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We explicitly derive the ghost oscillator contribution to the gauge covariant fermion emission 
vertex. This vertex is used to construct the space-time supersymmetry transformation laws which 
are shown to be an invariance of the free gauge covariant action of the superstring. We develop 
methods to deal with the quadratic exponentials which appear in the fermion emission vertex, in 
order to study the closure of the supersymmetry algebra. As a by-product, we complete the proof 
of the equivalence between the "old" and "new" formulations of the superstring. 

1. Introduction 

In  spi te  of  the large amoun t  of  work  on the subject,  the covar ian t  descr ip t ion  of  

the  R a m o n d  str ing is in a much  less sa t i s fac tory  condi t ion  than  that  of  the 

N e v e u - S c h w a r z  or  bosonic  strings. The  source of the t rouble  can be t raced  back  to 

the exis tence,  in the R a m o n d  sector  of  covar ian t  superstr ings,  of  a commut ing  

z e r o - m o d e  ghos t  e0, and  its conjugate  e0, with [e0, e0] = 1. Because of  this zero 

m o d e ,  there  is a pr ior i  r oom for an inf ini te  number  of F a d d e e v - P o p o v  ghost  fields at  

a g iven mass  level, a most  unpa la t ab l e  s i tuat ion.  Several  methods  have been  

p r o p o s e d  to r emedy  this. One method ,  first found  in ref. [1], uses the fact that  one 

can  t runca te  the  R a m o n d  str ing field '/ 'R to be of  the form 

wi th  

~R = ~RIOR) + e0ePRIOR) + c0FcpRIOR), 

~Ol0R) = 0,  

whi le  at  the  same t ime re ta in ing gauge invariance.  This  same form has been  found  

b y  m a n y  au thors  [2]. Ano the r  app roach  [3] re ta ins  the whole  set of e 0 and  e0 
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excitations, and introduces "picture changing" operations, in order to deal with the 
infinite redundancy thus introduced. 

The choice between these various approaches will probably ultimately come on 
grounds of consistency, simplicity and elegance, when the fully interacting theory is 
developed. As a first step in this direction, we consider in this paper the space-time 
supersymmetry properties of the NSR covariant superstring, as described in ref. [1], 
for which the first few levels were already treated in this reference. Space-time 
supersymmetry is of course an important issue in itself. It is also a first step in the 
direction of the interacting theory, because the space-time supersymmetry generator 
is known to involve in its orbital part the old fermion emission vertex at zero 
momentum. We thus generalize to the ghost modes this fermion emission vertex, 
and use it to construct an explicit space-time supersymmetry generator which leaves 
the action of ref. [1] invariant, and which reproduces our brute force calculations of 
the first few levels. 

The ghost part of the fermion emission vertex is very similar to the orbital part, 
involving an exponential of a quadratic form of creation and annihilation operators. 
This formidable looking operator has indeed repelled many people and greatly 
hampered the study of multifermion scattering amplitudes in the past. An elegant 
way to deal with it has been proposed in ref. [3], which involves bosonization of the 
orbital anticommuting modes using the Frenkel-Kac construction, and an associated 
fermionization of the commuting ghosts e, and Y,. Unfortunately, because of this 
bosonization-fermionization, the mode expansion and field content are made ob- 
scure, and one loses track of the special features of the Ramond-sector ghost zero 
modes. By contrast, our approach can be immediately interpreted in terms of 
conventional fields. 

In this paper, we extend some already known techniques to deal with the special 
quadratic exponentials which appear in the fermion emission vertex. This is a 
prerequisite to the calculation of the space-time supersymmetry algebra. Since our 
supersymmetry generator does not mix mass levels, it is clear already at the massless 
level that space-time supersymmetry can close only on-shell as in the ordinary field 
theory case. This feature is common to the other existing approaches. As a 
by-product of our technique, we complete the proof of Green and Schwarz [4] of the 
equivalence between the "old" and "new" formulations of the superstring. 

In sect. 2, we recall notations and write down the free action of the NSR open 
string, using the ordinary BRST operator Q, and discussing especially the nature of 
the ghost vacuum for the zero mode in the Ramond sector. 

In sect. 3, we explicitly construct the ghost part of the covariant fermion emission 
vertex. Just as for the orbital part, its r61e is to convert the Ramond and Neveu- 
Schwarz commuting ghosts into each other. The total vertex then indeed has 
dimension one [3, 5], and commutes with Q up to a total derivative. The ghost 
vertex correctly reproduces the correction factor A - l ( x ) = ( 1 - x )  -~ /4  for the 
intermediate boson propagator for the ground state on-shell scattering amplitude. In 
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the calculation of 14 years ago, this correction factor arose from the transverse 
projection operator in the intermediate states. We present useful formulae by which 
one can handle the quadratic exponentials of the ghost vertex by simple group 
theory. 

In sect. 4, we discuss space-time supersymmetry using the covariant fermion 
emission vertex constructed in the previous section. We find explicit supersymmetry 
transformations for the NS and R string fields, which are compatible with the 
special treatment of the ghost zero mode of the Ramond sector, which leave 
the action invariant, and which reproduce low-level field theory calculations. The 
closure of the supersymmetry algebra can be investigated by the techniques of this 
paper, but we shall report it in a separate publication. 

In the appendix, we give details of the proof of the equivalence between the "old" 
and "new" formulations of superstrings, which proceeds using the techniques of 
sects. 3 and 4. 

2. Vacua and the free action 

It has been recently realized that gauge covariant string field theory is most 
conveniently obtained by the use of the BRST formalism of the first-quantized 
theory. We therefore briefly recall the relevant results for the spinning string; for 
further details we refer the reader to ref. [6] whose notations and conventions we 
follow. In addition to the usual "orbital" string oscillators a~m, br ~ and d~ 
(m, n . . . .  ~ Z, r, s . . . .  ~ Z + ½), the BRST formulation requires the introduction of 
anticommuting and commuting ghost oscillators for the associated conformal and 
supergauge symmetries. They have the (anti)commutation relations 

{ c . . ,  = 
(bosonic sector), (2.1) 

[er, es] = [er, = 0 ,  
(NS-sec tor ) ,  (2 .2)  

[er, es] =  r+s,0, 

[e, . ,  en] = [e. , ,  e~] = 0 ,  

[em, e~] = ~n+m,0, 
(R-sector). (2.3) 

Their hermiticity properties are 

C~m = C_m, Cm ~ = C m, e =e_r, e =e_m, 

e~= -e - r ,  e~= -e-m" (2.4) 

The BRST operator Q is most conveniently written in the form in which the 
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dependence on the zero modes appears explicitly. It reads 

Q = coK+ ioT+ + Q+ + e o F -  e~6 o - i S+ ,  (2.5) 

where the last three terms are absent in the NS-sector. The various operators 
appearing in (2.5) can be read off from the expression given in ref. [6]. For example, 
in R-sector, 

K = L o - a o +  ~ . , n ( c _ . ~ . + g _ . c . ) +  Y'.n(~_,,e.-e_,,~,,  ) , (2.6) 

T + =  2 ( E n c _ . c  . + E e _ . e . ) ,  (2.7) 

Q+ = d +  d*, (2.8) 

d =  E ( L . c _ .  + F . e _ . ) -  E ½ ( m -  n)c_mC_nCm+ n 

+ E(½m-n)c_ , , , e_ . ,~ , ,+m-  E e _ , . e _ . ? . + , .  

- ~.,(2n+m)?_.,c_,,C.+m+ E(~n+m)O_,,,c ne.+,~ 

- E (~2 n + ½m )e_n, e ncn+,n - 2 E C-me-he,,+,.,,, (2.9) 

F = F 0 + E ½ n ( c _ . ~ . - ~  . c . ) - 2 E ( e  . ? . + e  .e . ) ,  (2.10) 

3 e - -  S + =  Y'.~n( _.c. c_ .e . ) ,  (2.11) 

where in the sum Y., n, m >.>. 1. It is well known that in ten dimensions with the 
correct values of the intercept, a 0 = ½ and a 0 = 0 for NS- and R-sectors respec- 
tively, Q is nilpotent; this implies, among other things, the relations 

F 2 = K ,  

Q2+ = KT + + FS + , 

1 S + =  7[T+, F ] .  (2.12) 

It is easy to recognize that up to a phase the operators K, F, d, dr, T+, S+ above 
correspond respectively to K, F, d, D, 2ll and [ll, F], which appeared in the 
differential form formulation of the covariant superstring field theory [1]. 

To utilize the above constructs in string field theory, we need to specify the 
vacuum state. The most natural choice is the one with respect to which Q is normal 
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ordered. Namely, 

cm[0) = Fm]0 ) = erl0NS ) = FrIONs), 

=emlOR)=emlOR)=O for m >~ 1, r>_- t , (2.13) 

Fo[0 ) = 0, (2.14) 

FoIOR) = 0. (2.15) 

In the bosonic sector, (2.14) corresponds to one of the two unitarily equivalent 
choices [7], for which (01c010) = 1. As for the zero mode in the R-sector, we shall 
require, in addition to the one given by (2.15), another vacuum 10a) defined by 

eol0R) = 0. (2.16) 

The hermitian conjugation properties of [0R) and [0R) are defined as 

10R)* = (6~1 

10R)* = (0RI 

and one can assign the inner product 

( ( ~ 1 ~ o = 0 ) ,  

( (0Rle0=0) ,  

(0RIOR} = (0R[6R) = 1. 

We see from (2.17) that 

(ORleglOR) = (0RIe~IOR} = 0. 

(2.17) 

(2.18) 

q'NSl0NS) = ('kNS -- C0¢e~s)IONs}- (2.20) 

It is straightforward to write down the action in '/ 'Qg' form. Defining q'(c, b ) =  

* A n  explicit realization is provided by IOR)= (0R[ = 1, (0RI = 10R)=8(eo) ,  eo=  - a / 3 e o  and 
(q~l, q%) -= flff2/2deo q~l(eo)~2(eo) - One can see that (010) = (0[0) = (0[0) = 1, whereas (010) is 
ill-defined. 

It should be stressed that [0g) and IOR) are not unitarily equivalent and care must 
be taken in forming scalar products which may be ill-defined*. It will become clear 
shortly that the use of two vacua with the properties above is crucial in discussing 
the action and its supersymmetry. 

We are now in a position to write down the free superstring action using the Q 
operator. In the NS sector, we introduce the string functional xr'Ns(a_ .,  b r, c , ,  
F_,,  e _ :  F-r,  Co)[0Ns), with the zero-mode expansion 

(2.19) 
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g t ( - c , - b ) ,  it reads 
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SNs = 5<0~s I '/'NsQNs~/'Nsl0 NS> 

1 
= ½(+r~s, K+NS) + (q'NS, Q+cPNS) + I(~NS, T+CPNS), (2.21) 

where in the second line we exhibited the form after the zero mode algebra. In the 
R-sector the string functional X/'R(a_n, d-n, c-n, g-n, e_n, ~-n, Co, e0)10R) can have 
infinite expansion in powers of e 0. However, from our previous work [1], we know 
that it need not be the case. In fact, one can truncate the expansion in the form 

X/tR[0R) = ( ~ R  "}- 80q0R Jr- CoF(~R)IOR) , (2.22) 

since this form is preserved under the action of QR: 

QRq'RIOR> = (Q+~b R -- S+qo R - T+Fq~R)IOR> + eo(F~b R + Q+q~R)IOR> 

+coF( F~ R + Q+CPR)IOR>. (2.23) 

To get the action which should be of the form l ( t ~ R  , F~R ) + ' ' "  after the 
zero-mode algebra, it is easy to see that we should project out the part proportional 
to e 0 in the expression ~tRC0QR~R]0R). Recalling the property (2.19), we can write 
the desired action in the form 

SR ---- I<0RI ( _ ~0) ~'*RC0QRXORI0 R) 

! /~ ,½(FT+ + T+F)cpR). (2.24) -=I(~bR, F ~ R ) +  (~bR, Q+q~R)-- 2', R 

One recognizes that (2.21) and (2.24) are exactly of the form of the action previously 
obtained [1, 2]. 

It is instructive here to indicate the relevance and the consistency of the other 
vacuum 10a) we have introduced. Consider the hermitian conjugate of (2.24), which 
should be the same as itself. However, due to (2.17), the expression is now of the 
f o r m  (0R[  10R) • The reader is invited to check that the result of the zero-mode 
algebra gives again the second line of (2.24), showing the consistency of the 
definitions. In fact, the use of two vacua is not only consistent but becomes 
absolutely necessary when the supersymmetry generator will be constructed and the 
invariance of the action SNS + S R will be demonstrated. 

3. The covariant fermion emission vertex 

The orbital part of the fermion emission vertex has been known for a long time 
[8]. It can be written as 

Worb( Z ) = Z 1/2 e-  zLa 'lYe'( z ) ,  (3.1) 
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where 

m>-,O r,s>-l/2 
r>~ ,1/2 

(3.2) 

The coefficients B,,~(z) and Ars(Z ) a r e  given by [8] 

s - r  
A r s ( Z )  = 1  --r--s 

r W s  
' 11 

S - -  1 

m-i) 
Bmr(Z)  = ,~__zm-r{ 2 1)m-¢+t/2, V2 kr_ l  (-  (3.31 

and the NS- and R-oscillators appear in the NS- and R-fields as 

re(z)= E b~,zr=/C~(z-') *, 
r ~ Z + l / 2  

V~(z)=v~+iC~v * Z d~-m zm 
m~0 

=_ y' r~,,z,,= 7oF, .yO. (3.41 
m~--00 

The operator i f ( z )  has been designed to convert the NS-field H~(z) into the 
R-field FF'(z) and vice-versa 

l£V(z)'y* ~HI'(Y) = --i ~ F~(Y~- z- z) VV(z) . (3.5) 

It is also known that [8, 9] 

(d ) [ t i n ,  Worb(Z)] = Z m Z ~ g  "~ ~(5m + 11 Worb(Z ) . (3.6) 

Worb(g ) is not a physical operator as it has conformal dimension ~. Such an 
operator must have dimension one, and we must thus look for an operator of 
dimension 3. As has been pointed out in ref. [5], this additional operator must come 
from the ghost sector. Before showing how to construct this operator explicitly in 
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terms of the NS- and R-ghost oscillators, we recall the gauge identities that permit 
us to move the superconformal generators F,~ and G r through Worb(Z ). These are 
more complicated than (3.6) because they involve an infinity of F 's  and G's [10]. 
One has 

fl,~zmF_~.Wo~b(Z) = -iWoeo(z)v* G_,z '+ Y'. z-Sa,~G, 
m = 0 s = 1/2 J 

(r>~½) (3.7) 

Fm Z-m'[" zn~[mnF-n Worb(Z) = - - iWorb(Z) '~ * E z-Samsas ( m > ~ l ) ,  
n=0 s = l / 2  

(3.8) 

where the various coefficients are defined by 

,+srC 
a's=(-1) r + s l r - ½ l  s-½ ' 

Vm,=am_x/2,,+ll2 (for m >~ 1, n>~0), 

1 
[~rn = 1( __ 1) re+r--1/2 _ _  

r - - n  

~ms=flm_l/2, s_l/2 (for m>~ 1, s>~ ½). (3.9) 

All properties of these coefficients can be deduced from the generating functions 

a ( x , y ) ~  E x~,,Y s 
r , s ~ l / 2  

xX/ZYt/2[ ( l - Y )  1/2] 

x - y  ~ - x  ' 

f l (x ,y)  
x 1/2 ( 1 - y ] 1 / 2  

E - -  . ( 3 . a 0 )  
r>~l/2 1-- xy ~ l - x }  
nNO 

By analogy with (3.5), the ghost part Wgh(Z ) of the fermion emission vertex should 
convert NS-ghosts into R-ghosts and vice versa. It should also be such that the 
BRST operator commutes with the full vertex; getting the correct conformal 
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dimension is part of this calculation. From (3.7), (3.8) and the fact that the F ' s  and 
G's appear in Q in the forms Ee_mF,, and Ee_rGr, we infer that the ghost vertex 
should satisfy identifies similar to (3.7) and (3.8). More precisely, one needs (for 
simplicity we put z = 1) 

m = l  s = l / 2  

e,,- ~ e_.Y~m]W~(1)=iWf.(1 ) ~ erflrm. (3.12) 
n = l  r = l / 2  

The corresponding relations for the canonically conjugate operators read 

E flr,,e-,,We, h(1) = -- iWgh(1) e-r  -]- E OLrses , (3.13) 
m = O  s = l / 2  

era'q- "~mne_n (1)=--iWgh(1 ) E 8raft,- (3.14) 
s = 1 / 2  

Eqs. (3.11)-(3.14) are simultaneously solved by 

W ~ ( z )  = <o,,,s { rp~(z)lOR>, (3.15) 

with 

/~gh(Z ) = exp( - r, s>~£1/2 z-r-Serctrses + i r>>-E1/2 z-'+"e'fl'me-m 

n~>O 

+i rn>~l £ Zm-Se-m~mses + rn>~l ~ zm+ne-m'Ymne-n) " 
s>~ l/2 n>~O 

(3.16) 

As we will see below, it is absolutely crucial that the Wgh(Z) is multiplied by 113p.) 
and not 10R) from the right; observe that the summation range in the exponent of 
(3.16) is natural for this choice of vacuum. The conjugate operator mapping R-states 
into NS-states is given by 

W~(z)~ ° = <oRI f f '~ (z )~ , ° l%s>,  (3.17) 

because of (2.17). Hence applying W t after W leads from IOR> to 113R) and 
therefore does not take us back into the original R-sector zero mode Hilbert space. 
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We suspect that this feature is related to the occurrence of "picture changing 
operators" in the formulation of ref. [3]. 

It is now a matter of lengthy calculations to work out the commutator of the full 
vertex 

W ( z ) -  Wo~b(Z)Wgh(z), (3.18) 

with the BRST operator. One first shows by the same methods as for the orbital 
part [8] that indeed, 

(d t [L,,,Wgh(z)] =z " Z~zz + ~ ( 3 m - 1 )  Wgh(z). (3.19) 

The numerical coefficient in (3.19) occurs because of the relation 

m - 1  

E 2/,, , , , ( ½ m + n ) = ~ ( 3 m - 1 ) .  (3.20) 
t;' = 0 

A change in the R-vacuum would alter the range of summation and invalidate this 
relation. After some further calculation, one establishes that, in fact, 

[O, W(z)] = QRW(Z) - W(Z)QNs 

d 
= z ~ ( e ( z ) W ( z ) ) ,  (3.21) 

which is the desired relation. On the basis of (3.21), one might now try to define the 
supercharge as a line integral of W(z) but inspection of the various expressions 
shows that W(z) has a square root branch cut. To make it single-valued, one 
introduces the GSO projectors [11] 

PNs~l[l__(__l)Y~r~l/2(b~brr~+~ . . . .  + e  r~r)] 

PR = ~[1 + ~ * ( - - 1 )  x .... (d~,,d~+~ ..... +e  ,,~,,)+eo~'o] ' (3.22) 

which now also contain the ghost oscillators. Thus, for later purposes, we define the 
operator 

dz 
W( ~o) = ~ ~ W( z, ~o)PNs, (3.23) 

where we have explicitly indicated its dependence on the zero mode oscillators. 
We now briefly describe how one obtains the correction factor A(x) - x =  ( 1 -  

x) -~/4 for the intermediate boson propagator for the four-fermion scattering 
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amplitude [12] using Wg h constructed above. To do this, we first note a useful 
relation 

r . s > 0  

where L~ is the Virasoro operator in the NS-sector with the conformal dimension J 
put equal to 1 instead of the usual value 3. (Eq. (3.24) can be proved by 
differentiating it with respect to z and making use of the commutator 

[ E erotrses, L'I ] = E ( rer + lffrses + SerOtrses+ l ) , 

and the recursion formulae expressing ar+~, s and at, s+ 1 in terms of %~.) 
For the calculation of the scattering amplitude of four ground state fermions, we 

wish to compute the vacuum expectation value of 

W~h(y)W~(z) = (ONsl e y 1L~exp(Vt~(y) + Vs(y) + Vv(y))IOR) 

×(0 , lexp((V~(z  ) + Vs(z ) + Vv(z))t)ezL'-'lO~s), (3.25) 

where V~(y), Vs(y), etc., are the exponents of Wgh(y) involving firm, 8mr, etc. First 
we push exp((1/y)L'x) through exp(V~(y)+ Vs(y ) + Vv(y)) to the right and simi- 
larly push exp(zL]) to the left, making use of the formula such as 

e y ,L,tgre_L,1/y=~ u du ( u) s-h 
i<[yl 2i~ru Eur-s 1 - y ~ .  (3.26) 

$ 

Here h is the effective dimension of 6, which is equal to 1. Denoting the resultant 
form of Va(y) as 17"a(y), etc., we get 

Wgh(y)Wgth(Z) = (ONsIexp(V ~ + V~ + /7"v)10R) 

xeLi/VeZt"(ORlexp((("~ + I"8 + 12~)*)IONs). (3.27) 

Next we use the group theoretical relation [13] 

= L'_ 1 1 -- exp L~ (3.28) eL'~/.Ve zL'-~ exp Y _ z y 

Since the value of J is 1, we have [6], 

- [ L ~ ,  L'_I] = - (2L 0 + ¼). (3.29) 
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Thus we see that through the anomaly of the M6bius algebra, the correct factor 
( 1 - z / y )  -1/4 is produced, when taking the vacuum expectation value for the 
Ramond sector in eq. (3.27). (The ratio z /y  corresponds to the variable x in 
A - I ( x ) . )  

4. Space-time supersymmetry 

The foregoing results can be used to identify the space-time supersymmetry 
transformations. Although the results take a much more compact form they can be 
expanded in the ghost oscillators and shown to be in agreement with our previous 
partial results [1]. The ghost zero-modes in the R-sector will again be a source of 
complications. We start from the action 

S = SNS 4- S R 

1 - t  = 2~0NS t kVNsQNsPNs~NsIONs) 

+ ½(ORI(--gO)~CoQRPR~RIOR), (4.1) 

and try to define supersymmetry transformations in such a way that (4.1) is 
invariant. For the NS-sector, we take 

~ N s I O N s )  = W*~RIOR) , (4.2) 

which generalizes to all levels eq. (5.18) of ref. [1]. For the R-sector, there is 
obviously a subtlety because our W takes 10ys) to ]I3R) whereas q'R is initially 
defined on ]OR); thus, 8q" R cannot be simply proportional to Wq'NSJ0NS ). To find 
what it is, we insert (4.2) into (4.1) and manipulate the resulting expression until 
8 q'R can be read off. So we obtain 

8SNs = (0NS I g'~sQNsWt~PRIOR) 

= (0NSl '~*NsWtQR'/'RI 0R),  (4.3) 

where we have used (3.21) and omitted the GSO projectors which are already 
implicit in W. Since QRXOR is again of the form (2.23) one checks that (4.3) can be 
expressed as 

(0NSl ~'~sWt( FFo + Co)C0QR~R[0R) 

= (0R{ (QRXOR)tC0( -Feo + 60) W'~'NSJ0NS) 

= --(()Rl(Q~-RR)tco(--Fgo+6o)Wg'NsJOr~s), (4.4) 
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where, in the last step, we have exploited the property 

(0I.,tBI0) = - (01ABI0). (4.5) 

On the other hand, varying S R and using similar manipulations, we find 

83 a = (0al ( -- ~o)'~'~*gcoQRPR~I, RIOR) =(I]p. I (QRg'R)*Co~'~p.goIOR) 

= (0 RI (Q---~R)* C08 g'Re0l 0 R).  (4.6) 

AS QRg'R is linear in eo, we have 

QRkItR = PeoQRXltR, (4.7) 

with the projector 

P~o =-- 10R)(0RI -- e010R)(0RIY0" (4.8) 

Inserting (4.8) into (4.6) and demanding that the resulting expression cancel (4.4), 
we finally arrive at 

~ g'g0oll3R> = e~o(-  F~o + ?0)(0NS[ Y/(~o)IS.>g'Nsl0Ns> • (4.9) 

Note  that 8g'g is defined on [I]R) SO the vacua on both sides of (4.9) match. Eqs. 
(4.2) and (4.9) can be expressed more compactly by defining the operator 

V=-P~o(-F~o + ?o)W, (4.10) 

in terms of which the variations become 

~ N s I O N s )  = V*Co'/'glOR), 

~I ' tRe010R)  = V~ttNsIONs ) . (4.11) 

It is also instructive to factor out the zero-mode explicitly by writing 

W(~o) = W(0) + W'(0)Y o+  .--  . (4.12) 

In this way, we get 

8~bR= - F W ( 0 ) ~ b N S -  W'(0)tPNS, 

6~o R = - W(0)q)Ns, (4.13) 

and 

~4,~s = w * ( o ) ~  + w ' * ( o ) ~ ,  

8q~NS = -- W*(0) FepR, (4.14) 
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where (4.13) and (4.14) are now understood to act in the smaller Hilbert space with 
zero-modes omitted. The above results can now be compared with the partial ones 
of ref. [1] by expanding in the ghost oscillators. Thus, we write 

' t 'NslO~s) = ( ¢ N s  - ~ o ~ s ) l O N s )  

= [ ( ~ O s - - E  e r~a s ~ r s +  E e c l'nr 
- - - r  - n ~ N S  

r,s/> 1/2 r>~1/2 
n~>l 

c ~ r~, ,_  ~ c ~ r , , , + . . . )  
- m  -s~NS -m -n~NS 

m ~ l  m,n>~l 
s>~l/2 

-- CO ( E ~ - rl~grN S + 
r>~l/2 

g ~-m~s + .-. )]10Ns>, 
m~>l 

'PRIOR) = ( ¢ R  + e0CPR + c0F~OR)IOR) 

[(~o+ E ,:' """ - "" = e - m - n S R  + E e - m C - n ~ R  
m,n>~l m,n>~l 

E - °m E - "" ) - -  C _ m e _  r i l l  R - -  C _ m c _ n Y R  - [ -  • " • 

m,n>>l m,n>~l 

)], C_ mX R "b . . . . . .  + e O ' m > ~ l e - m ~ R  + m>>.lE - m + OR),  

dz  ( +oo 
w* = ~ 2--//gz P,,,s 2 

p= - - o O  

W. t Z p ) orb, - p 

×(1+ Y'~ --r-s - - i  ~ z-~+me R g - i  z e_,arse_ s --rr-rm m 

r,s>/1/2 r~> 1/2 
rn>~0 

X E zm-rem~mre-r  -- E zm+"e,.Ym.e. + " " " ) ; 
m>~ l m>~ l 

r>~l/2 n>-O 

(4.15) 

(4.16) 

(4.17) 

we easily recover the formulas given in ref. [1]. 



Y. Kazama et al. / Covariant superstring 847 

As mentioned in the introduction, the supersymmetry algebra cannot close 
without use of the equations of motion. It would be nice to see this explicitly, and to 
identify possible extra gauge transformations. This can be done using the techniques 
presented in this paper. Eqs. (3.25) to (3.27), for example, contain the first steps of 
this calculation in the Ramond sector. 

To complete the calculation, we push exp (L~ / (y  - z)) further to the right until it 
hits l0 Ns) and becomes 1. After performing similar operation for exp(yzL_ 1/(Y - 
z)), this time to the left, one is left with exponentials whose exponents are linear in 
the NS-oscillators. They are easy to normal order and we obtain, in the limit 
z --, y * ,  the expression 

Y ) - 1/4 W g h ( y ) W g ~ ( z ) - -  1 -  U ( y ) ,  (4.18) 
g --'~y 

Z e : .  ") 
rn>~ l 

( . .)exp(Z'e'e e.oym ) ×exp ~ (era - m - e m e - m  ~ o -mY -- 
m~>l rn~>l 

- m " ) X e x p -  E eoe-mY [OR) , (4.19) 
m~>l 

where we use the operator notation familiar in the ordinary fermion emission vertex, 
with the primed (unprimed) oscillators acting on the vacuum to the left (right). It 
is easy to check that U ( y )  is a hermitian conformal field with dimension 1 as it 
should be. 

Similarly, for the study of closure in the NS-sector, the relation similar to (3.24) to 
be used is 

exp( ,,,~>1 • e-"Y""Y-"zm+"l()R)) =exp(zL''-ll~)a))' 
n~>O 

(4.20) 

where L" 1' is the Virasoro operator in the R-sector with the conformal dimension J 
put  equal to 1 instead of the usual value 3. Correspondingly, the algebra of the 
orbital modes is easily done in the Neveu-Schwarz sector, using the expressions (3.1) 
and (3.2). In the Ramond sector, the quadratic exponentials of Neveu-Schwarz 
orbital oscillators are harder to handle, but nevertheless, the calculation seems 
possible. Details will be presented in a future publication. 

'* From the similar calculation of ref. [14], we expect that the only relevant piece of the integration 
region is this limit z ~ y. 
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After  completion of this work, we received a preprint by H. Terao and S. Uehara 
[15], which constructs a ghost vertex similar to ours. However, contrary to ours, it is 
based on a NS-ghost vacuum which is not compatible with the usual mode 
expansion. 

Appendix 

In this appendix, we wish to prove eqs. (3.17) or (3.18) of ref. [4], which form the 
basis for the "new" formulation of superstrings developed in this reference. To 
make contact between the notations, we see that up to an irrelevant c-number 
factor, and modulo the GSO projection, one has 

+oo 
Worb(Z) = E Z-nXn,FB, (A.1) 

n ~ -oo 

where X,,FB is as in ref. [4], and Worb(z) as in sect. 3 of the present paper, except 
that the space-time indices run over the eight transverse directions only; hence 
Worb(Z ) now has dimension ~4 ---- ½ instead of ~. 

To prove eqs. (3.18) of ref. [4], we proceed in a way very similar to the calculation 
of sects. 3 and 4 for the ghost oscillators, starting from the following expression 

~1~ dz '  Z Worb(Z )~. znWorb(Z),  (A.2) 
,n , , dz 

-'1>> 1 2i~rz' Izl<< 1 2irrz 

where the integrations run in the positive direction around circles centered at the 
origin, with radii as indicated, which make the sum over the intermediate Ramond 
states convergent. The oscillator part of (A.2) is of the form: 

(ORlexp[FB(z'-l)7*b ' + ½b'A(z'-X)b']lO~s) e-LR-~/z' 

xe-ZL~-~(Or~slexp[FB( z )3,*b + ½bA( z )b]lOR), (A.3) 

where we have (temporarily) distinguished the incoming (unprimed) and outgoing 
(primed) Neveu-Schwarz Hilbert spaces and oscillators. The matrices A and B are 
as in (3.2). The task is to perform the Ramond vacuum expectation value. We thus 
commute e -zL"-I with e -z'-lL~ according to the group law [13]: 

( )( --Z~-2L~ [ 1 L ~ ) ,  (A.4) 1 -  exp  e-Z ' - lL~le  -zLR1 ~exp  z t - - z  
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where in this formula, L0 R is defined by 

[L~, LR_I] = 2L0 R, (0RILoRIOR} = ½. (A.5) 

Next, we push e x p ( - L x ( z ' - z )  -1) further to the right until it becomes one on the 
R vacuum. For this, we use 

dx 
eaLalF-m e-aLtO---- ~n ~lXl.~ll/a[ zt~X"" r n X - n - m ( l  -- Olx)n-1/2 (A.6) 

Symmetrically, we push e x p ( - z z ' L ~ ( z ' - z )  -1) to the left, using 

, x  . . . . . .  e--LR-~o-IF"'et'R-1/~-X = ~n' '1:~11/31 2i~rx' -" ~ f ix ' ]  . (A.7) 

In these last two formulas, we note that while m and m' are non-negative, n and 
n' can take positive and negative values. Hence, one obtains exponentials of linear 
forms in Ramond oscillators which must be normal ordered. Since these linear 
forms have coefficients which are themselves linear in the Neveu-Schwarz fields, this 
normal ordering produces an exponential of a quadratic form in these fields. We use 
the integral representation 

m -  ½) = ~ ~ X l  r+1/2( 1 _ x l ) m _ l / 2  
r -  ½ Zlq'tx 1 

(A.8) 

for the coefficient in (3.3). The sums over n and m can then be performed as 
ordinary geometric series. These geometric series produce new poles in the x and x '  
variables. By examining the initial contours and location of these poles, one finds 
that these contours can be distorted in such a way that only these pole contributions 
survive. One then finds that the limit z = z'  can be taken, which is finally all that is 
of interest to us here because of (A.3), (A.4) and that for z = z', the xx type integrals 
exactly reproduce the term bAb and b'Ab' which thus cancel. 

Having done the normal reordering of the two exponentials of F modes, and 
having thus cancelled the quadratic bAb and b'Ab' terms, one is then left with the 
expectation value in the intermediate Ramond sector of a simple product of two 
linear exponentials in the F modes. This is straightforward to evaluate, and gives an 
exponential bilinear in b and b' modes. The coefficient of b'rb s is a rather 
complicated looking contour integral in four variables, x as in (A.6), x '  as in (A.7) 
and two xl 's  as in (A.8). The advantage of these integral representations is that all 
series as in (A.7) and as occur in the expectation value, are trivial geometric series. 
After summing those series and examining the contours, one then finds that the x 
and x '  integrals are trivial to do, involving only taking a residue. Next, it turns out 
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that o n e  can perform the z and z'  integrals, picking up the pole  at z = z'  in the 
a n t i c o m m u t a t o r  of  n and m, thanks to (A.4) and (A.5) and as explained in ref. [4]. 
Finally,  the result of  the x I integrals is found to give just  

, t (0  ' ' n.9  NSIeXp b _ ,  NS • 
r 2 

The effect of this operator is to trivially identify any given occupation number state 
of the incoming unprimed Hilbert space with the same state in the outgoing space. 
These two spaces can be identified, and after this identification, the operator (A.9) 
is just the identity. Thus, one proves eqs. (3.17) or (3.18) of ref. [4]. 
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