these modes 
are shifted away from those of the eigenfunctions from which they were constructed. 
They are 

t~V= (X(~) + ~A)V, (2.13a) 

DW= (~o)+ 8 A)W,  (2.138) 

The result of performing a functional integral over the metric perturbations [14] 
shows that the graviton propagator takes the following form: 

Gabc'd'(x,X') = ~_~ an[h~n(X)h~n(X')]- 'b ~ bn{Vnab(x)V,~"d'(x')] 
n = 0  n = l  

n = 2  n = 0  

+ ~ e.[xab(x)W~'d'(x')+ w~b(x)x]'a'(x')]. 
n = 2  

(2.14) 

As our tensor mode functions form a complete set on the 4-sphere, one may write 
the S 4 tensor &function as 

labc'd'(x, X') E ab c'd' = hTTn(X)hTTn(X' ) + Vnab(x)VC'd'(x ') 
n = 0  n = l  

oo oo 

+ E w . ~ ( x ) W U ' ( x  ') + E oh . ,  , X. (x)x.  (x ). (2.15) 
n = 2  n =O 

We substitute the eigenfunction forms for G (2.14) and the tensor &function 
(2.15) into the equation of motion (2.8), and contract with hTT m, Vm, Win, and Xm 
in succession, and then with their primed ( ' )  equivalents. Integration with respect to 
dV and dV' gives 

(-X(~) + ~A)an = 1, 

(-~(~)- A)b. = 1, 

( - ~ ° ' -  2a)c°= 1, 

( +~,,o,+ 2a)d.=a,  

(+h O ) + a ) e . = ( - h  (°)+ 2A)G=0. 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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W e  m a y  therefore write the p ropaga tor  as a sum of four  terms 

where  

G = GTT + G T + G L + GpT ' 

823 

(2.21) 

hab t_. \  ~-c'd' [ t\ 
I ~ a b c ' d ' l  ix T T n ~ , X J B T T n ~  X ) 
t . rTT  ~X~ X ) = 

,=o  -X<~ ) + ~A ' (2"22/ 

Ggo'~'(x, x') = E v:~(x)V:'~'(x') 
. = 1  - A ~  ) - a ' ( 2 . 2 3 )  

c~,'~'(x, x,) = E w.~(x)W:'~'(~') 
. = 2  - x  ~°) - 2 A  ' ( 2 . 2 4 )  

ab c' d '  t a~4"'(x,x') = E x. (xlx. (x) 
,=o  +A(°) + 2A (2.25) 

These  terms are referred to in this paper  as the transverse-traceless,  transverse, 
longitudinal ,  and  pure- t race parts  of  the p ropaga tor* .  They  will be  evaluated using 
a var ie ty  of  techniques, most  of  which have been used previously in [14]. No te  that  

since e ,  = 0 for  all n, there are no " m i x e d "  terms in the propagator .  This is because 
our  choice of  gauge-fixing term "diagonal ises"  the propagator .  

3. The pure-trace propagator 

The  pure- t race  par t  of  the gravi ton propagator ,  G ~ ,  obeys a s imple equat ion of 
mot ion .  The  total  p ropaga tor  (2.21) can be writ ten as 

G = GTraceles s + GpT , (3.1a) 

where  GTraceles s is traceless on bo th  its p r imed and unpr imed  indices, and 

G~r c 'a '= ¼ f ( x ,  x ' )gabg c'd'. (3.1b) 

Tak ing  the trace of  the equat ion of mot ion  (2.8) on its p r imed  and unpr imed  
indices, one finds 

03 + 2 A ) f ( x ,  x ' )  = 84(x ,  x ' ) .  ( 3 . 2 )  

* Note that the "transverse" piece of the propagator is not transverse in curved spaces (W. G T = 0 + 
curvature terms). This is because the "transverse" tensor modes are not transverse, but are 
derivatives of transverse vector modes. The V n modes do obey the equation V'aWbV~ ab = O. 
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In [6], the scalar propagator G(m2; x, x') obeying the equation of motion 

( - n  + m2)G(m2; x, x') = 8n(x, x') (3.3) 

on an n-sphere of radius a was found. The scalar propagator for four-dimensional 
de Sitter space is given by 

r(ao)r(bo)  . 
G(m2; x ,x ' )  = G(m 2, z (x ,x ' ) )  = ~ F(a o, bo;2; z),  (3.4) 

where 

ao = ~ + ¢9 _ a2m2, 

bo = 3 - ¢ 9  - a 2 m 2  , 

z = z ( x ,  x') = cos2( /2a). (3.5) 

Here, F( a, b; c; z) is 2Fl( a, b; c; z ), the usual hypergeometric function. Comparing 
(3.2) and (3.3), one immediately finds that 

f ( x ,  x') = - G ( -  2A, z( x, x')).  (3.6) 

One can therefore express the pure-trace piece of the propagator, using (3.1b), as 

Get= - ¼ G ( - 2 A ,  z)O 1. (3.7) 

This can also be expressed as 

g ~ =  - ¼ G ( - 2 A ,  z),  

g~T = g~r = g ~  = g~r = 0. (3.8) 

The function G ( - 2 A ,  z) is finite for z =~ 1, but cannot be expressed in terms of 
elementary functions, although we will employ various approximate forms for it 
later on. Note that (3.7) is valid for de Sitter, flat, and anti-de Sitter spacetimes, if 
the appropriate form of the scalar propagator is used in each case. However, the 
form for G ( - 2 A ,  z) used in this paper is that of de Sitter space. 

4. The longitudinal part of the propagator 

In sect. 2, the propagator is expressed as a sum of four terms. In this section, the 
mode-sum expression for the "longitudinal" part of the propagator, GL, is evaluated 
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by relating it to the propagator (3.4). This evaluation is new, although expression for 
G L as a function of the scalar propagator was obtained in [14], where it was shown 
to be finite for our choice of gauge. 

One may evaluate (2.24) by using the definitions of the longitudinal modes W n in 
terms of the scalar eigenfunctions (2.11b). One finds 

G~ bc'~'= v°vbvc 'vd ' t (  X, X') , (4.1) 

where the operator v a v  b is the traceless part of VaV b, 

w a v  b= ( w a y  b -  ¼gabl-1), 

( x ) ( x') 
l ( x , x ' )  = n=2 ~-" -~'<°'(A(°) + 2A)(3~.(°)+ A ) "  (4.2) 

When a partial fraction decomposition of (4.2) is employed, one finds 

1 £ [ 1 2 3 (4.3) 
l (x ,  x') = -2~  % ( x ) % ( x ' )  - h(o) ~o) + 2A + X ~°) + 4A 

n=2 

This form is a linear combination of three modified scalar propagators for three 
different mass values, because the scalar propagator in de Sitter space is 

~, ( x ) ~ ,  (x ' )  
G(mZ, z (x , x ' ) )  = 2 (4.4) 

n=O --  ~k (0) -4- m 2 

Defining a modified propagator, where we drop the first k modes, as 

G(k; m 2, z) = £ % ( x ) % ( x ' )  (4.5) 
n=k  --~(On) "~ D'12 ' 

one can re-write l(x, x') as 

1 ~ 
l ( x , x ' l = - ~ [ G ( 2 ; O , z ) - 3 G ( 2 ; - 4 A , z ) + 2 G ( 2 ; - 2 A , z ) ] .  (4.6) 

In appendix A, we evaluate the first two terms in the scalar propagator mode-sum 
and show that 

3 15(2z - 1) 
G(2; m 2, z) = G(m 2, z) 8~r2a4m2 8¢r2a2(4 + a2m2 ) . (4.7) 
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In spite of appearances, the function G(2, m 2, z )  is finite at m 2 =  0 and at m 2 =  

4A. The simple poles on the right-hand side of (4.7) are cancelled by correspond- 
ing poles in G ( m  2, z). One can evaluate the modified scalar propagator in (4.7) at 
m 2 = 0 and m 2 = _ ~A*, obtaining 

G(2; 0, z) = 4 log(1 - z) + ~z _ 30z , (4.8a) 
32~r2a 2 1 -  z 

[ 1 G(2; - ~A z) - 1 12(1 - 2z)log(1 - z) + - -  + }(67 - 224z) . (4.8b) 
' 32~r2a 2 1 - z 

The function G(2; - 2 A ,  z) cannot be expressed in terms of elementary functions. 
This makes it convenient to split G L into a sum of two terms 

where 

G L = G 6 + GI~ ,  

G,, = t7t7 tT'V' 2 ~  [ G(2; O, z ) - 3 G ( 2 ; - 4 a , z ) ] ,  

1 
G 6 = V V  V'V'~-2G(2; - 2 A ,  z) .  (4.9) 

Evaluating G 6 explicitly, we find 

g~  = K 
- 6  2 1 ] 

_ _ + _ _ +  - -  ] z - 1  ( z - l )  2 ( z - l )  3 ' 

16 48 48 ] 

gt]=K z---a ( z - l )  2 + ( z - l )  3 ' 

9 4 1 ] 

g ~ = r  z--I (z-l) 2 + (z-l) 3 ' 

[6 6]  
gl 4 = K -- 

z 1 (z 1) 3 ,  

10 

g?~=~ z - 1  

12 6]  
(z--l)/ + (z-l)3 ' 

(4 .lO) 

* We evaluate (4.7) by taking the limit as m 2 approaches the poles at m 2 0 and m "2 4 = ~ - ~ A ,  

representing the hypergeometric functions as power series in z [16]. The resulting series may then be 
evaluated. The results obtained agree with the more general result obtained using formal properties 

of the scalar eigenfunctions (appendix A). 
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where K = (1/288rt 2a2). Note that this solution is regular as z ---, 0 because we used 
the de Sitter space form of the scalar propagator. 

Evaluation of G/~ is made easier by the result 

dEd~" a b ¼gab], v"vb ,(z)=z(1-Z) z ln n - (4.11) 

for ~ any biscalar function of z. This means in particular that 

V V  V'V'0(2 ;  m 2, z) = V V  V 'v 'G(O;  m 2, z ) . (4.12) 

Thus it is not strictly necessary to introduce G(2; m 2, z) in the first place, as it 
differs from the scalar propagator G(m 2, z)  by terms at most linear in z. Neverthe- 
less, the fact that G(2;0, z) and G~(2; 4 - 3 A ,  z) are f i n i t e -  as opposed to the 
equivalent scalar propagators, which are infinite - makes their use desirable. On the 
other hand, there is no good reason to use G ( 2 ; - 2 A ,  z) instead of G ( - 2 A ,  z), 
which is a finite scalar propagator. Using its equation of motion, 

( - t 3  - 2A  ) G ( -  2 A ,  z ) 

= -  z ( 1 - Z ) d z - - - - 2 + 2 ( 1 - 2 z ) - - ~ z + 2 A a 2  G ( - 2 A , z ) = O ,  (4.13) 

one can express second- and higher-order derivatives of G ( -  2A, z) with respect to 
z in terms of the propagator and its first derivative. Defining G -2A = G ( - 2 A ,  z), 
we then obtain 

4(2z - I ]G  -2a - l l G  -2A G -2A + 3G -2A G -24 - 3G -2A 
/ , g  , Z  , g  

g)~= - 12 - 18z - 1 8 ( z -  1 / 

gl22 = -- 
4(24z - 1)G -24 - 132G -24 

J ,Z  
8G-24 _ 24G-24 4G-24 + 12G -2A 

~Z , Z  

9 3(z - 1) 9z 

g ~ = -  
G -23 + 3G -24 G-fz 2A - 3G-24 

, Z  

18z 1 8 ( z -  1) 

4(2z - 1)G-~ 24 - l l G  -24 G - 2 A ,  z + 3G-24 G-2A, z - -  3G-2A 

g~ = 3 + 3z + 3(z - 1) 

2G~z 24 + 6G -24 G_z 2A - 3G-24 l lG.z 23 

g ~ =  9z - 3 ( z -  1) 9 (4.14) 
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These  c o m p o n e n t  coefficient functions are regular as z --* 0. 
One  canno t  evaluate (4.14) in terms of  elementary functions*, however limiting 

expressions for G ( - 2 A ,  z) as z ~ 0, z ~ 1 and z -~ - oo will later be presented. 

We  note  in passing that G/: dominates the behavior of traceless part  of  the 

p ropaga to r  in the limit z -~ - oo. 

5. The transverse part of the propagator 

In  this section the transverse part  of the spin-two propagator  will be obtained 

f rom the scalar and vector propagators.  To do this, the vector propagator  is 

expressed as a mode-sum similar to those already encountered in the scalar case. 

5.1. THE TRANSVERSE PART AS A MODE-SUM 

We evaluate the mode-sum expression for GT, which was obtained in sect. 2 
(2.23): 

n= l  -- (~k(n 1) "+- A ) (5 .1 )  

Subst i tut ing in the definitions of  the transverse mode-funct ions F. in terms of the 
vector  mode-funct ions  ~. and their eigenvalues, one finds 

G} bc'a'= 2 ~ V(b~)V(a'f~') 
n= l  ( a(n 1) + A )2 (5.2) 

To  evaluate (5.2), one must  consider a mode-sum of the form 

a c' t ) 
O~C'(k;m2, z) = _X(~) + rn2 + A • 

n=k 
(5.3) 

One  can then take the partial derivative of (2.3) with respect to m 2 to define 

0~C'(k;  m 2, z)  = O(m2) QaC'(k;m2, z) = ~ . (5.4) 
,,=k (-~(~) + m2 + A )  + 

One  therefore obtains 

G~ bc'a'= 2V~d'v(bQa)C')(1; - 2 A ,  z ) .  (5.5) 

* One may evaluate the derivative of G(-  2A, z) with respect to z using an expression which shifts the 
parameters of the hypergeometric function, but this is of no use in simplifying the expressions. 
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One can evaluate (5.5) using the vector and scalar propagators found in [6]. To do 
this, we will first need to find an expression for the vector propagator as a 
mode-sum over eigenfunctions of t2. 

5.2. THE VECTOR PROPAGATOR AS A MODE-SUM 

One can evaluate L9 by relating it to the vector and scalar propagators of [6]. The 
vector propagator Gspin-1 obeys the equation of motion 

(_V]g ab + val7 b ---'t- ,,,"~2"ab'~spin'16 ,"be' = 64(X, x ' )g~, .  (5.6) 

To express Gspin_l as a mode-sum, one must introduce orthonormal (in the sense 
of sect. 2) spin-1 mode-functions ( ( 1 / _ f ~ 0 ) )  Va~  }. These longitudinal modes are 
orthogonal to the familiar, transverse { ~, }%. Since the two sets together span the 
space of vectors on the n-sphere, we can write the spin-1 delta-function appearing in 
(5.6) as 

oo a [ ~ n ( X ) ~ 7  c'~n(X t W ) 
E " c, , E (5.7) ~ 4 ( X '  x')gaC'= ~"(X)~n(X ) + (0) 

n=0 n ~ l  - - ~ n  

One can then assume a mode-sum form for  ~spin-1; 

° "  z) = E ) + b. _X(o ) ; (5 .8)  Gspin.l(m 2, a c' , Wa%(X)W¢'%(X') 
n~0 n=l  

and invert (5.6), obtaining 

a c t t 

n=o + A +  n=l  --)k(n 0) (5 .9)  

Note that for m 2= 0, the vector propagator's equation of motion cannot be 
successfully inverted because the b,,(m 2) of (5.8) are not determined. This is a 
characteristic of the massless spin-1 action in the absence of an additional gauge-fix- 
ing term [5]. 

Expression (5.9) will be a bridge between (5.2), which gives the transverse 
propagator as a mode-sum, and the expression for the vector propagator given in 
ref. [6]. 

5.3. THE TRANSVERSE PROPAGATOR IN TERMS OF MODIFIED SCALAR 
AND VECTOR PROPAGATORS 

Using Q as defined above, and the modified scalar propagator G defined in (4.5), 
we can rewrite our expression for the vector two-point function (5.9) as 

1 
G.~' [ a z) O'~c'(O;m2, z ) + - ~ W " W " ' G ( 1 ; O , z ) ,  spin-1 ~. m , = (5.10a) 
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o r  

1 
Q"C'(0; m 2, z) ,-,,c' , 2 z) V~v'~'5(1 z) = ~spin-1 I, m , - ~ ; O, . (5.10b) 

By adding Q~C'(1; m 2, z) - -  o a c ' ( 0 ;  m 2, z) to both sides of (5.10b), we obtain 

Q"C'(1; m 2, z) = "Jspin-l('Jac' ,~ m 2, z) -- Qo"C'(m 2, z) 

1 
- ~ - V " v C ' G ( 1  ; 0 ,  z ) ,  (5.n) 

where 

i a  X i c '  X t 10 to ( ) t o (  ) 
a~c'(m2, z) = Qac'(0; m 2, z) -- 0"c'(1; rn 2, z) = • 2A + m 2 

i=1 
(5.12) 

One then takes the partial derivative of (5.11) with respect to ( - m  2) to obtain 

1 
~ac'(1;m2, z ) --ac' 2 = Gspin.l(rn , z) - ---2 V~V'C'G(1; 0, z) ,  

m ~ 
(5.13) 

where 

0 
a ¢  p 2 ~ac' t 2 Z)----- (Gspin.l(m , z ) -Q~)~ ' (m2 ,  z ) ) .  ( 5 . 1 4 )  "-'spin-l~, m , 0 ( m  2)  

We now have an expression for the transverse piece of the propagator in terms of 
the "modif ied propagators," Gspin-1 and G. 

5.4. EVALUATION OF THE MODIFIED PROPAGATORS 

To find QaC'(1;-2A,  z) as given in (5.13), one must evaluate G(1;0, z) and 
- - u c  t 
G s p i n _ l ( -  2A, z). One can easily evaluate Cr(1; 0, z), as G(2; 0, z) and the additional 
term needed are given in sect. 4 and appendix B, obtaining 

(~ (1 ;O ,z )=  1 [ 2 - 4 l o g ( I - z )  Z~] 
32¢r2a 2 1 z 

(515) 

In [6], an expression for the de Sitter space vector propagator ,.,spin.l~,mYTac' [ 2, Z) is 
found. It is 

G,,C' t 2 z)  a('y)g'¢¢'+ f l (y)nan  c' (5.16) spin-1 ~. m , = 
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where  the coefficient  functions are given in terms of a pair  of  differential  operators:  

[ o 1 a ( ' y ) =  - ~ z ( 1 - z ) ~  z + ( 2 z - 1 )  y ,  

/~(~) = a ( ~ , )  - ~,. ( 5 . 1 7 )  

The  funct ion y is 

3r(~ +,,)r(~- ~) 
" /=  - 64~r 2a4rn2 F ( ~  + p, ~ -  i , ;3; z ) ,  (5.18) 

where  i, = ~1 _ a2m 2 " 
T o  evaluate  G~.~_I ( -2A,  z)  we note that  near  m 2 = - 2 A  we can expand G ~ _  1 

in powers  of  e = m 2 + 2A. Thus for small e one has 

G~p]"~_x(e-2A,z)=AQ%-1+Bac'+CaC'e+O(e2) .  (5.19) 

H e r e  A ac' is given by  

A Qc'-- ~ r - 2 a - 4  [ (2z  - 1)gac '+ (22 - 2)nanC']. (5.20)  

N o w  since Q ~ '  has the same singularity at e = 0, 

Q~c" = A,,~'e- 1, (5.21) 

their  dif ference is regular near  e = 0. Hence  for m 2 =  - 2 A  + e one has 

G~"~a( -ZA + e , z ) - Q ~ ¢ ' ( - 2 a  + e , z ) = B " ~ ' + C ~ ' e + O ( e 2 ) .  (5.22) 

T o  find G ~ - I  one takes the derivative of  the previous equat ion with respect  to 
- m  2 to ob ta in  G ~ . I ( -  2A, z)  = - C  a¢'. 

N o w  to evaluate  C Q~', one expands ~/ in powers  of  e and takes the linear term. 
Since near  e = 0 

V( z ) = y_ l (  z )e -1 + "t0(z) + yt( z )e + O(e2 ) ,  (5.23) 

one  f inds 

~I(Z)~--- - -  

where  

G g ~ . l  = - ~ ( v 0 g  °c' - B ( v l ) ,  °no ' ,  (5.24) 

3[ 
80a27r 2 (log(1 - z ) l o g ( z )  + 1i2(1 - z ) )  + - -  

9 3 

10z 4 (z  - 1) 2 

- [ 2 7  9 10350~r 2 4041 + log(1 - z)  [ ~-z + 
500 10z 2 71]  525, 
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where the logarithmic integral function is 

_ [ylog_(~') d~. 
li2(Y) = J0 

Thus from (5.5), (5.13) and (5.15) we have the transverse part of the graviton 

propagator given by 

[[_93 9 i3  
g~ = x lOz 5Z 2 + 2 ( z -  1) + + log(1 - z) 522 5Z 3 + 

[ [ 2 1 6 z - 4 5 6  36 24 36 ] [24  24 24 72] ]  
g~- -K 5 5z 5z 2 + ~  + l ° g ( 1 - z )  z 5z 2 5z 3 5 ' 

[ [  9 3 9 117] [ 3 3 54]] 
g3 = x lOz 5z 2 2(z - 1) 5 + log(1 - z) 5z 2 5z 3 5 ' 

Ir~ ~8 9 ] i~8 18 36]] 
g ~ = ~ [ [ 5 z  + 5z --5 z - 1  6 + l o g ( I - z )  ~ z  2 + 5z 3 ---~-  , 

i[~4z ~ ~8 ~] [6 _1~ _1~ ~4]] (,~6, 
g ~ = x  5 + 5-~ + ~ z  2 + l ° g ( 1 - z )  + 5z 2 + 5z 3 , 

where K = 1/288~r2a 2. 

6. The transverse traceless part of the propagator 
We evaluate GTT, the transverse-traceless part of the propagator, using the 

methods of [6]. We know that it can be expressed in the form 

GTT _. a (#)O1 + f l (~ )O  2 + ¢(/.£)03 + 8(/.i,)04 + e (~ )O  5 . (6.1) 

We will use the equation of motion for GTT, and the tracelessness and transverse- 
ness conditions, to solve for the undetermined coefficient functions ( a, fl, ~', 8, e }. 

6.1. TRACELESSNESS 

We require that G~r~. 'd' be traceless on both sets of ind ices -  primed and 
unprimed. Tracing on the primed or unprimed indices, one finds that tracelessness 

requires 

(4a + 2~" + 8 ) g  ab + ( f l  + 48 - 4e)nan b = O, (6.2) 
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and hence that 

4a + 2z + 8 = 0, (6.3a) 

13 + 48 - 4e = 0. (6.3b) 

Thus there are three independent coefficient functions. In fact, one could define 
three traceless bitensor objects, in terms of which any traceless terms in the 
propagator can be written. If one calls the three traceless objects { T1, Tz, 1"3 ) and 
writes GTT as 

GTT = X ( g ) T  1 + Y ( g ) T  2 + Z(#)T3,  (6.4) 

then the conditions of (6.3a, b) are automatically satisfied. We will employ one such 
set later in this section. 

6.2. TRANSVERSENESS 

GTT is transverse; that is, it obeys 

gra ~bc~'  = 0 (6.5) U T T  

(where one could have taken the divergence on any one of the indices of GTT ). 
Substituting in the form of G T T  (6.1) into (6.5), one obtains the equation 

Cl(/.t)n6gca' + c2(# )nbnc'na' + 2c3(I.t )n(C'g a')b = O, (6.6) 

where the three vanishing coefficient functions are 

c1(#) = a ' -  2(A + C)~'+ ( 8 ' +  3A8) + 2 C e = 0 ,  

c2(#) = 13' + 3A/3 + 8' + 2C8 - 2(g  + 2(A + 2C)e) = 0, 

c3(~) = - -  ('1" "1- 4(A + C)~') + C8 + (e' + 4Ae) = 0, (6.7) 

and ' denotes d / d # .  Only two of these three equations are independent in our case, 
because any two of them, together with the tracelessness conditions (6.3a, b) imply 
the third. 

6.3. THE EQUATION OF MOTION 

From the definition of the transverse-traceless mode functions (hq-r, }, and the 
definition of the transverse-traceless part of the propagator (2.22), one can see that 
G-rT obeys the equation of motion 

oo 

( - D +  ]A )~abc'a'--vwx -- ~.~ h ~ r n ( x ) h ~ . ( x '  ). (6.8) 
n ~ O  
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In the future, we will write the scalar operator appearing in (6.8) as 

( - - D +  2), 

where we've used A -- 3a -2 and restricted ourselves to the unit sphere a = 1. We 
will restore a at the end. The source-term appearing on the right-hand side of (6.8) 
is not a delta function. It is evaluated in terms of elementary functions of the 
geodesic separation in appendix B, using methods developed in previous sections. 
We find 

a b c'd" hTTn(X)hTTn(x') = ~ ) a b c ' d ' ( z  ) 
n=O 

with O given by 

1.~ 1 = 3K 
- 1 2 z 2 +  20z - 5 

(1 - z )  2 

#2 = 3K8(3z2-  10z + 10) 

( 1 - z f  ' 

# 3  = 3K 2 ( 9 z 2 -  15z + 5)  

(1 - z )  z ' 

~ 4  = 3x  4 z ( 3 z  - 5)  

(1 - z )  2 ' 

~5 = 3K2(9z2-  20z + 10) 
(1 - z )  2 ' ( 6 . 9 )  

and where x = 1/288~r 2 as in the previous sections. 

6,4. SOLUTION OF THE EQUATION OF MOTION 

One can now find the equation of motion for the coefficient functions introduced 
earlier by evaluating the components of the equation 

(D - 2)G~-~ '~'= - o ~ b ~ ' ( z ) .  (6.10) 

The evaluation of DGTT is simplified because for O i any of our basis objects, and 
f(/~) any well-behaved function of/~, one has 

D ( f O i )  = ( O f ) O ,  + ( f ) ( D O / ) .  (6.11) 
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One can easily express n f  as a function of z or #: 

d d ]  
D r =  - -  + 3A f d/.t 2 

d 2 d ] 
= z(1-z) - -~z2+2(1-2z) -~z  f .  (6.12) 

The expressions for [30,. can be found in appendix A. Using them, one finds 
([3 - 2)GTT = K, with 

kl = ( n -  2 )~  + 2(C~ + A2)8 ,  

k2 = ([3 - 2 )~  - 8(C 2 - AC + A2)~  + 8(C + A)~ , ,  

k 3 = ([3 - 2) I" - 2(C + A)ET + 4ACe, 

k 4=  ( [3 -  2 ) 8 -  4(A 2+ C 2 ) 8 +  (A 2+ C2)fl+ 4(A + C ) 2 ~ -  4(A + C)2e, 

k s = (H - 2)e - 2(3C 2 + 2AC + 3A2)e + 2ACfl + 4(C + A)2"r, 

k 6 ~- - 2 ( C  2 - h 2 ) ( - 4 e  + 4 8  + f l ) ,  (6.13) 

where A(tt) and C(#) are the bitensor manipulation functions defined in table 1. 
Note that there is an 06 term for general coefficients ( a, fl, ~',/~, e }. However in our 
case, because of the tracelessness condition (6.3b), the k 6 term is identically zero. 
The five objects O 1 . . . . .  05 are linearly independent. Thus the equation of motion 
(6.10) implies that k i + ~i = 0 for i =  1 , . . . ,5 .  Because of the tracelessness condi- 
tions of (6.3a, b), only three of these equations are independent. Since O 1 and 04 
are pure trace, the five equations are thus linear combinations of the equations 

k2 + ~2 = 0, (6.14a) 

k 3 + t~ 3 = 0, (6.14b) 

k5 + ~5 = 0. (6.14c) 

We now express GTT in a traceless basis 

GTT = X(#)T1 + Y(#)T2 + Z ( # ) T  3 , (6.15) 
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where the traceless objects are 

rl = 1~ol + o 2 -  ¼04, 

1 T2 = 03 - ~O1, 

r3 = o~ + 4o2.  

From (6.1), the coefficient functions are 

~=~(x-sY), 

f l = X + 4 Z ,  

- ~X,  

In terms of these new variables, the two transverse equations (6.7) are 

3 2 C Z -  8(Y' + 4(A + C)Y)  - 3(X'+ 4AX) = O, 

4(Y'-  4(C + A ) Y ) -  CX= O, 

and the three wave equations (6.16) are 

4(Z" + 3AZ' - 2(1 + 3(A - C)2) Z) 

+( X" + 3 A X ' -  2(1+ 4 ( C 2 - A C  + A 2 ) ) X ) =  -v~2, 

( Y" + S A Y ' -  2(1+ ( A + C)2)Y) + 4ACZ= -03  , 

( Z" + 3AZ' - 2(1+ 3C 2 -  2AC + 3A2)Z) 

+4(C+A)2Y+ 2ACX= -~5" 

Introducing the functions WOO and U(~) defined by 

w=x+~v, 

U = Y - Z ,  

(6.16a) 

(6.16b) 

(6.16c) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 
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one can decouple the three equations (6.18), obtaining: 

W" + 7AW' - 10W= -t~ 2 - 8~ 3 + 4~ 5 , (6.21) 

3 
- -  W ~ U = 32C ( + 8A W) ,  (6.22) 

( 4 
Y = - ~  W + ~  + - - U  . (6.23) 

In terms of z = cos2(½#) one can rewrite (6.21)-(6.23) as 

d2W dW 5 1 
z ( 1 -  z)--d~-z2 + 4 ( 1 -  2z)--~z 10W= - 187r ~ ( 1 - z )  ~ '  (6.24) 

U= 3 z ( z -  1)--~- z + 2 ( 2 z -  1)W , (6.25) 

( dU W) . (6.26) Y= ~ \ 8 z ( z -  1 ) ~  z + 16 (2z -  1 ) U -  

Once W is determined from (6.24), U can be obtained from (6.25), and then Y from 
(6.26). This completely determines the functions { X, Y, Z }, and thus the functions 
{ a,/3, y, 6, e }, in terms of W. 

Eq. (6.24) is a hypergeometric equation for W, with an inhomogeneous source 
term. The general solution is of the form 

f 

W(z) = Wp(z) + - - W l ( z  ) + sW2(z ) (6.27) 92 

where W~ and W 2 are linearly independent solutions of the homogeneous hypergeo- 
metric equation with parameters a = 5, b = 2, and c--4 .  The function Wp is any 
particular solution to the inhomogeneous equation, and r and s are constants. The 
homogeneous solutions can be taken as [16] 

2 - z  
W a = F(5,2;  4; z) = 2(1 - z )  3 '  (6.28) 

l + z  
W z = r ( 5 , 2 ; 4 ; 1 - z ) =  2z 3 . (6.29) 

One can easily verify that a particular solution to the inhomogeneous equation for 
Wp is 

54+(1 36_5(1 2 1) Wp(z) = ~-2 + log(1 - z) + -z + --3z 2 + 1 - z . (6.30) 
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Because  we  are  cons ider ing  the eucl idean v a c u u m  state  in de Sitter space,  the 

so lu t ion  W m u s t  be  regular  at z = 0 [7]. Because  Wp a n d  W 1 are  regular  at  z = 0, 

a n d  W 2 is s ingular  at z = 0, this cond i t i on  forces s to vanish.  Thus  

r 
W(z) = Wp(Z) + ~ - ~ W  1. (6.31)  

Resca l i ng  to the  general  radius  4-sphere,  we ob t a in  the fol lowing genera l  so lut ion to 

the  equa t i ons  for  the t ransverse-traceless  par t  of  the p r o p a g a t o r :  

3 log(1 - z) + 1 log(1 - z) 3 27r 
g l T - - - - a ( z ) = x  -~Z + z 2 + z 3 2(Z--1-------~ + 5 (Z- -1 )  ~ 

27r 60log(1 - z) + 324r + 20 ] 

5 5(Z -- 1)  3 

12 - 40log(1 - z) 8 log(1 - z) + 8 8 log(1 - z)  - 2 1 6 r -  12 + + + 
z z 2 z 3 z - 1  

1296r 1296r 1201og(1 - z) + 648r + 40 ] 

+ 5 ( z - 1 / 2  5 ( z - l / 3  5 ' 

3 

Tz + 
log(1 - z) + 1 log(1 - z) 3 27r 

+ - - + - -  
z z z 3 2(z - 1) 5(z - 1) 2 

g'~T = S ( Z )  = g [-9/z + 

27r 901og(1 - z) + 486r + 30 ] - - +  
5 (  Z - -  1 )  3 5 ' 

- 6 log(1 - z) - 6 6 log(1 - z) 9 162r + - -  
Z 2 

-1- - -  

-101og(1 - z) - 6 

Z 

z 3 z - 1 5(z - 1) 2 

5(zX62r-1) 3 + 601og(1 -z~+_  3 2 4 r + 2 0 ] ,  

- 4log(1 - z) - 4 
+ 

Z 2 

4log(1 - z) 6 - 54r 
+ - -  

z 3 z -  1 

162r 162r 901og(1 - z) + 486r + 30 ] 

+ 5 ( z -  1) - - - - - - - - ~  5 ( 7 - 1 )  3 + ~ ] .  (6.32) 

T h e  value  o f  the cons tan t  r appea r ing  in (6.32) will be  ob ta ined  by  examina t ion  of  
the  b e h a v i o r  o f  the full p r o p a g a t o r  in the shor t  d is tance  limit # ~ 0. 
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7. The full graviton propagator 

839 

7.1. BEHAVIOR AS (l~/a) ---, 0 

We now have all the terms necessary for the evaluation of the graviton propa- 
gator. However, when transverse-traceless part of the propagator was evaluated in 
sect. 6, we were left with an undetermined constant r. The value of this constant is 
determined by requiting that graviton propagator match the standard flat-space 
propagator in the short distance limit # / a  ---, O. 

In flat space, the graviton propagator for our choice of gauge-fixing term can be 

written as [13,15] 

D = ( 1 / 2 p ) [ 0  3 - 0 1 ] D ( x ,  X ' ) ,  (7.1) 

where p = 1/32~r~ as before, and D ( x ,  x ' )  is the massless scalar two-point func- 
tion. The scalar propagator in flat space is of the form [6] 

1 
(7.2) D ( x ,  x')  = 4~r2/x 2 

in four dimensions, and since (1 - z) ~ (p2/4a2)  as ( l~/a)  ~ O, one has 

1 
D = ~-.oolim 32~r2a 2 (1 - z ) - l [ o 3  - O1]. (7.3) 

This means that the 01 and 03 terms of the full propagator must be proportional to 
(1 - z) -1 as ( # / a )  ~ O. The other terms must then either be finite or go to infinity 
more slowly than (1 - z) -x as z ~ 1. One therefore needs an approximate form for 
G ( - 2 A ,  z) near z = 1 to evaluate the propagator in the fiat-space limit. With the 
aid of formulae for F(a,  b; c; 1 - z )  [16,17], one finds 

1[ 
G ( - 2 A ,  z) ~ - -  -24(1og(1 - z ) log(z)  + Li2(1 - z))  

16~r2a 2 

1 ] 
8 log(1 - z)  - 8 / (7.4) 

+ 1----~z - J 

for z -- 1. Here, Li2(y  ) is the logarithmic integral function used in sect. 5. Note that 
one keeps all the terms in this expansion because our expression for the propagator 
involves its first derivative with respect to z. Using this limiting expression, we 
examine the O x and 02 components of the full propagator, assembled from the 
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various pieces we have found. As Ix/a ~ 0, one finds 

[ 3a 2 6a  4 ] 1 

pgl _.~ r [ 1 0 - -  4 + 5~2"''" ~ ] 8792~ 2 , (7.5a) 

3 72a 2 288a 4 ] 
r - -  + (7.5b) pg2 ~ ~ "k 5¢/.2~ 4 57/.2~ 6 ] .  

Thus  r mus t  vanish. It  is only for r = 0 that the curved space propagator  has the 

correct  short  distance (l~/a)~ 0 behavior. To the lowest order in (1 - z ) ,  one has 

1 20log(1 - z)  - 111 

pgl = 32~r2a2( z _ 1) - 1440~r2a 2 
+ 0 ( ( 1  - z) log(1 - z ) ) ,  

p g 2  = _ 
60 log(1 - z ) + 16 

9~r 2a 2 
+ O((1 - z) log(1 - z ) ) ,  

p g 3  = _ 
1 lO01og(1 - z)  + 11 

3 2 ¢ r 2 a E ( z -  1) 720¢r 2a 2 
+ 0 ( ( 1  - z) log(1 - z ) ) ,  

1 5 l o g ( l -  z )  + 4 
pg4 = 18,/r2a 2 + 0 ( ( 1  - z) log(1 - z ) ) ,  

15 log(1 - z)  + 4 
pg5 = _ 187r2a 2 + 0 ( ( 1  - z) log(1 - z ) ) .  (7.6) 

The  subdominan t  logarithmic terms do not  show up in the flat space limit a ~ oo. 

7.2. THE COMPLETE GRAVITON PROPAGATOR 

With  the constant  r determined to be 0, one can now give a complete expression 

for the gravi ton propagator  in de Sitter space. Adding  (3.8), (4.10), (4.14), (5.26) and 

(6.32), one finds 

+ g4(gabnc'nd'+ nanbg c'd') + gS(4n(agb)(c'n d') ) (7.7) 
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for 

3 2 3 2 1 46 

gl = ~  ~Z + 5Z 2 l - - 1  + (Z - -1 )  2 + ( Z - - 1 ) '  + 5 

2 2 
+ l o g ( I - z )  ~ z  2 + 5z 3 

2 4 ) ]  - 1 1  
5 + 0  g6 + ( 4 0 ) - I f ( z ) ,  

[ 216z - 416 g2 = X [  24 16 40 48 48 

+ 5--7 + 5z ----~ + - -  + - -  z -  1 ( z -  1) 2 ( z -  1) 3 

i1616 16 7t] 
- -  + + - -  + + P  g6 '  + log(l - z )  z ~ 5z 3 

3 2 3 4 1 87 

g'=oc ~ +  5 -7+- -  z - 1 (z - 1) 2 + (z - 1) 3 5 

+log(a-  z) s - j  + Sz---~ + + o-lg,~, 

18 12 

ga='X" 5z 5z 2 + 

6 6 

z - 1 (z - 1) 3 

{12 12 ¢t] 
+ l o g ( l - z )  5z 2 5z 3 + + p - l g ~ ,  

54z - 114 12 8 

gS =.Xe" ~ 5z 5z 2 

16 12 6 
- - +  - - + - -  

z -  1 ( z -  1) 2 ( z -  1) 3 

4 8 8 
+ log(1 - z) z 5z z 5z 3 

1.,: ,78, 

In this expression: 

f# is Newton's constant, 

~) -1  
p = (32~r , 

9~a 2" 
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The functions f(z) and i . gt2(z), i ~  (1,2,3,4,5} are defined in (3.6) and (4.14). 

7.3. A N T I P O D A L  BEHAVIOR 

We examine the behavior of our solution as z--> 0. On the 4-sphere, this 
corresponds to the points x and x'  being on opposite sides of the sphere. The 
propagator, and each of its four parts, is regular at z = 0. This should be no 
surprise, as we've consistently chosen the vector and scalar propagators for the 
euclidean vacuum state of de Sitter space when evaluating the graviton propagator. 
The limiting form for G ( - 2 A ,  z) is 

1 --  3 z + Z 2 +  ½Z 3 

G(-2A, z) = 16¢r2a 2 + O(z4) ,  (7.9) 

and thus near z = 0 one obtains 

371 
[pgX, pg2, #g3, pg4, pgS] _ 8640~r2a 2 [1 - (135/371),  - 16, - 2, 0, - 4 ]  + O(z). 

(7.10) 

As promised, the two-point function is regular for x and x'  antipodally separated. 

7.4. L A R G E  - z BEHAVIOR 

We now consider the behavior of the graviton propagator in the limit as 
z - - , -  oo, corresponding to large spacelike separations. The scalar propagator 
G(-2A, z) is approximated for large z by employing the relationships between 
hypergeometric functions of z and 1/z [16,17]. One finds 

16!2a2(--z)(V'~-3)/211 -- ¼(Tr~ -- 3)z-X + O ( Z - 2 ) ]  . (7.11) G(-2A,  2) 

The longitudinal and pure-trace contributions from G(-2A, z) dominate the 
behavior of the propagator in the limit z -* - oo: 

pgXdo m = p ( z ) ( - -  1637~J- + 80) + O ( z - 1 ) ,  

pg2om = p(z ) ( -  256vr~ - + 1472) + O ( z - 1 ) ) ,  

pg3om = O ( z - X ) ,  

pg~om=P(Z)(643~ - 368 + O(z-X)) ,  

Pg~om =p(z )( (504 - 8 8 V ~ )  ) 3 ¢ ~ z  + O(z -2)  , (7.12) 

for p(z) = (1/768¢r2a2)(-z) (~-3)/2 



B. Allen, M. Turyn / Graviton propagator 843 

The dominant large - z  behavior of the propagator is given by the pure-trace 
piece of the propagator and pG/2 (4.9,4.14). This can be written as a differential 
operator acting on G ( - 2 A ,  z): 

pG~bc'd'= [-~VaVbVc'Vd'+ ~'~(gabvc'vd'+ gc'd'VaVb)]G(--2A,z). (7.13) 

It is not yet clear if the large-z behavior of the propagator poses any physical 
problems for the theory of gravitons in de Sitter space. The propagator is not gauge 
invariant, and one hopes that physical objects, formed by taking derivatives of the 
propagator, fall off at large distances. 

8. Conclusion 

In this paper, the symmetric two-point function for gravitons is evaluated in 
dosed form in four-dimensional de Sitter space. Because the vacuum is the 
de Sitter-invariant euclidean vacuum state, and the gauge-fixing term is de Sitter- 
invariant, the two-point function is a maximally symmetric bitensor. In our notation 
it is expressed in coordinate-free language, in terms of manifestly de Sitter-invariant 
geometrical objects. 

The gauge-fixing term was chosen with two points in mind. First, it does not itself 
break de Sitter invariance (as, for example, axial gauge in QED breaks Lorentz 
invariance). Second, it is a "good" gauge in that it completely fixes all of the gauge 
degrees of freedom [14]. For this reason the two-point function is finite for 
separated points. It does not contain the gauge-artifact infra-red divergence that 
is present for "bad" choices of gauge, for example the transverse-traceless- 
synchronous gauge [21]. 

Certain terms in the two-point function, for example the transverse term, cannot 
contribute to tree-level scattering amplitudes. In this sense, these terms are pure 
gauge artifacts. These types of terms do not contribute to tree-level scattering 
amplitudes because they are pure divergences, and it is easy to show that such pure 
divergences make no contribution to any tree-level scattering amplitudes [14]. 

The symmetric two-point function contains a term which grows at large spacelike 
separations. This pure-trace term is not a gauge artifact in the sense discussed 
above, because it will contribute to certain tree-level scattering amplitudes. We do 
not yet understand if this growing pure-trace term is the symptom of some 
underlying physical instability, or if it is harmless. The rate of growth of this term 
depends upon the (unphysical) choice of a gauge-fixing term. For the choice that 
has been made in this paper, the growth is a power law in the distance variable z. 
For different choices of gauge it grows logarithmically [21]. However it seems 
unlikely that there exist any choices of gauge in which the propagator will fall off at 
large spacelike distances. 
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What is the importance of this long-distance behavior for the standard inflation- 
ary model of the early universe? To begin with, it is known that the long-distance 
growth of the graviton propagator arises from the low-frequency modes [7, 22-24]. 
At frequencies which are small compared to the horizon scale, the amplitude of 
these modes approaches a constant value. If our universe went through an early 
inflationary epoch, one consequence of this low-frequency behavior is that the 
present-day spectrum of gravitational wave noise would be scale-free [25-29]. The 
crucial question is this: Is the growth of the graviton propagator at long distances a 
symptom of some underlying physical instability or inconsistency in de Sitter space? 
There are of course two possibilities. 

The first possibility is that the growing modes in the graviton propagator are 
harmless. One might hope that these modes are pure gauge-artifacts, but this is not 
true: the modes in question do contribute to observable gauge-independent quanti- 
ties. The questions are, do they make only finite contributions, and do physical 
quantities such as the correlation function of the scalar curvature (R(x)R(x')) 
have reasonable behavior at large spacelike distances? There is accumulating evi- 
dence that this is indeed the case, although we know of no proof. The evidence 
includes calculations of the anisotropy of the cosmic background radiation induced 
by quantum fluctuations of the gravitational field during an inflationary de Sitter 
phase [28, 29]. The anisotropy at large scales is due to the low-frequency modes, and 
it is finite: it shows no pathological behavior. In a similar vein, the graviton 
propagator for a dust-dominated universe also grows at large spacelike separations 
[21]. Since our present-day universe is essentially dust-dominated, and seems to be 
quantum-mechanically stable, the growth of the graviton propagator at large dis- 
tances is clearly not anathema. A final argument is based on the notion that 
symmetry-breaking induced by infra-red divergences (in this case, supposed break- 
ing of de Sitter invariance) is usually accompanied by the introduction of an 
arbitrary mass-scale. Indeed the de Sitter space graviton propagator in transverse- 
traceless-synchronous gauge contains an arbitrary infra-red-cutoff mass-scale. How- 
ever it can be demonstrated that all scattering amplitudes are independent of this 
cutoff [21]. This suggests that the Hubble radius acts as a physical infra-red cut-off, 
and that the effects of the growing graviton propagator are not felt beyond this 
distance. 

The second possibility is that the long distance growth of the graviton propagator 
leads to an instability of de Sitter space, which is accompanied by a spontaneous 
breakdown of de Sitter invariance. This interpretation has been advocated by 
Antoniadis and Mottola, who argue that the long-distance growth of the pure-trace 
and transverse-traceless terms in the propagator lead to quantum instability of the 
metric [30]. They have not conclusively demonstrated, however, that this is the case. 
What they show is that a small perturbation of the stress-energy tensor gives rise to 
a growing term in the metric. However this growing metric perturbation may be 
pure-gauge; in order to prove that it is an instability, it is necessary to show that it 
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induces a growing perturbation in some physical gauge-invariant quantity such as 
the scalar curvature. If it is true that the long-distance behavior of the graviton 
propagator leads to an instability of de Sitter space, it would be fatal to the 
inflationary models of the early universe. A sufficiently long inflationary 
phase -  typically 65 e-foldings- would be impossible to achieve because the 
de Sitter phase would only last for a few e-folding times. It has been shown that a 
de Sitter space instability of this sort could not give rise to a satisfactory inflation- 
ary model [31]. 

This work can be extended in several ways. First, by imposing different boundary 
conditions, one can use identical methods to find the graviton propagator in anti- 
de Sitter space, where the scalar curvature is negative. Second, one can carry out the 
calculation for n-dimensional de Sitter space, which will allow the use of dimen- 
sional regularization. Finally, one can investigate more general choices of gauge-fix- 
ing term. For example, it may be possible to simplify the result by working in 
Landau gauge. 

We would like to thank Profs. L. Ford and J. Iliopoulos, and all of the others who 
have helped us with this paper. We are grateful for the support of the Tufts 
Department of Physics and Astronomy during the period of its preparation. 

Many thanks to the Tufts Department of Computer Science for their assistance in 
the preparation of the original manuscript. 

Appendix A 

USEFUL DEFINITIONS AND RESULTS 

A.1. Curoature identities. In a maximally symmetric space with curvature 
parameter a 2, the Riemann tensor is [5]: 

_~ [ g~¢gbd_ g~dgb¢] . (A.1) Rabcd = 

Hence, for a four-sphere 

and 

3 
R ~  = - -  a c  (A.2) a2g , 

12 
- -  ° R = a2 (A.3) 

Using the above identities and the Einstein equation, the cosmological constant A is 

1 A = ~R = 3a -2 . (A.4) 
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A.2. Bitensor manipulation. All the identities given here can be derived from the 
formulae of table I in sect. 2. Other helpful relations can be found in appendix C of 
[6]. 

rnO 1 = 0, 

Do2 -- - ( c  2 - A2)O6 + 2ac05 

+ ( c 2 +  ~ 2 ) 0 4  + 8 ( A C -  ( 4 2 +  C2))02, 

rnO 3 = 4(C + A)20s + 4(C + A)204 - 2(C + A)203, 

1"10  4 = - 4 ( C  2 - A 2 ) O 6  - 4(C 2 + A2)O4 + 2(C 2 + A2)Ox, 

rnOs= +4(C2-A2)06  - (6(C2 + A  2) +4AC)05 

- 4 ( C  + A)204 + 4ACO 3 + 8(C + A)202, 

[ ]06=4(C2+A2)O6-2(A2+ C 2 ) 0 1 - 4 ( C 2 - A 2 ) 0 4 .  (A.5) 

For G any function of z, we now give a formula for 

jabc'a'= a4(t~7a~7b ¼ga/~l--1) (I~7c'17d' ¼gC'd'n,)G " (A.6a) 

The five coefficient functions of J are given by: 

j l  = ~ [  G¢,)(z - 1)2z 2 - G~2)½(- 4z 2 + 4z + 4) + 2Go) (z - 1)z(2z - 1)] ,  

j2 = ~¢4)(z - 1)2z ~ + 4c~3~(z - 1)2z + 26¢2~(z - 1) 2, 

j 3  1 = ~ G ~ 2  ) , 

j 4 =  - ¼[G( , ) (z -  1)2z 2 + 2G(3)(z - 1 ) z ( 2 z -  1) + 2G(2)(z - 1 )z ] ,  

j s =  _ ½[ Go)(z - 1)z + G(2)(z - 1)] ,  (A.6b) 

where f(i) - dif/dzi. 
We now give a formula for the components of 

K abc'd'= aav 'a lTbvc ' tTd 'G , (A.7a) 
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The component  functions for K are given by: 

k x = ¼(2z - 1)2G<2)+ 1(2z - 1)Go), 

k = = (z - 1)2z2G¢4) + 4(z - 1)ZzGo) + 2(z - 1)2G<2), 

k 3 1 = ~G(2  ) , 

P = - 1 ) z ( 2 z -  1 ) c o ) +  2 ( z  - 

k 5= - ½ ( z -  1)zG{3 ) - ½ ( z -  1)G{2 ) . (A.7b) 

For  a and fl any two biscalars, and for 

p,,bc'd' = a2V,a'gr, O[ ag,Oe) + flna)n~')} , (A.8a) 

the components  of P are given by 

2z - 1 (2z - 1) 2 
p l  = - - a  

2z 4--~- z - - - ~ / 3 ,  

z + l  
p2 = - z ( *  - 1 ) & ) +  (* + 1 ) & } -  z ---T/3' 

1 1 
_ _  1 

p3 = 8z(z - 1)/3 - 4z a + ~ao) ,  

2z 2 - 2z + 1 z - 1 
p 4  = 2(z - l ) z  /3 - ½(2z - 1 ) / 3 ( 1 ) +  ( ,  - 1)ot (1  ) - - - o t , z  

4 z - 1  z - 1  
P '  8(z - 1)z/3 + 3/3{1} - ¼z(z - 1)a{2 ) + la{1}(z - 1) - T - z  a .  (A.8b) 

A.3. 4-Sphere eigenfunctions of [] We employ the following eigenfunctions of [] 
in the text [14, 19, 21]. Note that the index n always ranges over the non-negative 
integers 0,1, 2 , . . . .  

The scalar eigenfunctions are 

{p', (x )  : rqep; (x )  = X(°){p~, ( x ) .  (A.9a) 

Their spectrum is given by 

X(o} = - n ( n  + 3)a  -2 , (A.9b) 

for i =  1 , . . . ,  ~(n + 1)(n + 2)(2n + 3) (A.9c) 
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The vector eigenfunctions are 

ia X " ~.() .  

which are transverse: 
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(A.lOa) 

ia V'Q~. (x)  = 0. (A.lOb) 

Their spectrum is given by 

X(x)= - ( n Z  + 5n+ 3)a -2,  

for i =  1 . . . .  ,½(n + 1)(n + 4)(2n + 5). 

The symmetric spin-2 eigenfunctions are 

iab 
h T T n ( X ) .  

which are transverse: 

They are also traceless: 

l~ [ _ )~(2)laiab [ ~,.'~ 
D , , T T . ~ X  j - -  , . .  " T T . ~ J ,  

(A.lOc) 

(A.lOd) 

(A.11a) 

X(~ ) = - (n 2 + 7n + 8) a -2 , (A.11d) 

5 1)(n + 6)(2n + 7) for i =  1 . . . .  , z (n  + (A.11e) 

A.4. Evaluation of the first two scalar mode-sum terms. We wish to obtain the 
first two terms appearing in the mode-sum representation of a massive scalar 
propagator on the 4-sphere. They can be written as 

~o(X)%(x') 
q)o(m2,/z) = _~(oO)+ m2 , (A.12) 

5 ¢ , ( x ) ~ ( x ' )  
thl(m2,~ t) = E _X(lo)+ m 2 • (A.13) 

i=1  

In both cases, we know that the terms are functions of the geodesic distance alone 
because all the degenerate eigenfunctions of [] have been summed-over with equal 
weight. The 0-mode, %, is constant and normalised (in the sense of sect. 2). Thus 

3 
+o(m2, g ) =  d?o(m 2) 8~r2a4m 2. (A.14) 

Their spectrum is given by 

~ i a b  _ gQbnTTn -- O. (A.11c) 

,~b (A.11b) V ' o h T r . ( X )  - - - 0 .  
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We know that the 5 ~ are normalised, and also that they correspond to the 
cartesian coiSrdinates of the surface of a 4-sphere embedded in R 5. Hence, 

5 

Y'~ ~p](x)~pil(x ') oc x .  x '  = a2cos(# /a)  = a2(2z - 1). (A.15) 
i = l  

We therefore obtain 

15(2z - 1) 
@1(m2, P'(z)) = 8~r2a2(4 + a2m2 ) • (A.16) 

Appendix B 

EVALUATION OF THE Ehh' SOURCE-TERM 

For separated points, the transverse traceless portion of the bitensor delta 
function appearing in (2.15) is 

oQ 
0 abc'd'= Y'. °~ ( x  c'~' , hTTn )hTTn(X ) 

n=O 

oo oo 

= -  E vab(x)VC'd'(x')  -- E wab(x)WC'd'(xt)  • ( B . 1 )  

n = l  n = 2  

One can evaluate the right-hand side of (B.1) using the techniques of sects. 4 and 5. 
The longitudinal mode-sum can be expanded in terms of the scalar eigenfunctions 

of D, giving 

oo 

~abc'd'= E wab(x)WC'd'(x ' )  = vavbvc 'vd 'G(X ,  Xt), ( B . 2 a )  

n=2 

where ~'aVb= V a V  b l_ab~ -- ~g m is the traceless derivative, and 

( 1 
o(x, x') = ~ ~.(x)~.(x ' )  

,=2 -h~°) -  ~ A 

1) 
_h~o ) . (B.2b) 

Using the scalar function G(k; m 2, z) introduced in sect. 4, one may write 

o ( x , x ' ) = o ( z ) =  3 1 [ ( ~ ( 2 ; - 4 A , z ) - t ~ ( 2 ; O , z ) ] .  (B.3) 

Referring back to sect. 4 one finds 

1 
o ( z )  = 8¢r2a2 [(3 - 5z)log(1 - z) - 37 T6z + 1~] • (B.4) 
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Because we want the traceless part of V~V b (see (4.11)), only the logarithmic term 
will count in the end. One thus obtains the components of I2 

2 
0)1 = 6K 

z - l '  

- 8 ( z - 4 )  
0 )  2 = 6K 

( z -  1) 2 ' 

- (3z - 4) 
0)3 = 6K 

( z -  1) 2 ' 

- 2 z  
0)4 = 6 x -  

( z -  1) 2,  

- 4 ( z -  2) 
0)5 = 6~ 

(z- 1) 2 ' 

where x = 1/288~r2a 2. 
To evaluate the sum over the transverse modes, one writes 

(B.5) 

vl'~bc'd'= E v " b ( x ) W ' d ' ( x ' )  = 2 ~'. 
.=I  n=1 -X(~) -  A 

= 2 v(d'v(bQ, a)'') (1; -- 2A, z ), (B.6) 

where the function QaC'(k; m E, z) introduced in sect. 5 is an incomplete sum over 
the transverse modes. Using results of that section, one finds that the components of 
'/" are ( 1) 

@1 = 9 K  4 -  ( z  1) 2 ' 

( 1 6  2 4 )  
~ 2 = 9 r  z---1 ( z - - l )  2 8 ,  

~3 = 9 • ( - 6 ) ,  

q,4=9.  ( z - l )  2 4 ,  

q~5 = 9K 
z - - 1  (z - 1) 2 6) .  (B .7 )  
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Thus  O has componen t s  

~1 = 3K 
- 12z 2 + 20z - 5 

(1 - z )  2 

~ 2  = 3K 
8(3z 2 - lOz + 10) 

(1 - z ) 2  

~3 = 3r 
2(9z 2 - 15z + 5) 

(1 - z )  2 

4z(3z - 5) 
~ 4 =  3K 

(1 - z )  2 ' 

2(9z 2 - 20z + 10) 
O 5 = 3x  (1 - z )  2 ( B . 8 )  

This  result  can  also be obtained by  comput ing  ( r n -  Z3A)(G T + GL). 
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