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Summary. Gravitational bending of light influences observations
of cosmologically distant sources, €.g. by producing an amplifica-
tion bias in source counts. To assess the importance of any such
effect one has to determine its probability, given a random dis-
tribution of “lenses”. For this purpose we exhibit the assumptions
underlying the Dyer-Roeder description of light propagation in
a clumpy universe and point out its weaknesses. Assuming this
description as a working hypothesis and combining it with the
lens equation we derive a formula for the probability of lens
effects which differs from the one hitherto accepted. We show
that the previous formula is inconsistent with the assumed law
of light propagation in a clumpy universe, and that, compared
to the new formula, the former one significantly underestimates
the importance of light bending.
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1. Introduction

The theory of the gravitational lens effect is mainly concerned
with (i) the investigation of properties of single, isolated mass
distributions (e.g., Refsdal, 1964; Bourassa et al.,, 1973; Bourassa
and Kantowski, 1975; Dyer and Roeder, 1980; Young et al., 1980,
1981; Schneider and Weil}, 1986) or (ii) the statistical properties of
an ensemble of lenses, either at equal redshift — i.e., compact ob-
jects in the halo of a galaxy (Canizares, 1981; Vietri and Ostriker,
1983; Schneider, 1986a, b, ¢) — or randomly distributed through-
out the universe (e.g, Press and Gunn, 1973; Bourassa and
Kantowski, 1976; Turner, 1980; Canizares, 1982; Peacock, 1982;
Turner et al., 1984; Dyer, 1984; Vietri, 1985; for a review, see
Peacock, 1983). There is a fundamental difficulty intrinsic to the
latter problem: gravitational lensing takes place only in a uni-
verse in which matter is clumped. However, no solution of the
equations of General Relativity is known which is appropriate
to describe such a clumpy universe.

A way out of this difficulty has now become very common
and was first introduced by Press and Gunn (1973), following
the work of Dyer and Roeder (1972, 1973). Starting from the
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focussing equation of geometrical optics in curved space-times
(e.g., Misner et al., 1973; Chapter 22.5), they derived a differential
equation for the diameter of a bundle of light rays, in terms
of the affine parameter along the central ray, which propagates
through a space-time in which the local density is diluted with
respect to the standard Friedmann-Lemaitre (FL) model (e.g.,
Weinberg, 1972). Although this description of light propagation
in a clumpy universe has not been derived by a perturbation
approach or otherwise from general relativity, but is based on a
number of more or less plausible ad hoc assumptions, these “Dyer-
Roeder-distances” are usually applied to the gravitational lens
equation, due to the lack of any more founded theory.

Dyer and Roeder assume that on a large scale even a clumpy
universe can be described by a FL-metric, despite the fact that
its density agrees almost nowhere with that of the FL-model
Although the validity of this assumption is, at least, questionable,
it is the only way known out of the dilemma mentioned above.
The absence of a reliable model of the metric fluctuations present
in a clumpy universe, and thus of a realistic account of light
propagation, is an obstacle not only for gravitational lens theory,
but for cosmology in general (e.g., Ellis, 1984).

This paper deals with the effect on observable properties of
background sources of randomly distributed lenses. In deriving
the probability for a specific influence of this ensemble on
background sources, one has to integrate a differential single lens
probability over the ensemble. It is at this point where the Dyer-
Roeder model enters. Whereas light bundles are described by the
Dyer-Roeder differential equation (as a working hypothesis), the
volume element dV of the universe has to be computed from the
Friedmann-Lemaitre metric, since that is assumed to describe
the large-scale structure. For the selfconsistency of statistical
gravitational lens theory it is important to distinguish carefully
between the following two measures of distance: the Dyer-Roeder
angular-diameter distance (see Sect. 2 below), supposed to de-
scribe the propagation of ray bundles not going through clumps,
and the Friedmann-Lemaitre angular-diameter distance used to
calculate the total area of a sphere of constant redshift (e.g.,
Weinberg, 1972).

In Sect. 2 we outline and discuss the Dyer-Roeder model.
Then, in Sect. 3 a general equation for the probabilities in sta-
tistical lens theory is derived, which deviates from similar equa-
tions used hitherto (e.g., Press and Gunn, 1973; Peacock, 1982;
Canizares, 1982). It is shown that the difference arises from the
different roles the Dyer-Roeder and Friedmann-Lemaitre dis-
tance play in the calculations, and that the “old” equations are
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inconsistent with the Dyer-Roeder description. Finally, we briefly
summarize and discuss this result.

2. Clumpy universe and flux conservation

In this Section we briefly summarize the main results of standard
and clumpy cosmology; for details, the reader is referred to
Weinberg (1972) and Dyer and Roeder (1972, 1973).

Standard Friedmann-Lemaitre cosmology models the uni-
verse as being filled with a homogeneous, isotropic perfect fluid;
the FL metric

dr?
1 — kr?

ds? = ¢2dt? — R¥(p) { + r*(d6? + sin?6 d¢>2)} 1)
is then an exact solution of Einstein’s field equations, provided
R(t) satisfies the Friedmann equation R? = (8nG/3)R%*p — k,
where p is the density of matter and p the pressure at time ¢,
and matter expands adiabatically, (pc?R3) + p(R3) = 0. (Here
and in the following, we set the cosmological constant A = 0.)
The metric (1) is parameterized by the present value of the
Hubble-constant, H,, and the present density of the universe,
0o, in units of the “critical” density p, = 3H2/(8nG). The param-
eter k in (1) depends on the density parameter Q = p,/p,; one
has k= +1(0.—1) for @ > 1(=1.<1).

Distances in cosmology are defined “operationally” (see Wein-
berg, 1972): a source of diameter B at a redshift z is seen under
the angle

0 = B/D(2) @

which defines the angular diameter distance D(z). In an FL-dust
universe (p = 0), one has

D(z) = Dy(2) = c/Hy " 14(2), 3)
where
Qz +(Q—2)[(1 + Q2)** — 1]

r@) =2 QX1 + 22

)

The radial physical distance interval dr,
a redshift interval dz at z is

droep = (c/Ho) - (1 + 2)7%(1 + Q2)~'*dz; %)

orop Which corresponds to

e.g., a spherical shell of thickness dz at z has the volume
d
dV = 4nD(z) - % dz. )

Now, the real universe certainly is not filled with a homogeneous
perfect fluid. Model metrics which satisfy Einstein’s equations
and which could represent an inhomogeneous, but statistically
homogeneous universe resembling reality, i.c. having a relatively
large density in “small” regions and nearly vanishing density in
“large” domains, are not known — the Swiss Cheese model (cf.
Kantowski, 1969; Gunn, 1967) the globule model (e.g., Nottale,
1984) and FL models with infinitesimal perturbations are not ap-
propriate for gravitational lens considerations. Zel’dovich (1964)
noted that the propagation of ray bundles in an inhomogeneous
universe must differ from that in the F1 model. Due to the lack
of any realistic metric of an inhomogeneous (clumpy) universe,
it is now usual to assume that a smoothed-out background metric
(1) exists relative to which the inhomogeneities are randomly
distributed and proper times of comoving observers and large

spatial volumes coincide with those described by (1). In fact,
Carfora and Marzuoli (1984) have devised a smoothing proce-
dure which associates with any assumed, inhomogeneous model
universe having a topologically spherical space-section and obey-
ing Einstein’s equation, an FL-metric which can reasonably be
called a smoothed-out version of it. According to their procedure
the density and pressure of the associated FL-model differ from
the spatial averages of the corresponding quantities of the origi-
nal, inhomogeneous model by terms due to spatial fluctuations
of the expansion rate, shear motion and gravitational waves.
Their results thus illustrate the problem under discussion, but
their method does not enable one to construct metrics of inho-
mogeneous universes.

However, light rays are null geodesics not of the background
metric (1) but of the unknown perturbed metric. Dyer and Roeder
(1972, 1973) assumed that a mass fraction & of all matter is dis-
tributed homogeneously, whereas the rest is bound in clumps.
Then, the matter density within a light bundle is only a fraction
@ of the average density, as long as the bundle does not pass
through clumps. The focussing of rays is therefore reduced and,
as a consequence, the angular diameter distance to a source
whose line-of-sight is well away from all clumps at redshift z dif-
fers from (3). Starting from the focussing equation (cf. Misner et
al., 1973, Chapter 22) which describes the change of the cross
sectional area of a light bundle along its propagation, and as-
suming that (i) the shear on a ray bundle which is well away
from all clumps is negligible and that (ii) the relation between
the affine parameter 1 along a beam and the coordinate time ¢
agrees to a sufficient approximation with that in the FL model
(ie., d4 oc R(t)dt), Dyer and Roeder derived a differential equa-
tion for the diameter of a ray bundle which propagates through
a region of reduced density in a clumpy universe:

2
(:l—zl;(l +2)(1 + Qz)+%§—<gﬂz+%+3>+%&§w=0. 7

The angular diameter distance is then
Di(z) = ¢/Hory2), (8)

where r;(z) is the solution of (7) which satisfies ry(z = 0) = 0 and
drz/dz (z =0) =1 (the Hubble law). Equation (7) implies that
Dy(z) > D.(z) if y > B. Especially, Dy(z) is larger than D(z) for all
@ < 1. Since the luminosity distance D;(z), which is defined by
(flux from a source at z) = (luminosity)/(4nD?(z)), is generally
D, = (1 + 2)°D (Etherington, 1933), a source with given lumi-
nosity and redshift appears fainter in a clumpy universe than it
would appear in the smooth FL universe, if its line-of-sight is
well away from all clumps. Sources whose light rays pass near
a clump are amplified; since photons are neither created nor
destroyed while they propagate through the universe this ampli-
fication must exactly compensate the dimming due to less matter
in beams (Weinberg, 1976).

The assumptions on which the Dyer and Roeder calculations
are based do not seem too plausible to us, for the metric of a
clumpy universe agrees nowhere with (1); its density and curva-
ture are smaller than those of its smoothed-out FL-background
metric in most regions, whereas they are strongly enhanced in
small regions (see also Alcock and Anderson, 1985). Therefore,
particularly the assumption that the relation between affine pa-
rameter and coordinate time (or redshift) agrees with that in the
FL universe appears to be questionable.
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At any rate, the validity of the Dyer-Roeder equation for the
propagation of light beams through a clumpy universe has not
been established within General Relativity. The best one can
achieve with this model is a self-consistent description of ray-
bundles.

We define the amplification I of a source at redshift z with
luminosity L as the ratio of its actual flux S and the flux S*
one obtains from the definition of the luminosity distance in the
clumpy universe,

— L — L . 9
" 4nD¥z)  4n(l + 2)*DX(z)’ ©)
I =58/S*. (10)

*

According to the argument of Weinberg, the mean amplification
(I of an ensemble of sources at redshift z is
_ D)

Di(z)

I (11)
Consider now a bundle of rays with vertex at the observer and
solid angle dw. Following Dyer and Roeder we assume that its
cross-sectional area at a redshift zis d4 = dw D;(z), if this bundle
does not pass too close to intervening clumps. If all bundles from
the observer to the surface with redshift z had this property, the
area of that surface would be 4nD§(z). However since, according
to the assumption concerning the role of the background metric
(1), this area actually is 4nD%(z), the light bundles have to be
compressed, on the average, by a factor <I>~! in area. Hence,
as was to be expected, (7) is certainly not valid for beams en-
countering clumps, and (11) is necessary for self-consistency of
the model.

3. Evaluation of probabilities

In this Section, the basic equations for gravitational lens statistics
applied to a cosmologically distributed ensemble of lenses are
reconsidered. It is found that the equation for the probability
distribution derived below differs from that used in some pre-
vious papers (e.g., Canizares, 1982; Peacock, 1982; Turner et al.,
1984). This difference derives from the different parts the dis-
tances D4(z) and D,(z) play in the problem: While the angular
diameter distances of a clumpy universe D (z) are those distances
which enter the lens equation (e.g., Press and Gunn, 1973; Schnei-
der, 1985), the distances D,(z) are used to describe “large” (i.e.
on scales » galaxy clusters) volume elements and areas of spheres
of constant redshift [see Eq. (6)], since it is assumed that the
large scale geometry of the universe is still appropriately de-
scribed by (1). In view of the discussion of the foregoing section,
a comparison of the two equations for the probability function
cannot decide which one (if any) is correct, but only which one
is consistent with the assumptions of the Dyer-Roeder model.
(Our criticism does not apply to (Dyer, 1984) where, however,
no general probability distribution is derived but other aspects
of lens statistics are emphasized.)

Consider an ensemble of cosmologically distributed lenses;
for simplicity of the discussion, only a single population of lenses
is considered. Let the lens mass be M and assume that lenses are
conserved, i.e. their number density is n = ny(1 + z)?, where n,

59
is the present value of n, related to the cosmological parameters
by

3H3
ng=Q(l —a)—2

8nGM

(12)

Next, the lens equation is written in a general form. Let x and
& be position vectors in the source and lens plane, respectively,
and let &, describe the position of the lens. The lens property is
given by the deflection &(4¢) a light ray experiences if it traverses
the lens plane at £ =&, + 4€ The lens equation relates the
source position to the impact vector of a corresponding light ray
in the lens plane.

1= g &= DudlE £, (13)
where

Dy = Dy(z4) = c¢/Hgyry, (14a)
D, = Dy4(z)) = ¢/Hyrs, (14b)
Dy = ¢/Horgs; (14c)

here, z,4 and z, are the redshifts of lens and source, respectively,
and ry, is the value at z; of the solution to (7) which satisfies
r(zy) = 0 and (dr/dz)(zg) = (1 + zg) (1 + Qz,) " Y2

It is convenient to introduce dimensionless quantities in the
source and lens plane by defining the length

b= [“jM %]/ (15)
and

x = (x/$o)Do/Ds » (16a)
r=2¢/%, (16b)
re=&./%0, (16¢)
Ar=r—r,, (16d)
«dr) = lz)“s]zzs @& Ar); (16e)
then, the lens equation takes the form

(x —r,) =dr —a(dr). (17)

One can now ask for a certain property Q of the lens mapping;
e.g. “to cause an amplification greater than I”, or “to cause mul-
tiple images such that the flux ratio of the brightest images is
less than ¢”. Since the properties of the lens mapping, for fixed
74, Z,, lens and source model, only depend on the relative posi-
tions of observer, source and lens, the property Q is satisfied if
the relative position x — r, lies in some region A(Q) € R?. The
area of A(Q), ay, is the dimensionless Q-cross-section of the lens
under consideration. In general, a, depends on the redshifts of
source and lens, as well as on the lens and source model. The
corresponding dimensional cross section in the lens plane is

Ay = Eag, (18)
and in the source plane
A, = Ei(Dy/Dy)ag. (19)

We now outline the derivation of the probability P(Q) that
the lens population causes the property Q for a certain kind of
sources at redshift z,.
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3.1. The “‘standard’’ derivation

Here, one considers a random line-of-sight to a source at z,. The
expected number of lenses in the redshift interval dz, around z4
which cause the property Q is taken to be

dr prop dz,

dP = ny(1 + z9)*A44

and the total number expected is obtained by integrating dP
from 0 to z,. Using (5), (12), (14), (15), and (18), this is
zg 3 Zs
PyQ) = | dp=-_-«( —d) [ dzg
0 T 0

1424 Targs
—_——— Ay, 20
(1 + QZd)l/Z r, aQ ( )
(cf. Press and Gunn, 1973; Peacock, 1982; Canizares, 1982; Turner
et al, 1984). If the expected number of lenses P,(Q) is «1,
then P(Q) can be considered as the probability defined below
Eq. (19).

3.2. The “new” derivation

Instead of integrating along the line-of-sight, we now calculate
the total Q-cross-section of all lenses on the source sphere z = z,.
This is obtained by integration of 4, over all lenses. In a shell of
thickness dz, at z,, there are ng(1 + z4)3(drp/dz)4nD3(zy) dzg
lenses; hence the total Q-cross-section is, by (3) and (5),

¢ \3z
Aoy = 41, <H > g dzy
0

as long as the single cross sections A do not overlap. Since the
lenses are assumed to be distributed randomly, the condition of
no significant overlap simply is A, <« area of the sphere
(z = z;) = 4nD?(z,). The probability is then simply the ratio of
the total cross section A, and the area of the sphere z = z,,

} 1+z4
(z)] o “(1+Qzg)'

1+ 2z4

o d 2
(1 + de)l/Z rl(Zd)A57 (21)

PyQ) = Q(l - 0?)[

|:71(Zd)] 'al'qs
Tq Ts
3 zs 1 1
=—Q(1—o?)jdzd +z Tal'gs < >s
2 0

(A + 02077 7, U,

The two expressions (20) and (22) differ by the factors [r,/r,(z,)]*
and [r(zq)/rq]?* or {ID/<{ID4, respectively. Hence, the difference
must be closely connected to the cosmological model involved.
But where does the difference arise?

In the derivation of P, an assumption is implicitely made,
which is not used in the derivation of P,: in a), a random line-of-
sight to a source is considered, and it is implicitely assumed that
such a line-of-sight behaves like an average line-of-sight. Espe-
cially, this means that all randomly chosen lines-of-sight are
taken to have equal statistical weight. This, however, is clearly
inconsistent with the adopted Dyer-Roeder model, as explained
in the last section. There, a line-of-sight either is well away from
all clumps, or the differential Eq. (7) is not valid. Hence, the
direction to a source is not a random variable in the clumpy
universe. What is random, however, is the position of a source
on the sphere z = z,, which is the random variable used to derive
P,(Q). Therefore, we conclude that P,(Q) is the probability
which is consistent with the adopted cosmological model and
which should be used for statistical lens considerations.

22

Table 1. Mean amplification <I» and relative difference P, and
P,, AP/P

Source redshift

2 a5 APP[%]
0.1 1.0046 0.32
0.2 1.0167 1.17
0.3 1.0349 243
0.4 1.0579 4.02
0.5 1.0849 5.87
0.6 1.1153 7.95
0.7 1.1488 10.02
0.8 1.1849 12.63
0.9 1.2233 15.19
1.0 1.2640 17.86
1.2 1.3512 23.53
14 1.4455 29.55
1.6 1.5462 35.86
1.8 1.6528 42.43
2.0 1.7650 49.22
2.2 1.8826 56.22
24 2.0053 63.40
2.6 2.1329 70.75
2.8 2.2653 78.26
3.0 24025 85.93

It is now shown that the difference between P,(Q) and P,(Q)
is by no means negligible. For this, we consider an ensemble of
point masses of mass M and restrict our consideration to point
sources. One can then calculate the probability that a source at
z, is amplified by more than I. The corresponding cross section

I
a; = 2n [m - l:l (23)

(cf. Canizares, 1981) is independent of redshifts and can thus be
taken out of the integrals in (20) and (22). Then, the relative
difference 4P/P, = (P, — P,)/P, depends only on the cosmol-
ogical model (2, &) and the redshift of the source. In Table 1 we
have listed 4P/P, as well as the mean amplification {I) [cf. Eq.
(11)] for the critically closed, completely clumpy universe (2 = 1,
@ = 0). It is seen that the difference between P, and P, is really
significant, being ~18% at z, = 1, 49% at z, = 2 and ~86% at
z, = 3. Since one has always P,(Q) > P,(Q), this means that if
the Dyer-Roeder model of light propagation in a clumpy uni-
verse is valid, then statistical lens calculations made hitherto un-
derestimate the relevance of lensing. We have compared both
expressions (20) and (22) with the Monte-Carlo simulations of
Refsdal (1970) and found good agreement with his results from
(22), whereas (20) leads to values which are systematically too
low.

4. Summary

After some critical remarks about the Dyer-Roeder description
of the propagation of light bundles through an inhomogeneous
(clumpy) universe, which is commonly used in the theory of grav-
itational lenses, we derived a general equation for the proba-
bilities of any specific effect of an ensemble of cosmologically
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distributed lenses on background sources. For this, the Dyer-
Roeder description was taken as a working hypothesis. The
equation obtained differs from similar ones used hitherto. It was
shown that the new equation is consistent with the Dyer-Roeder
model, whereas the old ones are not, due to the different measures
of distance which are inevitably inherent in the Dyer-Roeder
description of light propagation through a clumpy universe.
Besides being of principal interest, the self-consistent equation
shows that hitherto the effects of gravitational lenses have been
underestimated. The amount of the difference depends on the
effect under consideration (e.g., influence on source counts, ex-
pected number of observable lens cases), as well as on the cos-
mological parameters and the redshift of the sources; it can be
significant (see Table 1). Therefore, future work on statistical lens
theory should take the self-consistent evaluation of probabilities
into account, if it employs the Dyer-Roeder distance assignment.
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