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A new extended formulation of free supersymmetric string field theories is presented. The 
hidden symmetries are exhibited and their quantization is given. The rigid space-time supersym- 
metry of the free theory is discussed. 

1. Introduction 

Long ago, a string theory involving both fermions and bosons was written down. 
This theory had two sectors: one for bosons [1] and one for fermions [2]. It was from 
this theory that supersymmetry was extracted [3] about the same time as it was 
independently discovered in Russia [4]. Some time later, it was shown that provided 
one projected the two sectors according to G parity, the corresponding string theory 
possessed an equal number of fermions and bosons at every level [5]. More recently, 
it was shown [6], as conjectured in ref. [5], that this superstring theory has 
10-dimensional supersymmetry. The theory was also reformulated [7] so as to make 
the 10-dimensional supersymmetry manifest. The price for this success was the loss 
of manifest two-dimensional supersymmetry as well as Lorentz invariance. 

Recently, there has been a considerable effort to find a gauge covariant formula- 
tion of string theories. At the level of the free theory, this has been solved for the 
bosonic [8-12] and supersymmetric strings [9,13]. It has been shown that strings 
possess an infinite number of local gauge symmetries. For superstrings these include 
the free analogues of general coordinate, Yang-Mills and supersymmetry transfor- 
mations. More recently [14] a new gauge covariant formulation of the open bosonic 
string has been found. This formulation has a considerable simplicity and contains 
after gauge choices all previous formulations. It is the purpose of this paper to 
extend these latter results to the supersymmetric case, thus extending the gauge 
covariant formulations of refs. [9] and [13]. Although the exact connection is 
unclear, it is apparent that the infinite number of space-time string symmetries are 
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closely connected with the two-dimensional symmetries of the world sheet. There 
are then considerable advantages in starting from the formulation [1,2] of super- 
strings which have the two-dimensional supersymmetry manifestly realized. We will 
find that the formulation of ref. [14] generalizes very naturally to the supersymmet- 
ric case. Larger gauge invariances will be found, the structure of which is such that 
the parameters of the gauge transformations can be subject to similar gauge 
transformations, in a repetitive manner. This structure leads, upon gauge-fixing and 
quantization, to the phenomenon of ghosts for ghosts and to the correct count for 
the physical degrees of freedom. 

Space-time supersymmetry transformation laws are obtained through the ex- 
amination of the Ward identities involving the fermion emission vertex [15,16], in 
conjunction with the well-known projection operators of Gliozzi, Olive and Scherk 
[5]. As the Ward identities involve an infinity of F,, and G~ gauges, the present 
formulation with an infinite number of auxiliary and supplementary fields will be 
seen to be well suited for the implementation of supersymmetry. 

The organization of the rest of the paper is as follows. In sect. 2, we give a brief 
review of the previous work [9,13] and set the notations. Differential forms 
necessary for the discussion of the supergauge structure of the theory are developed 
in sect. 3. Although we shall describe the construction as a generalization of the 
bosonic tensor calculus introduced in ref. [10], a comment will be given, at the end 
of sect. 4, which clarifies its relation to the BRST approach. In sect. 4, using the 
compact language developed in the previous section, we describe the natural 
extension of the theory reviewed in sect. 2. By the introduction of further supple- 
mentary fields, the enlarged gauge symmetry structure becomes more transparent, 
including in particular, the existence of the tower of hidden local symmetries. These 
symmetries are, as in the bosonic string case [14], crucial in obtaining the correct 
quantization. Finally, in sect. 5, space-time supersymmetry transformation laws are 
described. An appendix is provided for the proofs of some of the formulae 
developed in sect. 3. 

2. Previous results 

In this section, we briefly review the covariant formulation of spinning strings in 
[9, 13]. There are two sectors, the NS-sector containing only bosons and the R-sector 
containing only fermions. All physical degrees of freedom are contained in the 
expansions of the fundamental string fields 

Xi~'Ns(XP'(O')) ~ { ~ ( X )  @A~(x)b~_i /2-~-  B p . ( x ) o ~  1 

+A, , ( x )  b" 1/2 b~ 1/2 -{- " ' "  }10)NS , (2.1) 

q'R(X~'(O)) - {X(X)+%(X)aUl++, ( x )d~_ l+  . ' .  }I0)R. (2.2) 
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As is by now well known, the covariant formulation of the corresponding free string 
theories requires the introduction of 
fields. These are 

NS-sector: 

R-sector: 

further supplementary and auxiliary string 

(F- V,,) 
~..~ , ( 2 . 3 )  

\ ~ ~mn 

(2.4) 

Here we have introduced the following notation for later convenience: underlined 
indices are fermionic and indices without underlining are bosonic. Indices m, n, p, q 
are integer whereas indices r, s, t . . . .  are half-integer. The field equations in the NS 
sector read 

( L 0 -  ~)q'NS + 
r= 1/2 

GrkONS + 2q, r - ~'. G ,~'~r + 
s = 1/2 

+ 2 L 8,,.r_s~S,, -~ 0 ,  
s ,  tl 

L,,qSys + 2n~" + ~ _,.f=,, + G . ~ 

~ = 1/2 

G r0r+ ~ L , f l / '=0 ,  

~.] L ,,~"r + Y'. (s + 3~n)8 . . . . .  ~'"~ 
~l = [ s ,  l1 

/~ . , ; " , ,  + E ~(3r + ,)8,,,,+,;-i~ 
m ~ 1 r ,  A' 

+ Y'. ( 2 p + m ) 8  P .,p+m~ . ,= O, 
p ,  t~l 

i ~ l ( 3 r + s ) ~ r + ~  ar,~ ~ =  ( L 0 + s +  r - -  2 ) ~ - r +  ~ 

L°+ = ( L o + .  + ~  - ~)~ , , -  ( s  + 2 .  

. _  , ,, )~,,,+ L.,q~ - ( Lo + m + n - ~)~ . , -  (2m + n " ,  

O r ~ )  n =  ( L o  ~ -  s ~ -  FI - -  1 ) ~ n r - -  2(~)n+r . (2.5) 
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and are invariant under the infinite set of gauge transformations 

8 ~ y s =  G ~AC + ~ L ,~A '1, 
r =  1 / 2  n = 1 

, ~ ~ A , ,  6~ c= - ( L o + r - ~ ) A  c 6O'1= - ( L o + n - 5 ,  , 

8~'-s= -GsAr  +½(3s + r ) X  +~ , 

6to,, = - L , , A r - ( r  + ~_n)A r+', 

It ~ - -  r 4- tl 8~ _r GrA" -  2A , 

8~" m = - L m a " -  (2m + n ) a  ''+" (2.6) 

Note that we have redefined the string field ~'-[~ by a factor ( -  1) with respect to ref. 
[13]; this is again for later convenience. In the R-sector, the field equations are 

tl = 1 n = 1 

F,,'/'R+ ~ ( F - m ~ , + L - , , ~ m , , )  _ E [2~-P,,+(~,P+m)~'L',,] 
m = 1 p + m = ;1 

- 2 Fo0" + {n~'l = 0, 

L,,~R+ ~ [F-m~"-',,+L ,n~m,,] + Y~ [ ( 2 p + m ) ~ P , , - - ½ ( m + 3 p ) ~ l ' , , ]  
k~l = 1 p + D1 = tl 

s n (2.7) + 2nFoq~ ~- + ~n~ = O. etc., 

and the gauge transformations read 

~'k~R= ~ F ,,A"+ ~ L ,,A'-', 
n = 1 n = 1 

~nA-.  = - FoA'-' - etc. 8~"= FoA" - i ,, 8q," 2A", (2.8) 

The proof of invariance of these sets of equations of motion with respect to the 
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transformations (2.6) and (2.8) requires several identities such as 

( m + p ) ( m + q ) -  ~ (l~m+r~ ) ( l m + s ) = l ~ D m 3 - Z r n  2-~rn~ , 
p ~ q ~ m  r + x = m  
p,q>~l r,s>~l/2 

(2.9) 

which are only valid for D = 10 space-time dimensions. 
The so-called "finite set" [9] is the truncation of the above equations to the fields 

q/NS, q~l/2, q~3/2 ~1/21/2,  ~ 1 / 2 3 / 2  " ~3/21/2,  ~ 3 / 2 3 / 2  ' (2.10) 

~R, ~t, ~1, ~-_x_l ' ~-1_1, ~1!, ~tt. (2.11) 

These sets are the minimal ones required for a covariant formulation. We remark 
that one may, in fact, truncate the systems (2.5)-(2.8) to any intermediate finite set 
by discarding all fields beyond a certain level. 

3. Differential forms for superstrings* 

The previous results, reviewed in the foregoing section, will now be expressed in 
terms of a compact differential geometrical language which will make transparent 
the symmetry structures of the superstring field theories. The formalism is an 
extension of the case of bosonic string [10], and makes use of the notion of 
superspace familiar in supergravity theories (the relation between the formulations 
of refs. [12] and [10] was studied in ref. [17]). Below, for definiteness, we shall 
exhibit the formalism for the open string. Adaptation to the case of the closed string 
is straightforward. Our notations and definitions will be such that they cover the 
NS- and the R-sectors at the same time. 

First, we assemble the super Virasoro generators into ~A, viz., 

L,, if A bosonic (3.1) 
£'°A ------ G~ or F~ if A fermionic " 

When explicit indices are needed, we often use unbarred (barred) small latin letters 
for bosonic (fermionic) indices. The graded-antisymmetric (GAS) commutator is 
defined as 

[ £¢A, ~B} =- ~_ ( 5FA~B- (--)ABsFe~A )' (3.2) 

where in the phase it is understood that 

A = {~ if A bosonic (3.3) 
if A fermionic " 

* In ref. [18], results very similar to the ones described in this section have been obtained indepen- 
dently. 
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We then write up the super-Virasoro algebra in the following manner: 

+ [ ~ ,  ~ . } ° ~  0 + [~e~, ~e .}°~_0 +~.C(A). 

In the above, 

.~° o - L o , ,L~°~2 = F o (for R-sector only), 

= [ nS"m for A, B bosonic 

8rs or 6,_,.; for A, B fermionic ' 

C(FI) = f 18D(F/2- 1) for NS 
1 2 ~Dn for R 

C(n)  = l~On2 for R,  

C(_r) = ½D_r 2 for NS, 

371 

(3.4a) 

(3.4b) 

(314C) 

(3.5) 

(3.6) 

(3.7a) 

( D = d i m e n s i o n  of space-time) and the 
[~°A, ,£,°B)c, etc., which are useful in dealing with various Jacobi identities. The 
generic Jacobi identity, to be frequently referred to, is of the form, 

+(-)""[[~e,, ~ }~ .}  =0. (3.8) 

It is useful to remember 

[£#A, 5%) = _ (_)A.[ .£# . ,  bOA) ' (3.9a) 

[5°_A, ~-c°_B} c =  --(--)AB[SOA, SOB}C= [5°8, £PAI c , (3.9b) 

[[£,°A, Z,°s}~c} = -(--)CCA+R)[50C[~oA, £'°8} }, (3.9C) 

which follow from the definition (3.2). 

(3.7b) 

structure constants are denoted as 
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Next, we introduce two kinds of bases, e A, eA ' for constructing differential forms. 
Depending on the type of index A, each of them can be either bosonic or fermionic, 
viz., 

c A =  e )  (e0) ,310, 
0 ' - ' o r 0 r  , e A =  0 , , o r  " 

We assume the GAS properues, 

e ' ~ e e =  - ( -  ) " e e % a  ' 

e ee= - -  CBC A , 

and in addition we shall demand 

e %  = (-)Aeeee . 

(3.11a 

(3.11b 

{3.12) 

An (;)  form is then written as, 

~o = o~A 1 " ~;:eB' . . .  e S " e  A . . .  e A , (3.13) 

where the coefficients A,..,,, functionals of the string variable and 
{ 0~ ~n~... B~ are x"(o),  are ~ o} 

forms. The sets of indices { A 1 . . . . .  A, } and { B 1 . . . . .  B h } are always understood to 
be graded-antisymmetrized. 

We now define the differential operator d, which turns an (~) form into an (t, :~) 
form. As we shall demand it to possess a generalized derivation property, it suffices 

to define it on the basic elements. On a (°) form if, we define 

d~p ==-,.~l~e A . (3.14) 

Requiring the cohomological property, de+ = 0, we are led to define 

d e n  -- - ~[  £Pe,  X ' c }  A e e e C .  (3.15) 

d 2 e  A = 0 then follows from the Jacobi identity. Eq. (3.15) further dictates 

e A de e =  ( - ) A e d e e e A .  (3.16) 

To define a suitable derivation property for d, consider a (~) form ~BeAe e and 
act d on it. We get 

do~ = ~ c O a A s e A e  e + W A B d e  "t e e + ( -- ) *oaAee A d e  e , 



Y. Kazama et aL / SuperstrmgfieM theories 3 7 3  

where ( - 1) ~ is a phase produced when d goes through e A to act on e B. Now using 
(3.16) and GAS of ~OAB, it is easy to see that we should take ( - 1) ~ = - 1 so that the 
second and the third terms are equal. Thus, we define 

d(e  A . . . )  = (de A). . .  - e  A d . . . .  (3.17) 

Finally, we need to define de A, which should be a (11) form. We choose 

deA = ( - ) 8c[5°~, ~ A )  -Ce%c.  (3.18) 

The choice of the phase and the coefficient is dictated by the requirements 

(i) d2eA = 0 and (ii) it is suitable in expressing the eqs. (2.5)-(2.8). In fact, on a (10) 
form 

X =- XAeA = O"e,, + q~'-'~. (3.19) 

(3.18), together with (3.14), gives, for the NS sector, 

d X =  (LmeO" + [ L~, L_kl "dp k )e'~e. + ( L~ep'- + [ L m ,  G sl r~S- )emO_r 

+ (G,ep" + {G~_, G t }-"ep~-)O~e,, + (G/o ~-- [Gr, L ,1 -~-ep")OcO~,, (3.20) 

which corresponds exactly to eqs. (2.5) and (2.6). Using (3.12) and a reasoning 
similar to the one which led to (3.17), we establish 

de A e 8 = - ( - ) A B e  8de A, (3.21) 

d ( e A . . . )  = (deA) . . .  +e A d . . . .  (3.22) 

It is now straightforward to work out the action of d on a general (~) form ,0 in 
(3.13). One gets 

d~0 = \ ( ~ o B ~ i  ::: A. + a (  --  ) Bo,A, + 8, + ... +8~) 
Bj, 

lb[~,.,~Bo,.~BalB'o)Aj ~BIB2...A°8~) eS°eS' . . . . . .  eS~eA, eA.  (3.23) 

Before introducing the co-differential operator D, which turns an (~) form into an 
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( ~ 1 )  form, we need to define the inner product of forms. A natural definition is 

1 
8 A" ]ALA2t~A2xAI 8 Aa + " '"  ) (3.24) ---- a! ~VB~v82 "'" 8, -- ( - - J  ~8~ vB 2 . . .  B,, 

where pA .... A, is the GAS projector. When mixed forms are involved, we demand 
S B  1 . . .  B/, 

that the order of the basis be properly matched before (3.24) is applied. For 
example, for ~0 = wABeBeA and O = OB'A,e~'e~ , 

( ~ O , p ) = ( ~ O A , , p " ' A , ) ( e % A , e A ' e B , )  

~AB(~°A P~A) (3.25) = ( - - J  \ 8, , 

where the bracket for the coefficients denotes the Fock space inner product. 
With this definition of inner product, D on an (~) form ~0 is uniquely defined by 

(Dw, O) =- ( w , d p ) ,  (3.26) 

0 is a (a_ h 1) fo rm.  Taking due care of the phase as in (3.25), one finds, where 

Do: = ((_)A~(B, + ... + 8,,)~_~A_IC0AIA2...A.BI... B,, 

+b(_)a,¢B,+. +R~r~e B, [ A~I'~QgBI} AIA2""A" 
- ~ B I  B 2 . . .  B b 

~ ( a -  1)[£P_A~, ~f~O_A2}A2~O--A'&~AR,...B,, . . . .  A") eS'  . . . . . .  eS~eA~ .eAo (3.27) 

An example is appropriate here. Let 

Z =- f A s e %  A ~'" e "  U-' emO_ (3.28) = S ,, e ,  + . . . . .  +~"mOme,, + ~'-',,omO,. 

Then, (3.27) gives, in the NS sector, 

., G _ ~ [Gr, L 1 ~ , ~  . D Z = ( L  ,,'~ , , + [ L , , , L _ , , ]  k ~ , , , +  ~_ , ,+  ,,l S-,_.)e 

¢ . . . .  + [ L , . , G  c] ~ " G _ ~_ + [ L  mS r ~ -- f l = , + { G s , G  ,} ~'~'~,)0 r. (3.29) 

This is precisely the expression relevant in eqs. (2.5) and (2.6). 
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To complete the transcription of the formulae in the previous section into the 
differential form language, we need a few more operators. Define the operator 1~ as 
follows: 

l J ~ = 0 ,  U e A = 0 ,  

U eA - ½[SaA, £~°8)°e8 -- ~/A~e B (3.30) 

When l~ is acted upon a string of bases, we define 

. . . .  

l~(eA.. .)  = -eAl l  . . . .  

1 
l l ( e A l . . . e A , ) = a [ ( l l e A l ) e A 2 . . . e A - - e A l ( l l e A z ) . . . e A +  . ' - ] .  (3.31) 

In other words, 1~ is an antiderivation, except for the normalization convention in 
(3.31). 

Next we introduce the generalized bosonic kinetic operator K defined by 

t ( L 0 -  ~)q~ for NS-sector 
K~b = (3.32a) 

Lo~b for R-sector ' 

K e A  - [£#B, ~0]  ~eB = A e A ,  (3.32b) 

K e  A - [ 2/' A, L0] ~e~ = A e  A . (3.32c) 

It is defined to be a derivation. In the R-sector, we naturally need a fermionic 
kinetic operator F as well. It is also a derivation and is defined similarly to K 
above: 

F+ - F o ~ o ,  (3.33a) 

FeA - [£#B, Fo} Ae%, (3.33b) 

Fe A - [£,° A, F0} 8eBo. (3.33c) 

The only difference is that it creates a symbol o, which keeps track of the statistics 
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of the form*, o has the properties, 

o e A  = ( - -  ) AeAo  , 

0 2 ~ 1 .  

E Kazarna et aL / Supelwtringfield theories 

oeA = ( - )  Ae.o ,  

(3.34) 

W h e n  F acts an odd number  of times, a o remains in the expression. In such a case, 

we imagine an extra basis e, placed always to the right of all the other bases, which 

absorbs  o, i.e. oe = e. This extra basis will not  be explicitly displayed. 

With  the above definitions of  K, F and 1l, we can prove a number  of useful 

properties.  (Proofs  of  some of 

F 2 =  

(Kco, = 

(Uco, p) = 

[ K , d ]  = 

[ F , d ]  = 

[ ~ , K ]  = 

dU + l~d= 

them are sketched in the appendix.) 

K ,  

(co, Kp ) , ( Fco, P) = (co, Fp ) , 

[ K , D ]  = 0 ,  

[ F , O ]  = 0 ,  

0,  

DI~ + I~D = 0 .  

(3.35) 

(3.36) 

(3.37) 

(3.38) 

It is evident f rom (3.35) that F is a generalized Dirac operator. The properties 
above  will be needed when we discuss the gauge symmetry  structure in the next 

section. 

A par t icular  combinat ion of 1~ and F, namely 

. ~ -  F 1~ - • F (3.39) 

is a useful operator .  It is an antiderivation and ant icommutes  with F. Its action on 

the basis is easily worked out: 

,~-~b = ~ e  A = 0,  

~ e  A = ( - - )A[  ~.f,¢8, £#A}Oe~o.  (3.40) 

NOW we come to the most  structured part  of  our machinery, the formula for 
d D  - Dd. In  the case of the bosonic string, it was shown [10] that 

dD  - Dd  = 2 K  U • (3.41) 

• W h e n  one  relates e "4 and e A to ghost  creat ion and ann ih i l a t ion  operators ,  cr is thus no th ing  bu t  
( _ )u  where  N is the fermion n u m b e r  opera to r  in Fock  space. 
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This  was due, among  other  things, to the identi ty valid only in 26 dimensions.  

,),,,,C(n ) - [ Lp, L ,,] ~I[ L,,, L <t]P=2nT/ ...... (3.42) 

where  C ( n ) =  2~ n 2 ~2( - 1). In the case of the spinning strings, similar identities were 

encoun te red  (see eq. (2.9)) in the construct ion of gauge covariant  field theories. In 
our  s t reaml ined  notation,  such identities can be assembled into one equation,  valid 
only  in 10 dimensions,  

= [ o0, m .  }}0+ . .  F0}} 0,  (3.43) 

where  the second term on the r.h.s, vanishes of course for the NS-sector.  Using this 
identi ty,  together  with Jacobi  identities, one can show (see appendix  for a brief 

out l ine  of  the derivat ion) 

dD - Dd = 2 K  1/ +~.~F. (3.44) 

The  .~F  t e rm is again unders tood to be absent  in the NS-sector.  (For  the R-sector,  
the r.h.s, can be writ ten more  symmetr ical ly  as F(F 11 + ll F) . )  Let us give an 

On a (~)) form X - O"e,, + q)'-'0,,, in the R-sector, we have explicit  example .  

. ~FX= (~nF0q)" - ]n2O")e"+ (~nFoO"+ 3nO'- ')0", (3.45a) 

2 K  11 X = 2n(  L o + n)~"e" + 2 ( L  o + n)e~'-'O". (3.45b) 

On the o ther  hand,  

[ 
( d O -  D d ) X =  l(2nLo + ¼n3)@" + ~3nr09- . . . .  

[ 

+Sm"p+~q=m((~m+P)(l ~ 5 n + q )  - (rn + p ) ( m + q ) ) ~ m ] e  '' 

( 3 , ,_  1 ,, ]0" (3.46) + 2Lo+~_n2)ep"+jnFoq) 4 Y~. (m+~p)ep-8  ..... . 
p + q = m  

Afte r  a trivial summat ion  over p ,  q and m, this coincides with ( 2 K  11 +o~F)X. 
This  comple tes  the deve lopment  of  the compac t  language and we are now ready 

to reveal  the symmet ry  structure of  the theory. 
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4. The master-set 

The formalism developed in the preceding section now enables us to reexpress the 
formulas of sect. 2 in a very compact form. To do so we assign "level indices" to the 

string fields introduced there. For instance, in the NS-sector we have 

,tVo -- kVNS ' eplo - epaeA, 

~I,~ =_ ~ASe%A ' etc. (4.1) 

By means of the NS operators introduced in the previous section, the set of eq. (2.5) 

now becomes 

K,/,° + D¢~ = 0, 

d~0°+ 21~ d~+ D ~  = 0, 

K~/'l 1 - d e  1 = 0, (4.2) 

while the gauge transformations now read 

~o = DAlo, 

a , ~ =  - KA~o. 

~ I  = - d A ' 0 ,  

( 4 . 3 )  

This form of variations strongly suggests a further extension beyond (4.3). We 
therefore define new forms of arbitrarily high level in analogy with (4.1), viz. 

~kk =~ ~AI""AkB1.. .Be  B1 . . .  eBkeA1.. ,  eAk , 

q,~+l _ dpA, ... A~ 'B .... B e e ' . . ,  e B~eA1 "'" eA~+ 1' (4.4) 

and replace (4.2) by the more general system 

K'k/t~ - -  d~bk 1 + D , ~  +t = 0, 

n ' t ' k + ~  = 0 .  ( 4 .5 )  dq~ + 2U ¢~+1 + - - k + l  

This is not only invariant under the obvious generalization of (4.3) but under a still 
bigger set of gauge transformations 

8 ~  = - d A ~ _  1 + DA~+I + 2U A k+l k - l ,  

6eO~ +' = - K A ~  +a + dA~+~ + DA~ +2 . (4.6) 
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For the proof, we need all the identities worked out in the foregoing section. The 
reader will undoubtedly recognize the formal similarity of (4.5) and (4.6) with the 
corresponding set of equations for the bosonic string. In fact, everything is the same, 
except that for the algebra to work, we now need D = 10 rather than D = 26. Just as 
in the bosonic case [14], we can now identify the gauge invariances of the gauge 
invariances 

8 A ~  t = DAkk+_ 11 + 211A~+I 2 + d.4~ 2, 

8A~+] = KA~+I~ - '-"" k ,~ Xk+12 + DAX~+~ . (4.7) 

The r.h.s, of (4.7) is again invariant under yet another set of gauge invariances, and 
so on. 

Similar results can be derived for the R-sector. The only difference is that the 
equations now contain the first-order operator F defined in (3.33) rather than 
the second-order operator K. Furthermore, the relation (3.41), which is valid also in 
the NS sector, has to be replaced by (3.44) which we now write in the symmetric 
form 

d D -  Dd = F ( F  ~ + 11 F ) .  (4.8) 

In complete analogy with (4.1), we then introduce the following forms 

g /o  _ g / R ,  41o -- 4 A e  A , 

g'~ - ~ 8 e %  A , etc., (4.9) 

to rewrite eqs. (2.7) in the form 

Fff ~° + D41, = 0, 

a f t ' °+  D~'~ + (FI~ + ~ F )41o=0 ,  

F ~  - d41 = 0. (4.10) 

The gauge invariances (2.8) can now be re-expressed as 

8 q~o = D A ~ ,  6 q' l  = - d A10, 

8 0 1  = - FAro . (4.11) 

As before a further extension of these results is possible. Introducing forms of 
arbitrary rank as in (4.4), we can replace (4.10) by the more general system 

F q , 2  - + = 0 ,  

dq'[  + D~k+ l  -k+a + ( r l ~  + 1/V)4~+~ = 0 ,  (4.12) 
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which is invariant under 

8q '2= - d A ~ _ l  + DA~+I + (FII + II F)A~+'I, 

6q~+1 = -FAd+l+ dA~+] + DA~ +2 . (4.13) 

The gauge invariances of the gauge invariances are given by 

8A~ l = D/]~+] + dA~_2+ ( F  II + lI F)A~+~,  

6A~+~ -: FA~+] - d~+)2 + DA~+ 21 . (4.14) 

As in (4.7), the r.h.s, of (4.14) is invariant under yet another set of gauge 
invariances, and so on. 

Before concluding this section, we wish to comment on the appearance of BRST 
related structures in the string field theory of ref. [14] before it is gauge fixed and 
corresponding ghost fields are added. In the papers of ref. [19] it is explained how 
one can covariantly impose the first class constraints of a relativistic system. This 
achieved by the introduction of a pair of anticommuting coordinates for each of the 
constraints. For the (super)string, the constraints are the 5°A's which satisfy the 
(super)conformal algebra. Correspondingly we must introduce further anticommut- 
ing (commuting) coordinates (C r', Cr, ,, r = 1, 2). 

The starting point for the classical string field theory is the first-quantized string 
theory. The same holds for the classical point particle field theory. Carrying out this 
first quantization we have a configuration space of x~(o) and c(o),?(o) upon 
which the string fields are defined. The well-known action [20] of the operator Q 
(Q 2 = 0 )  is none other than the action of conformal symmetry in the configuration 
space. 

The action of the conformal group on an arbitrary string functional is 6 X = QX. 
However, Q carries a ghost number and so rotates different ghost number sectors of 
X into each other. In particular, we find 8X {°) = QX (1). In the classical string field 
theory we consider only string fields of shifted ghost number zero and so we rewrite 
the variation as 8X(°)= QA where A is now a parameter which has an appropriate 
ghost number. The action which is invariant under this transformation is 

f ~ x  ~c  ~ X(°)Qx (°) . (4.15) 

We wish to stress that there has been no mention of gauge fixing and ghost fields 
and we are dealing with a gauge and not a BRST symmetry in the string field 
theory. The BRST symmetry in the first-quantized theory becomes the gauge 
symmetry in the classical string field theory. We also note that this is entirely in 
analogy with the point particle case [21]. The point particle field theory is defined 
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on (xU, c) and has 6 ~ =  QA where Q - c ( O 2 + m  2) and the action is given by 

f d x  dc q~Qq~. 
The same logic is easily applied to the contents of this paper. The final actions 

and transformation laws we write down are of the form (X, QX) and 6X = QA 
respectively, but now we not only restrict the ghost number of X, but also 
consistently restrict the power in X of the commuting zero mode ghost associated 
with F o. In this sense consistent means that if you take the equation of motion 
QX = 0 without restricting the power of the commuting ghost, one finds that one 
has extra equations. These extra equations are algebraically deducible from the same 
equation QX = 0 when the occurrence of the commuting zero mode ghost in X is 

restricted*. 

5. Space-time supersymmetry 

It has been known for a long time that the physical spectrum of the combined 
NS- and R-model is supersymmetric after suitable "chiral" projections in each 
sector [5]. However, apart from the proof that there is an equal number of bosons 
and fermions at each level in the light cone gauge, space-time supersymmetry has 
remained rather obscure in the "old" formalism, and this has prompted Green and 
Schwarz to develop the "new" formalism [6]. On the other hand, although super- 
symmetry is manifest in the "new" formalism, the original explicit Lorentz invari- 
ance has been lost. It is clearly desirable to have a formalism in which both 
space-time supersymmetry and Lorentz invariance are explicit. In this section, we 
will demonstrate that this can be accomplished by use of the covariant formalism 
developed in the foregoing sections, at least up to a certain level. Since we encounter 
several stringent consistency checks already at the level which we have considered, 
we hope that these results will suffice to convince the reader of the power of the 
formalism. We will also present further (and independent) evidence that the master 
sets described in sect. 4 are best suited for the task of making space-time supersym- 
metry explicit. 

Our basic strategy can be described as follows. We will attempt to define 
supersymmetry transformations in such a way that the first of eqs. (2.5) is trans- 
formed into a linear combination of eqs. (2.7) and vice versa. Starting from the 
super-Yang-Mills transformation laws [5] 

6?, = o Fu~e, 6A, = ~y3, (5.1) 

where )~ and A,  are the massless fields in (2.1) and (2.2) after the GOS-projection, 
we are led to a unique answer for 8'/" R and 6~NS. Since there is no need to impose 

~' If one were to not restrict the occurrence of the commuting zero mode ghost associated with F0, one 
would find another tower of auxiliary string fields [18]. However. the superconformal invariance can 
be implemented without these fields. 
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the equations of motion this result is "off-shell". The auxiliary and supplementary 
fields play a crucial role in this construction. In the supersymmetry transformation 
rules, level number will not be conserved since the fundamental string fields '/'R and 
'/ 'ys in (2.1) and (2.2) vary into the auxiliary and supplementary fields (2.3) and 
(2.4). Therefore, the mismatch in the Fermi-Bose count that arises at any finite level 
after switching on the off-shell degrees of freedom is irrelevant: the supersymmetry 
variation of any field contains infinitely many fields of arbitrarily high level! 
Needless to say that the well-known no-go theorems for the non-existence of an 
off-shell formulation of N = 1 d = 10 super-Yang-Mills theory [5] no longer apply in 
this case. 

The two basic ingredients of our construction are GOS projectors [5] and the 
fermion emission vertex [15]. The projectors are defined by 

(5.2) 

5" ~ ld+d , 
PR -= + ( - )  . . . . . . .  ) (5.3) 

in the NS- and R-sectors, respectively; ~,* is the analogue of the 3, 5 matrix in 10 
dimensions. These projectors can be applied to all equations in sect. 2. While the L,, 
operators commute with PR and PNS, the fermionic operators Gr and F,, flip the 
"chirality"; thus, the "chirality" of the fields ~rNS and q¢~. in (2.5) and (2.7) is 
opposite to that of '/'NS, q"{~S and q'R and q,~ (we now use subscripts R and NS to 
distinguish between the two sectors). The other important object is the fermion 
emission vertex which converts NS-states into R-states. It is given by [15] 

WF(O) = exp( + LR 1) ~i/F(O), (5.4) 

where* 

WF(O) =NS(01exp r".B,,r(1)v*br. Io)R 
r = 1 ,/2 

×exp(~  ~ b,."Ars(1)b~), (5.5) 
r ,  s =  1 / 2  

and the numerical coefficients Ars(1 ) and Bnr(1 ) are given in ref. [22]. It is evident 
from (5.5), that IYVF(0 ) converts an NS-state into an R-state. Consequently, the L 1 
operator in (5.4) has to be the one in the R-sector and we have indicated this by the 
superscript R. From now on, it will be understood that all operators are to be taken 

* W e  u s e  t h e  c o n v e n t i o n s  a n d  n o t a t i o n  o f  ref .  [22]. 
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in the appropriate sectors, and superscripts will not always be indicated. Note also 

that the operator which converts an R-state into an NS-state is the adjoint of (5.4), 

i.e. WF(0) +. 
In the following, we will not need the explicit form (5.5) but rather certain Ward 

identities that tell us how to pull L, F and G operators through W v. To exhibit 
them, we introduce an angular variable 0 ~< 0~< 2rr and define the 0-dependent 

vertex by 

W(0)  ~ e '° 1.~ WF (0) e-'°")"~ (5.6) 

Here Lo Ns is the usual L 0 operator in the NS-sector whereas L0 a is defined such that 

LR =-- r o  + 5. (5.7) 

The "anomalous"  term in (5.7) is precisely the shift that makes the superconformal 
algebras in the NS- and R-sectors coincide in D = 10 and is necessary for our 
further considerations. The operator (5.6) now obeys the Ward-identity [15] 

d 
[L, ,W(O)]=ein°( l (5n+ l ) - i ~ ) W ( O ) .  (5.8) 

Another  important  property of W(O) is [15] 

PRW(O) = W(O)PNs. (5.9) 

The necessity of imposing the GOS projection can be seen as follows. As a function 
of the complex variable z = e i°, W is not single-valued but has a square root branch 
cut. Multiplication by the operator PNS from the right projects out just the right 
terms to render (5.9) single valued*. One can then define Fourier components of 
W(O)PNs by contour integrals in z = e '°. Thus, we define 

2~dO 
W,, ~ f - -  e'"Ow(O)PNs . (5.10) 

2~r JO 

Since the operator is now single-valued, we can now drop "surface terms", and it is 
straightforward to prove the relations 

[L,, ,  W, , ]=(~  -3~m -n)W,,+,, (5.11) 

from (5.8). In particular, (5.11) implies 

r#Wo: Wo(Lo- (5.12) 

* For the light-cone version of (5.6). this was already noted in ref. [6]. 
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which explicitly confirms the necessity of the redefinition (5.7) because, with this 

definition, the kinetic operators in the NS- and R-sectors are connected through W 0. 

The Ward identities involving F ' s  and G ' s  are more complicated [16]. For 
arbitrary N ~ Z and n >i 0, they read 

fi, mF ,,Wm+N =-iWN+,,+I/2G ,, 1/2--i ~ W~_s~,,+l/z,~G ~, (5.13) 
m = 0 s = 1 / 2  

where the coefficients ar~ and //,m are given by 

(1t(1) 
p + q = r + ~ '  P . q 
p ~ r  1 / 2  

]~ .... _=(_)- ,+, ,  y[ 2 . (5.14) 
p + q = n l  H -- q 

p ~ n  

These coefficients are directly related to the ones which appear in the fermion 
emission vertex (5.4) [16, 22]. Observe that, in (5.13), we have omitted a factor 7"  on 
the r.h.s, because W is defined with the GOS projector. From (5.13), it is also 

obvious that the infinite set is more convenient than the finite one of ref. [9] because 
of the occurrence of an infinite number of F ' s  and G's.  

To  implement  (5.1), we start with 

8'/'R = FoW0q'NS + " '"  (5.15) 

and use (5.13) and (5.11) such that the first of eqs, (2.7) is varied into a linear 
combinat ion of eqs. (2.5). After some calculation, this leads to the result 

= ~ t~ w ,~,,+,/2 ~ r 8qs R FoWo~°NS + i ~'¢,0"" n - 1 / 2 ~ t ~ N S  q -  ° ~ r s F o W  r - s ~ N S  s ~  

n = 0  r ,  s =  1 / 2  

i1 
8x~ = Wc~'Ns, 

8 ~ =  i ~ t~ W ~n+l/2 (5.16) 
t ~ n  rn nl  n - 1/2"P" N S  " 

n = 0 

The reader may verify from (5.5) that the first two terms in 3'/" R, i.e. 

a,1/2 ~_ (5.17) 3 ~  R = FoWo~Ns + i W  1 / 2 " ~ N S  - -  " " " 

indeed reproduce (5.1) after the elimination of the auxiliary field VNS.~'I/2 In a similar 
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fashion, one can determine the supersymmetry variations of the bosons; they are 
n ~ tl t l  n 

(XNS -- X .  q'~.) ~ N S ,  

Zl ~ [ Yll , t l  ~ 1 

8 Ns i ,1+ , l  
~ = - 5 n X R  F0q~R) 

tl __ n 
{ ~XNs  - -  W o ( I ' o X R  -~- 2 q ~ ' ~ ) ,  (5.18) 

where the coefficients are given by expressions similar to the ones given in (5.14). To 
verify (5.16) and (5.18), one must make use of the special properties of the 
coefficients (5.14); for instance, one needs the relation [16] 

Y2~ (s+½n)c%=-x~(3n+ l). (5.19) 
t ~ + s ~ t l  

Although, in (5.16) and (5.18), the infinite set is obviously the appropriate one, one 
can in principle reformulate these results in terms of the finite set. This is, however, 
rather awkward since it requires one to re-express all G and F operators occurring 

in (5.13) through G ±1/2, G + 3/2 and F± 1, L + 1- One may also try to calculate the 
variations of the supplementary fields by repeating the above procedure. It then 
turns out that the master set is still "bet ter"  for the following reason. When the first 
term on the right-hand side of (5.13) acts on a supplementary field f,f (this 
corresponds to some component of D'/'I), the Ward identity (5.13) produces terms 
of the type G,~'~ (corresponding to some component of dq'1). But the infinite set 
does n o t  provide an equation for d'/~1, see (4.2), whereas the master set does provide 
such an equation, see (4.5). Thus, although one can pass from one set to another by 
successive gauge fixing, the supersymmetry transformations will become more and 
more complicated owing the compensating transformations that are necessary to 
maintain the chosen gauge. We will not pursue this matter here, but would like to 
point out that the full supersymmetry transformation can presumably be written in 
a very compact form by absorbing all string fields into a functional field which 
depends on some (commuting and anticommuting) ghost coordinates c"(o)  [11]. 
The supersymmetry transformations are then represented by 

. . . .  ) =  w 'Ns(X.(O) . . . .  ), (5.20) 

with some operator W. From (5.16) and (5.17) one infers that this operator must 
depend on the ghosts because (5.20), when expanded, must give rise to mixing 
between the fundamental string field and the supplementary fields as in (5.16) and 
(5.17); this observation is in accord with the results of ref. [23]. A possible form of 
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W is suggested by the form of the recently constructed off-shell vertex for the 
bosonic theory [24]. 

Note added 

We give here some details on the truncation of the Ramond string field ~R, 
mentioned at the end of sect. 4. When expanded out on the commuting (0 -°, 0o ) and 
anticommuting (e °, eo) ghost zero mode, we restrict '/'R to be of the form 

~R = ~RIOR) + 0-0dpRIOR) + e0FqSR]0R) - 

In the notation of eq. (3.10) 

and one takes 

{e°,eo} = 1 =  [0-°,0_o] 

eolOR> = OoIOR) = O. 

The interesting feature of such a restriction o n  x~t R is that QRX/tR has the same 
form: 

QRXPR = ( (D + d) d R +  ( F  U + 1~ F)q~R + O ° [ F ~ R +  ( D -  d)q~x] 

+ e°F [ Ft~ R + (D - d)daR] }IOR). 

Of course, QR~R = 0 reproduces the equations of motion (4.12). Thus, if we also 
restrict the gauge transformation string field to be of the same form, the structures 
of the supplementary string fields of the Ramond and Neveu-Schwarz sectors 
become similar, as indeed the explicit equations (2.5) and (2.7) suggest. 

One then defines a left-vacuum (0RI satisfying 

(ORle ° = O, (ORIO 9= O, (ORIOR) = 1. 

For the inner product of two Ramond string fields ,/,1 and '/'2 both of the above 
restricted form, we then take 

It is straightforward to check that our rules give, upon doing the zero mode 
algebra: 

<OR[ (_O0)eoXP~XPR2 IOR> = <t~lR, ~b2> + (~blR, +2>. 
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Hence the inner product is hermitian. The Ramond sector action is then 

S R -- ½(0RI (-Oo)eo't"~Qn't'RlOR). 

Expanding ~Pn and ~R on the ghost occupation number basis, one then retrieves for 
the first supplementary fields the hermitian action of ref. [13], which gives rise to the 
equations of motion (2.7). 

Appendix 

In the following, we shall sketch the proofs of the useful properties of the 
operators introduced in sect. 3. With the exception of (3.44), the properties such as 
those listed in (3.35)-(3.38) are relatively easy to prove and we shall pick (3,35) and 
(3.38) as examples. 

P r o o f  o f  F :  = K.  Since F and K are both derivations, we shall first prove it on 

the basic elements. On a (0 °) from ~, the proof is trivial. On e A, using the definition 

of F, we get 

F2eA = [F0, 5° A} BFeB ° 

= IF0, - ' [  F0, 2 

= [Fo[Fo ' c f  A} } - ( e c -  (A.1) 

In the last line, we used the fact that the "intermediate states" of the Jacobi triple 
commutator is, in this case, saturated by the Virasoro operators with negative 
indices. Now we can use the Jacobi identity to get 

[ F o [ F o , ~ f  A } )  C = [ L o ,  g f  A] C=A($~. (A.2) 

Thus, F2e~ = A e  A = Ke A. In a similar fashion, we get F2e ~ = Ke A. Next it is easy 
tO show aFe  A = - ( -  I )AFeAo and aFe A = - ( -  1)AFeAo. Using this, one proves 
o F  = - F o  on any form. This in turn means that when F, as a derivation, goes 
through another F, we get a minus sign, since F itself contains a o. Now let e be 
any basis (including a zero form) and let F F  act on a string of bases starting with e. 
Then, 

F 2 ( e . . . ) = F ( ( F e ) . . . + e F . . . +  . . . )  

= ( F 2 e ) . . . - ( F e ) F + ( F e ) F +  . . .  

= K e . . .  + e F  2 . . . .  (A.3) 
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The process continues and, due to the pairwise cancellation exhibited above, we 
have K acting on each basic element. This proves F 2 = K on any form. 

Proof of d 1~ + 1~ d = 0. The strategy of the proof is exactly the same as in the 
previous one. The only non-trivial part  is the demonstration of (dl~ + lld)e A = O, 
which we shall now sketch. From the definition of d and ~, one gets 

(dl~ + Ud)e A = - 12([Le z, Lec)A'~A'A --[Lee, ~ A )  S'~B'B 

+(--)"C[LeB,Le A} c'~c,~)eeeC. (A.4) 

This vanishes due to a Jacobi identity. To see this, start from the generic Jacobi 

identity 

0 = [[Le., + Le. )Lec) 

+ ( - ) " 'A+c ' [ [Lec ,  Le Le. } (A.5) 

and look at the part  involving L 0. For instance, in the last triple commutator,  such a 

part  is 

= (-)~¢A+c'[Lec, ~-A} B'(--)l+BB'[LeS, ~-B'}, (A.6) 

where we have used (3.9a). This expression contains - [Lee ,  LeA} B'2~IB'RLo" 
Collecting the coefficients of L 0 from the other two terms, one easily sees that the 
r.h.s of (A.4) vanishes. Now as before, on a string of bases, one shows 

(dll + l l d ) ( e . . . ) =  (dl~ + l Jd )e . . .  +e (d i l  + l~d) . . . .  (A.7) 

where the signs are + for ~b or e A, - for e~. This shows that dl~ + l~d vanishes on 

any form. 
Proof of dD-  Dd= 2K~. When one tries to compute the 1.h.s., on a general (~) 

form ,.,, using the formulas given in sect. 3, one encounters numerous terms of 
varying structures. Eventually most of them cancel and the remainder gives precisely 
the r.h.s. However, a part  of the cancellation mechanism is not transparent and it 
should be helpful to give some guides. 

First, the terms involving L 0 and F 0 operators are easily seen to match those on 
the r.h.s. It  is also not difficult to check that the terms proportional to Le A and Le-A 
all cancel among each other if one recalls the GAS of appropriate sets of indices. It  
is the numerical terms handling of which is not trivial. Below we give a typical 
example of how one should deal with them. 
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Consider a term, call it ( - D & 0 )  22, which is produced by operating the second 
term in (3.27) onto a second term in (3.23). Explicitly, it is of the form (suppressing 
the basis), 

( - D d o a )  22 = - ( b  + 1)a(--)A'B'+ .-. +8~)(_)8,A+B~+ --. +8~, 

×[~A, ,~8o) -8[~q~8 ,~q~-C}  A~oCA'-'A"8,...8~ • (A.8) 

Because of the graded-antisymmetry assumed before and after D acts on dw, the 
above expression actually represents the following: 

( - D d o ~ )  = =  Co+ C 1 + C 2, (A.9) 

Co= - b ( a  - 1) A(BI . . . .  +Bh)+BBI+AA2+8I(A2+B+B2+ "'" +B~) 

B , 
× [~A, 5P 8o} [ 8, ~ C) A20a88~..CAA .... 8,,~", (A.10) 

C 1 = b ( - )  a(Sl+ " +Bt>)+BBi+BI<A+B+B2+ ... +Bb) 

× [soA. so c)- .... 

+ ( a  - 1 ) ( - )  A~81+ "'" +8~,+A~,+8~12+8,+ ..-+8~) 

X[~I)A,  m B ( I }  B[~B,~I)~C}-A2ooCAA&... .... B,. A. , (A.11) 

C2 = _ _ ( _ _ ) A < B I +  "-. +Bt,>+B(A+BI+ "-. +B#,) 

X [ "~A ' ~'QO- 8o } B[ '~8  ' " ~ C }  AoOCAB 1 .-. .... U,,A" . (1 .12 )  

They are classified according to the number of contractions among the indices of 
the structure constants. This classification is useful because there are definite 
patterns associated with these types. C o , which has no such contraction, gets 
completely cancelled. (The reader should find the relevant term in dDoa.) C 1, on the 
other hand, has one contraction. For example, consider the term proportional to 
[~c ,  ~ 8 , ) A [ ~ ,  ~e -8 8o} . If one looks through the other parts of (dD Dd)~o, 
one finds a term which is of exactly the same structure except that A is replaced by 
- A .  Together they form an incomplete triple commutator, i.e. 

" -  . . < , )  " 

[ < , w  o 
- _,~}-[F0, £P 80 } (1.13) 
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N o w  it is easy  to recognize  that  the two terms on  the r.h.s., for which  the 

i n t e r m e d i a t e  ope ra to r s  are L 0 a n d  F 0, are precisely those which occur  in  ( 2 K +  

~ F ) ¢ 0 .  T h e  t r ip le  c o m m u t a t o r  term,  o n  the o the r  hand ,  f inds  its pa r tne r s  f rom the 

o t h e r  pa r t s  o f  ( d D -  Dd)~0 a n d  cance l  due  to the Jacob i  ident i ty .  F ina l ly ,  cons ide r  

C 2, in  wh ich  two indices  are con t r ac t ed  a m o n g  the s t ruc tu re  cons tan t s .  This  is, in  

fact ,  the  o n l y  t e rm  in  ( d D -  Dd)~0 wi th  such a feature.  Toge the r  with the cen t ra l  

cha rge  t e rm  p r o d u c e d  f rom the a p p r o p r i a t e  c o m m u t a t o r  in  d D  - Dd,  it takes  par t  

in  the  i d e n t i t y  (3.43), val id  on ly  in  10 d i men s i ons .  A g a i n  the te rms  on  the r.h.s, of  

(3.43) are recogn ized  to occur  in 2 K  g + ~ F .  W i t h  the knowledge  of  the genera l  

p a t t e r n  ske tched  above,  the reader  shou ld  comple t e  the p roo f  w i thou t  diff icul ty .  
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