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Consistent closed superstrings are contained in the 26-dimensional bosonic closed string 
theory. We explain in detail how the states, operators and interaction vertices of superstrings 
emerge in this way. We also discuss possibilities for obtaining new string theories. 

I. Introduction 

The discovery of consistent ten-dimensional superstring theories [1-3] has fuelled 
hopes that a unified theory of gravity and matter  may now be within reach. The 

cancellation of all anomalies for the gauge groups SO(32) [2] and E 8 x E 8 [3,4] and 
the one-loop finiteness of the corresponding string theories [2, 3] make the heterotic 
string theories [3] an interesting candidate, especially in view of speculations that the 
E~ x E8 theory may actually be related to known physics. However, the question 
remains why there are at least five consistent theories where one would be enough. 
Freund was the first to suggest that the theories with gauge groups SO(32) or 
E x x E 8 might arise as "soli ton-type" solutions of the purely bosonic string theory 
in 26 dimensions, and that the latter should therefore be regarded as the fundamen-  
tal string theory [5]. In ref. [6], it was furthermore proposed that all superstring 
theories, including the two type-lI superstrings, are contained in the D = 26 theory. 
The conditions for such solutions to exist were investigated in [6], and, in particular, 

a mechanism for the emergence of space-time fermions and a tachyon-free solution 
out of a purely bosonic theory were described there. In this paper, we will give a 
detailed account of the construction performed in [6] and present some new results. 

Before presenting the derivation of our results, we shall explain in qualitative 
terms why space-time supersymmetry is expected to hide in the simpler bosonic 
theory. To generate space-time fermions from the bosonic string, one must meet at 
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least two requirements. First, some dimensions r = 24 - d have to be compactified, 
leaving d uncompactified transverse dimensions, in such a way that the internal 
symmetry group G resulting from the compactification contains an internal group 
Spin(d), the covering group of SO(d).  This can be achieved by torus compactifica- 
tion for a suitably chosen simply-laced group G of rank r. Second, the transverse 
group SO(d)  of the non-compactified dimensions must be mapped onto Spin(d) so 
that the diagonal subgroup SO(d)diag of SO(d) × Spin(d)  becomes identified with a 
new transverse group. In this way, spinor representations of Spin(d)  describe 
fermionic states because a rotation in space induces a half-angle rotation on these 
states. The consistency of the above procedure critically depends on the possibility 
of extending the algebra so(d)diag tO the full Lorentz algebra so(d+l ,1)d~a ~. 
Readers should note that a similar mechanism occurs in monopole theory: the 
symmetry of a monopole solution is the diagonal subgroup of the ordinary rotation 
group and the isospin group and space-time fermions may be generated out of 
bosons in such an environment [7]. We emphasize that, a priori, this mechanism for 
generating fermions out of bosons has nothing to do with boson-fermion equiv- 
alence in two dimensions. Supersymmetry necessitates a third requirement which 
will turn out to be crucial also for closure of the Lorentz algebra s o ( d +  1, l)diag and 
for the removal of the tachyonic state: a consistent truncation must be performed 
on the spectrum of the bosonic string. This is to be expected because the consistency 
of supersymmetry in D = d +  2 dimensions is guaranteed by a super-Virasoro 
algebra rooted in a local supersymmetry of the world sheet; hence some bosonic 
degrees of freedom will be used in building a super-Faddeev-Popov ghost, and will 
decouple from the physical transverse states. More precisely, in a supersymmetric 
sector of the closed string, the states involving p bosonic operators pertaining to the 
r compactified dimensions must decouple, except possibly for some zero modes. We 
thus determine p by the cancellation of two-dimensional conformal anomalies. This 
implies the restriction [6] (see sect. 7) 

d 8. (a.1) 

The maximum value of d will be shown to characterize ten-dimensional super- 
strings. In ref. [8], the existence of new supersymmetric anomaly-free and one-loop 
finite theories of the heterotic type with d < 8 has been demonstrated. These new 
models are also contained in the D = 26 bosonic theory. 

The organization of this paper is as follows. In sect. 2, we discuss the modifica- 
tions that are necessary for the Frenkei-Kac construction [9, 10] to be applicable to 
the closed string. In particular, we show that the vertex operator in the compactified 
dimensions factorizes into a product of a left-moving and a right-moving part. This 
is only possible because of the topological excitations present in the compactified 
dimensions; the ordinary vertex operator of the (uncompactified) closed string 
c a n n o t  be factorized in this manner. In sect. 3, we prove the closure of the 
(superstring) Lorentz algebra by using only the bosonic operators of the Kac-Moody 
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algebra that arise through the compactification [9, 10]. This treatment differs from 
all previous ones including ref. [6] where an explicit representation in terms of 
fermionic oscillators had to be used to prove that the terms quadratic in the 
Kac-Moody generators (i.e., quartic in the fermionic oscillators) cancel. Another 
advantage is that, in this way, we can prove the closure in the "old" formalism [11] 
and the "new" formalism [1,2] simultaneously. The fermionic representation of the 
Kac-Moody generators is discussed in sect. 4, where we discuss the various sectors 
in much more detail than has been done in [6]. The truncation of the spectrum is 
explained in sect. [5] both in terms of the "hypercharge" [6] and in terms of the 
partition function*. We give arguments why not only the states but also the 
interactions of the superstring can be understood from 26 dimensions. In sect. 6, we 
go on to speculate about other possibilities and consider the compactification on 
just one E~ lattice with subsequent identification of the SO(16) subgroup of E8 and 
the original transverse SO(16)**. Finally, we review the anomaly counting argu- 
ments leading to (1.1) and consider the possible realization of the ideas presented in 
[6] and here in the covariant framework. 

2. Compactification of closed strings 

An essential r61e in the compactification of strings is played by the Frenkel-Kac 
mechanism [9,10]. In this section, we briefly describe the modifications that are 
necessary in order for this construction to work for closed strings***. For the open 
string, all physical degrees of freedom are contained in the expansion of the 
transverse string coordinates 

1 
X'(o, r) = qt + p% + i E - a ~ c o s n o e  -`'~, (2.1) 

n ~ O  g/ 

or, at o = 0, the Fubini-Veneziano field [14] 

1 
= - - ' '  (2.2) X'(z) q' i p t l o g ( z ) + i ~ - z  a,,. 

n~O II 

Here, we have put 2 a ' =  1, and the operators appearing in (2.1) and (2.2) obey the 
usual commutation relations 

[q l  pJ]  = i ~ t J  

= mO'JO.,+..o. (2.3) 

* R e m a r k a b l y .  the par t i t ion  funct ion of the E• × E x theory a l ready appears  in [12]. 

** Whi l e  wr i t i ng  this  paper,  we became  aware  of ref. [13] which con ta ins  s imi la r  ideas. 
~' ** Re~,ult~, s i m i l a r  to the ones  descr ibed in this sect ion have been ob ta ined  in ref. [15]. 
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The vertex operator for the emission of a tachyon is [see, e.g., ref. [10]] 

U(r, z) - z;-/:'e i'x~:)" (2.4) 

where r z is the momentum of the tachyon emitted. The normal ordering prescrip- 
tion in (2.4) is such that p is to the right of q [10]. It is a central result that for 
quantized momenta r t on the root lattice A R of a simply laced Lie group G*  (i.e. 
r 2 = 2 for all roots), the Kac-Moody algebra over G may be constructed from (2.4) 
[9, 10]. (See next section.) 

For  closed strings, one has an expansion analogous to (2.1) (see, e.g., ref. [16]) 

Xl(o, r ) = q l  + pl,c + 2LIo 

{ 1 ) 
+ ¼i Z 1__ , - 2 i , , , - o ) +  - a~ , , e -2 i ' " '+° )  (2.5) 

- n~O n aLne n ' 

where a winding term 2LZo is included if the string is compactified on a torus of 
radius L ~ in the I th dimension. Apart from the additional operators, (2.5) differs 
from (2.1) by several factors of 2, so the Frenkel-Kac construction is not im- 
mediately applicable. It is now convenient to write (2.5) as 

with 

x ' ( o ,  = o) + + o ) ,  

1 
X~( ' r -o )  =-q~ + p ~ . ( z - o )  + ½i Y'~ na[_,,e -2i''(~-°), 

n~O 

1 
X ~ ( T + o ) -  q~ +p~(~ '+o)  + ½i E na~,, e-2i''''+°). 

n~O 

(2.6) 

The a~,, and a~,, obey the same commutation relations as in (2.3), whereas the 
centre-of-mass coordinates and momenta can now be taken to satisfy 

such that 

[q ~ ,q ~]=[q ~ ,p ~]= O,  

[q~, PJL] = [qR, PJR] : ½ i3'J, 

q= qe + qR, p = pC + PR (2.9) 

obey the usual commutation relations. The realization of these new operators in 
terms of the ones appearing in (2.5) requires the introduction of a new operator Q/ 

* O r  a n  cven  sub la t t i ce  o f  the weigh t  lat t ice.  

(2.8) 

(2.7) 
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which is canonically conjugate to L / 

[ Q ' ,  L J] = ~i6 'a.  (2.10) 

An explicit representation is then furnished by 

q~ = ¼q' + Q ' ,  p~_= {p '  + L ' ,  

q~ = ¼ q ' -  Q ' ,  p~ = ~ p ' -  L ' .  (2.11) 

Since we are working in a representation where p and L are diagonal, we introduce 
a similar split for their eigenvalues r and / 

w L = - ~ r + l ,  w R = m r + l .  (2.12) 

To see how they are restricted, we recall the mass formula 

a m - = a r - +  + N  L + N  R - 2  (2.13) 

and the constraint 

r - I =  N R -  N L, (2.14) 

which is a consequence of the requirement that there should not be any dis- 
tinguished point on the closed string. In (2.13) and (2.14), N R and N L are, of course, 
given by 

U L = ~ a [  ,,aL, , t  , NR = ~.] a~_,,aR,, ' . (2.15) 
n = l n = 1 

In terms of the new variables introduced in (2.12), (2.13) and (2.14) become 

1 9 1 9 :,m- = ~(m~_ + m}.), 

and 

l 2 t WL 2 + NL 1 l 2 1 . , 2  ~mL--=~ -- , ~mR= _~-R+NR--  1, (2.16) 

With this choice, the vertex operator factorizes according to 

U ( r ,  I, = ( . ¥ ,  (2.19) 

½(n '~ -  n'~) = N R -  N L. ( 2 . 1 7 )  

Let us now consider the vertex operator for the compactified closed string. Substitu- 
tion of (2.5) shows that (2.4) is no longer a good choice because it does not factorize. 
Therefore we propose to modify (2.4) by 

e i ' x  ~ e ~ ' ' x .  e 2 i / ' ( ~ R  - " ~ ' )  (2.18) 
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UL( WL, Z) ---- Z"'~/2:ei"'L'XL:, 

UR ( " R ,  '~) ~ "~'R/2 :ei)"R "XR : '  (2.20) 

where we have defined the closed string Fubini-Veneziano fields 

1 
XS(z) = 2 q ~ -  ipaLlOgz + i E - - a [ , z - "  

n#:O gl 

1 
X~(£) =- 2q~ - ip~log£ + i ~, na~,,e - ' ,  

n~*O 

(2.21) 

which differ from (2.7) by a factor of 2. These factors are crucial because they are 
precisely what is required to apply the Frenkel-Kac construction to each factor in 

(2.20) separately. Observe that the factorization exhibited in (2.19) is only possible 
for the compactified coordinates. In the uncompactified directions it is the absence 

of the zero-mode operators Q and L that prevents the factorization. 
In general one obtains a Kac-Moody algebra G × G, generated by the moments  

of the UL(W L, z) and UL(W R, ,~), where w L and w R are roots of G. This should not 
be confused with the use of vertex operators for the emission of physical states. As 
was shown in [17], w L and w R must in general lie on the weight lattice Aw of G. 

Furthermore,  they satisfy an additional constraint 

I¢ R -- W L E A R ,  (2.22) 

which plays an essential role in verifying the modular invariance of the one-loop 
ampli tudes [6] (in (2.22) A R is the root lattice). This condition, plus the requirement 
m L = m R (i.e. (2.17)) defines the set of physical states. Their vertex operators are 
given by (2.19) after integration integrated over o (for states which are a i or a ~ 

oscillator excitations, additional momentum factors must be included). The group 
generators are not of this type: having either w L = 0 or w R = 0 they do not satisfy 
m L = m R (nor do they have to). Because of the factorization (2.19) they can act 

properly on both factors separately. 
The modular  invariance constraint (2.22) simply means that the left-moving 

and right-moving component  of a physical state must belong to the same conjug- 
ation class of G. One can formulate this more elegantly by considering (w L, WR) 
as a vector on the lattice A L ~ A  R with a Iorentzian metric with signature 
( +  . . .  + , -  . . . .  ). One then considers a sublattice, obtained by removing all 

points for which w L and w R do not belong to the same conjugation class. As was 
pointed out by Narain [8], this sublattice is even and self-dual with respect to the 

lorentzian metric. 
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Note that the even lorentzian character of the lattice ensures consistency of our 
factorized vertex operator. Indeed, for arbitrary weights wL and wR, which may 
have odd or non-integer length, the o-integral of the vertex operator (2.19) is not 
manifestly well-defined, because the integrand may have cuts in z or ,L This is due 
to the zero-mode part of (2.19), which contains a factor 

Z ' ~ / 2 Z ' L ' V L  ~ ' ~ / 2 ~ ' "  "V, . (2.23) 

On a state with lattice momenta (w~_, n,~) one gets a potentially dangerous factor 

z "?-/2 + ,.L..,~ ~.,?~/2 + ,,R" "i~ (2.24) 

(the oscillators may contribute additional factors z or ,~, but always with integer 

powers). This can be written as 

RZ(~'L WR)/22WL WL -- WR.W ~ ( z ~ )  . , ~ / 2  + . , .  . . . .  ,-, _ 

The factor (z2) v is harmless for any y, but the exponent of z should be integer for 
any allowed choice of (w L, w R) and ( k, H,~.). Because w~. w~. = 0 is certainly a 
point on the lattice, this implies that w ~ - w ~  must be an even integer, i.e. the 
lattice must be lorentzian even. The other constraint, wt-  ,,~_ - w R • w~. is integer, is 
then automatically satisfied. 

Altogether this shows that the closed string sector can be compactified on G × G 
when the open strings are compactified on G. For theories with only closed strings 
we may contemplate more general possibilities, such as compactification on G × G '  
(G 4: G ' ) ,  because of factorizability of the vertex operator. A minimal requirement 
is modular invariance at the level of the closed string one-loop amplitudes. Then in 
addition to G x G with the constraint (2.22) one can choose a lorentzian lattice 
A • A' where A and A' are even self-dual euclidean lattices. (The constraint (2.22) 
has no meaning in this case, since it was only derived for compactification of left 
and right sectors on the weight lattice of the same group G. Instead, the modular 
invariance is in this case an immediate consequence of the one-loop calculations in 
refs. [17], [6] and [8].) Even, self-dual euclidean lattices exist only in dimension 8n, 
the lowest-dimensional examples being E 8 for r = 8 and E 8 × E 8 or spin(32)/Z z for 
r = 16. This yields two new closed string compactifications, namely 

(Spin(32)  )L ® ( Spin(32 ) Spin(32) 

z z2 ( ' ' 
(since the root lattice of E 8 is identical to its weight lattice, the cases (Es) L × (Es) R 
in r = 8 and (E~ x Es) L x (E 8 x Es) R, in r = 16 are of the general G x G type. 
Notice that we have now t w o  lattices which lead to an SO(32) x SO(32) Lie-algebra 
in 16 dimensions.) 

In this paper we shall be mainly concerned with the possibility of independent 
compactification of the left and right sectors such that G a n d / o r  G '  contains 
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Spin(d). A non-trivial constraint relating the two sectors (i.e. (2.22)) is unacceptable 
for that construction, so that we are left with only the possibilities G, G ' =  E~ 

(r  = 8) or Es X Es or Spin(32)/Z 2 (r  = 16). Note, however, that for r > 16 it is still 
possible to choose G ' =  G when (H¥, WR) form a more general self-dual lorentzian 
lattice [8]. 

3. Bosonic construction of the superstring Lorentz algebra 

As already pointed out in the introduction, one of the necessary prerequisites for 
bosonic strings to contain superstrings is a breakdown of the original Lorentz group 
such that the new transverse Lorentz group is identified with the diagonal subgroup 
SO(d)d+ag of the original transverse Lorentz group and a Spin(d) subgroup of G, 
where G is the group that arises in the compactification via the Frenkel-Kac 
mechanism. Consistency then demands that the new transverse Lorentz group 
should be extendable to a full new Lorentz group; this will only be possible under 
very special circumstances. In this section we will present a purely bosonic deriva- 
tion of closure of the Lorentz-algebra for all ten-dimensional superstrings. In the 
next section we will relate this bosonic formulation to the three well-known 
fermionic formulations (i.e. Ramond, Neveu-Schwarz and Green-Schwarz), for 
which some essential steps in the proof of closure are very different. The advantage 
of the bosonic formulation is that it includes all three formalisms in a single 
calculation. 

Although we will eventually be led to consider an SO(8) subgroup of E~ x E 8, we 
will do the calculation in this section for an arbitrary SO(d)  (d = even) Kac-Moody 
algebra, represented by bosonic vertex operators. The algebra is constructed as 
follows. For a root vector r ( r  = 2), one defines 

dz  
Am(r ) = f zm+l:exp(ir  • Q ( z ) ) : ,  (3.1) 

2 ~riz 

where Q(z )  is the Fubini-Veneziano field defined in the previous section. To close 

the algebra we also need 

f dz  z " 'P" ( z )=a~ , , ,  (3.2) 
P~ = 2~iz 

where P~'(,z) - i z ( d / d z ) Q " ( z ) .  For closed strings one simply uses these definitions 
in each sector separately. These operators have the following properties [10] 

A, , , ( , ' ) . 4 , , (~ )  - ( -  1)"  ' A , , ( s ) . 4 , . ( r )  = 

r .  P,,,+,, + mS,,,+,,,0, 

A,,,+,,(r+s), 
O, 

r ' S  ~ - - 2  

r . s =  --1 

r.s>~O 

[ P,~. A, ,(r)] = rUA,,,+,,(r). (3.3) 



F. l ingler t  et al. / S u p e r s t r m g s  3 2 3  

To define the SO(2n) Kac-Moody algebra we choose n or thonormal  vectors e .  
(a  = 1 . . . . .  n), which, together with - e .  are the weights of the vector representa- 

tion. The roots are then given by _+e~ _+ e~, a e /3 .  To write the generators in the 

conventional real basis, we associated with each pair of weights e~, - e .  a pair of 

indices al,  Ot 2 such that al ( f l l  . . . .  ) = 1 , 3  . . . . .  2 n - 1  and O l 2 ( / 3  2 . . . .  ) = 2 , 4 , . . . , 2 n .  
i j  __ j i  Then we define generators K,,, - - K , , ,  where i and j run over all 2n indices, in 

the following way: 

~la~ ~ " P m  K m - - -  e ,~  , 

K.~ '~' = - -', i y ~  [A..(,~ +/3)  + A.,(,~ - / 3 )  + Ao, ( - ,~  - / 3 )  + A . , ( - , ~  + / 3 ) ] ,  

K.",, ~-' = ~7ov, [ A. , (~  +/3)  - & , ( ~  - / 3 )  - Ao,( - ~  - / 3 )  + A.,(  - ~  + / 3 ) ] ,  

K,~, '-t~2 = ½iT~Tt~[A.,(a + / 3 )  - A . , ( a  - / 3 )  + A . , ( - a  - / 3 )  - A . , (  - a  + / 3 ) ] ,  (3.4) 

where " a  + / 3 "  means " G  + @" (a  ~/3).  The notation here is as follows: a l a  2 are 
indices in the s a m e  2 × 2 block, i.e. a~a 2 = 12 or 34, etc., and K o'a2 therefore 
belongs to the Cartan subalgebra of SO(2n); for the remaining generators, they 
belong to di f ferent  blocks such that for instance al/32 assumes the values 
14, 16, 36 . . . . .  The y-matrices satisfy an n-dimensional Clifford algebra (y~, ~,~ } = 
23at ~, and are added to provide the correct factor ( - 1 ) ' '  in (3.3). It is straightfor- 
ward to check that these operators satisfy the commutat ion relation 

[ K i.i, , K /.P, ] = - -  t:[ v l ~ m  + n O'~ jp -[- --n,]f JP+ ,W t~il - -  --n,K iP+ n ~ y l  - -  *'mJ~'Jl + n~t~iP ]! + 2mk8~{8,. +,,.o, 

(3.5) 

where 

i j . 

In our case this Kac-Moody algebra is satisfied with k = 1, but we will keep k as an 
arbi trary paramete r  to keep track of the contribution of the central term. 

We are now ready to write down the Lorentz generators: 

j i j  = l i j  + M i J  + K ~ j ,  (3.6a) 

i 
j i - =  l i + F i, (3.6b) 

P+ 

j i +  = li+ , (3.6c) 

J + -  = l +- , (3.6d) 
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with 1'"'= x O p " -  x"p ~ and 

- ,  ! (6 ,  ,,6;,-6 ,,6,,),, ' 
. = 1  F/ 

(3.7a) 

The term Kcl j in (3.6a) appears because we have assumed a symmetry breaking such 
that the new transverse Lorentz group is the diagonal subgroup of the original one 
and a Spin(d) subgroup of the internal group generated in the compactification. 
The operator "},,,- is the usual 6,7, but summed over N oscillators instead of d: 

N oc 

. / . ( 3 . 8 a )  

d oc 

- ' " ( 3 . 8 b )  6 , , = ~ Z  I2 :6~ ..... 6,,,.. 
/ = 1  . i = - o c  

~d, 5d oscillators are the ones In our case. N will be equal to d +  where the extra ' 
out of which the ~J' K,, s are constructed. 

The following bosonic string commutators remain valid without modification (for 
i . j =  1 . . . . .  N) 

[ a'.,. aJ. ] = m~ i,8.,+ ,, .0, ( 3 . 9 a )  

[ i (3.9b) ~,n ,  "Yn- ] i = mot,,+,,, 

[xi ,  3,,, -] = ,a,," ' . (3.9c) 

In the [y,,,, y,,-] commutator one can simply change d to N in the central term: 

[ y £  , y,,-] = (n - m)y£+, ,  + ~ N ( n  3 - n)  6,, . , , .  o . (3.10) 

Finally we need the following commutator [18]: 

[ K,I[, r,,-] = mK~{+,,. (3.11) 

An alternative proof of (3.11) is given in the appendix [formula (A.8)]. 
As usual, checking closure of the algebra is completely straightforward with the 

exception of [ j i -  j j - ] .  Using (3.9). (3.10), (3.11) and (3.5) one obtains [6] 

I (1) 1/ 1 )2 (& ,,a/,- a&,,a:,) 2C 
[ j i -  j i  ] (P+ ,,-1 n A N  n -  + ( 2 - k ) n  

- 2 i C K { / -  ~ m (  K'/,,,K;~I - K ~ , , , K i ; )  + 2 i E  × K i~ - × × 2,,fi,, ×, (3.12) 
111 ~ I I I  

(37b) 
n = l  n n = - o c  
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where  the crosses indicate a normal ordering not with respect to the a-oscillators 

but instead 

~ K "  B ->~ - ~ Kii,,fi,, - + ~ fl_-,,K,: i. (3.13) 
i t  n = O  n = 1 

For  sake of  completeness, the detailed derivation of  (3.12) is given in appendix B. 

The  commuta to r  (3.12) must vanish. The requirement  of  cancellation of  the 

d-dimensional  oscillator term leads to two condit ions:  

~ N  = 2 -  k = 2C.  (3.14) 

The  solutions are k = 0, N = 24, C = 1 corresponding to the ordinary bosonic string 
in 24 transverse dimensions (in this case there is no contr ibut ion to the angular  

m o m e n t u m  operators from the K a c - M o o d y  generators),  k = 1, N = 12 and C -  

which,  for N = d +  ~d, d =  8 is the case of  interest to us, and k = 2, N =  C =  0, 

which has no obvious interpretation. 

It remains to be shown that the terms involving the extra-dimensional  oscillators 
cancel.  To  show that without recourse to two-dimensional  fermionization, we 

express the Kac -Moody  generators directly in terms of  the bosonic oscillators, using 

(3.4). In principle we have to distinguish four combina t ions  of  the indices i and j ,  

but  it is clearly sufficient to check the cancellation for one combinat ion,  for example 

i = a l, j = ill. Let us first consider the terms bilinear in K. One can easily derive 

( K ' ~ d  K/J,z_ K~,Z K ~ , Z ]  rn k - -  - ,,,--,,, - . 1 - - . 7  ] 
I l l  = | 

= ~-Y~YI~ ~ m E ( r ' P . , A . , ( r ) - A - , , , ( r ) r ' P . , )  
m ~ 1 r 

+_~y~y# ~ m E Y'- { d - , , , ( r l | e a  +713ev)X,,,(~lze#-713e v) 
m ~ | y ~: a , [3 rhr l2"r l3 

(3.15) 

where  T/l, ~/2 and T/3 take values + 1 ,  and r runs over all four combinat ions  
+ e,, + e•. The  sum on l had to be split, since for l = a 2 and l = f12 factors in the 
C a r t a n  subalgebra  appear  (corresponding to the first term on the right-hand side of  
(3.15)). Consequent ly  the sum on 7 is over only l 2 d -  2 components .  

For  the first two terms we obtain,  using formula  (A.9) of  appendix A 

iK~ '13' ~7~Y~f dz  - _ - -  r )  e :. ( 3 .16 )  2v i  ~ : ( r ' n ' 2  i,.Q 
r 
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To calculate the remaining terms we use (A.10), which leads to the result 

E I;f d z :(e.V)2K~,#~(z)" 
v*,,.# [ 2'rri 

d 2  

-~_v°~. E f 27r----i :~11B2(e'~'V)(e#'e)exp[i(~lff'~ +~2e#)'Q(z)]" 
rl~'q 2 

To perform the sum on y we use the completeness relation 

A B +  A B A B BAB 
e y e  v e a e a  + el3e B = . 

T 

Combining (3.16) and (3.17) we then get 

fl~l all m( K"2t,,,K~ ' l -  K_, ,K, ,  ) 

(3.17) 

- ' f , , ' / a f ~ i ~ . : ( r . p ) 2 e i " Q :  
r 

-- ¼ ( d -  8)T,~TBf 2 ~  i Y'~ ~11~2:(ea'P)(e#'P)exp(i(~lle2 +n2e~). Q(z))'. 
Birl2 

(3.18) 

The K - fl term can be calculated by using (A.11). The result is 

2i ×K ~j B-× =2iKg~#,+i - - : P Z ( z ) K " ~ # , ( z ) :  
x -"'-" × 2~i 

n = - o G  

z o:. 
r 

Substituting (3.18) and (3.19) into (3.12) we get two extra conditions, namely 

l d = 8  C = 3 ,  

This is of course compatible with the solution to (3.14). 

(3.19) 
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The SO(8) embedding is now almost uniquely fixed. Let G be the group E8 × E 8 
or spin(32)/Z 2 obtained from compactification to eight transverse dimensions. The 
embedding of SO(8) in G must be such that the SO(8) Kac-Moody algebra is 
satisfied with k =  1. As explained in [19], k is just the embedding index for 
SO(8) c G, so that we are looking for an embedding with index 1. For both choices 
of G there is just one such embedding, specified by the following decompositions of 
the adjoint representation 

G = E ~ ( × E s ) ;  (248) ~ (28) + 8(8v + 8~ + 8~) + singlets, (a) 

G = SO(32) : (496) ~ (28) + 24(8,) + singlets. (b) 

in the first case the embedding in the second E~ is trivial. In the second case 8 i can 
be any of the three SO(8) representations 8,,, 8 c or 85, but all 24 must be the same. 
The choice of the vacuum, to be discussed in sect. 5, will single out E8 × E 8 as the 
relevant group for constructing a superstring. Anticipating that result, we will only 
consider embedding (a) in the next section. 

4. Fermionie representations 

To introduce the three fermionic representations we start with the root lattice of 
one of the two E~'s obtained from compactification to ten dimensions*. This is 
most conveniently discussed by considering the maximal subgroup SO(16) of E 8, 
with respect to which the (248) decomposes as (120)+ (128). On an eight-dimen- 
sional orthonormal basis e 1 . . . . .  e~ the weights of these two representations are: 

(120) ( + 1, + 1,0 . . . . .  0) + permutations,  

(128) ( +  { +~ . . . .  - . _ ~, _ ~,. + ~) (even no. of signs) 

Both vectors have length two, and can be regarded as the roots of E 8. 
Next we consider the SO(8)1 × SO(8)2 subgroup of SO(16), obtained by assigning 

e~ . . . . .  e 4 to SO(8), and e 5 . . . . .  e 8 to SO(8)> The decompositions are 

(120) = (28,1) + (1,28) + (8v,Sv), 

(128) = (8~, 8~) + (8~,8,), 

where, by convention, 8 v has weights (+  1 ,0 ,0 ,0 )+  permutations, and 85 and 8~ 
have weights ( + ½ , + ½ , + ~ , + ½ )  with an even and odd number of - signs 
respectively. We will denote these weight vectors as ,8 v, ~c and ,8~. In each case we 

* The properties of the SO(8) subgroup of E x and rclated issues have also been discussed in ref. [20]. 
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can define the following set of operators 

dz  
= f 2~riz zrzO2/2:exp(i,8" o-(z)):" (4.1) 

Because fl is a weight of SO(8)~ only, it is not a root of the original E 8 group, and 
consequently q/~ is not a vertex operator of the theory. This is irrelevant, as long as 
its action on the state of the theory is well defined [10]. 

A potential problem is the factor z 02/2= v~, which could make the integral 
undefined by producing a cut in the z-plane. The origin of this factor is the normal 
ordering of the zero-mode oscillators [10] 

exp(i'8. ( q -  ip log z)) = zl~2/2ei#qz op 

= z~'-/2:exp(ifl. (q - iplog z ) ) : .  (4.2) 

The integrand can be made analytic for z = 0 either by restricting r in (4.1) to 
half-integer values, or by allowing only half-integer values for ,8.p.  The latter 
implies a restriction on the states on which the operator can act, or, more precisely, 
on the SO(8) conjugation class to which the state belongs. We can denote the 
conjugation classes as (0), (v), (s) and (c). The smallest representations in these four 
classes are (1), (8v), (8 s) and (8c) respectively. Any SO(8) representation belongs to 
one of these four classes, which means that all its weights belong to one of the 
lattices A R, fly + A R, fls + A R or '8c + A R, where A R is the SO(8) root lattice. It is 
then clear that an operator qO, must be half-integer moded when it acts on the 
classes (0) and (i), and integer-moded when it acts on ( j )  and (k), i 4=j 4= k. 

The three kinds of fermionic string sectors correspond to the following choices: 
(i) Ramond sector of the spinning string. Integer-moded q0, acting on states 

(8,, 8s) [and (8c, 8~)]; 
(ii) Neveu-Schwarz sector of the spinning string. Half-integer moded qfl,' acting 

on (8 v, 8v); 
(iii) Green-Schwarz superstring. Integer-moded qK acting on both (8v,8~) and 

(8,, 8s). 
Here, q~ acts only on the first of the two 8's; the correct treatment of the second 

one will be discussed later. First we want to make the connection between the 
bosonic and fermionic representations more precise. 

We can write the q's on a more convenient real basis by defining, for each pair of 
opposite weights 

q~, = ~-!_, yo(q ~ + q,.-#), 

q]2= ~_~_ iyij( q ~ -  qi-IJ ) , (4.3) 
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where fl can be fl~, fl~ or fl~. The factor YB satisfies a four-dimensional Clifford 
algebra, which, together with the identity (A.12), ensures that the q 's  have the 

following anticommutation relations 

( q ; ,  qs B} = 6AB6~+~. o,  (4.4) 

where A and B are a generic notation for the indices i, a and t~ of the representa- 

tions 8 v, 8~ and 8 c. 
Out of these operators one can construct the Kac-Moody generators in one of the 

following ways: 
i j  _ " [i j]  K . ,  - - ' E q . , - ~ q r  , (4.5a) 

I" 

o r  

o r  

- -  I " a " K i { =  xtEq, ,_ry~,~q,h.  , (4.5b) 
t" 

K~ ' i S - '  i, i i  ~ (4.5c) = - ~ ~ q . , -  r Y a b q , "  " 
7" 

Eq. (4.5a) will be used in the Neveu-Schwarz and of the Ramond description: (4.5b) 
(or (4.5c)) will correspond to the Green-Schwarz description. Using (4.4), one may 
check that these generators do indeed satisfy the Kac-Moody algebra (3.5) with 
k = 1. Alternatively, one can use formula (A.13) of the appendix to show that one 
get precisely expressions (3.4) for Ki{. (If one starts with (4.5b) or (4.5c) the result 
depends on the representation of the y-matrices, and one may obtain (3.4) in a 
rotated basis.) 

To express the Lorentz generators completely in terms of fermionic oscillators 
(plus the first eight cd's) we have to express ,8,,- in terms of fermionic oscillators. 
The relation, derived in the appendix, is 

d + d / 2  
. I 

E " 
I = d +  1 m 

l ~ ~.~ E o /I o = _ °q , , _ , . q ,A .  + e6,,,.o, (4.6) 
, 4 = 1  r = - o c  

where o ° 00 denotes normal ordering of the q-oscillators. The result does not depend 
on the conjugation class, but it does depend on the quantization of r via the 
constant e. For  integer r, t = l~d,  whereas for half-integer r, e = 0. The only way in 
which this constant affects the Lorentz algebra is via the relation between p -  and 
Y0-- From the purely bosonic calculation of the previous section we conclude 

p + p -  = y~- ~ , (4.7) 
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where "Yo = a0 +/3~) . Using (4.6) to express/3ff in terms of fermionic operators we 
get: 

For integer-moded q's 

p+p- = a,, + ~_J Z n~oqA-,,q;4, °" (4.8) 
II . 4 

For half-integer-moded q's 

p + p - =  a,; + ½ ~ r:qA,.q,A ° ~. (4.9) 
r , A  

These are indeed the correct intercepts for the Ramond and Neveu-Schwarz models. 
We have now established the equivalence of the bosonic and fermionic for- 

malisms, as well as proved that the Lorentz algebra closes in the bosonic case. There 
is no need to repeat that calculation in the fermionic case, but there is one subtlety 
which is noteworthy. As was pointed out in [6], the term - 2 i C K f f  in (3.21) cancels 
against the c-number constant in (4.6) for d = 8 and C = ~. One may wonder how 
this can work in the Neveu-Schwarz formalisml since e vanishes in that case. The 
answer lies in a more careful examination of the manipulations used to cancel the 
quartic terms in q, which involve Fierz rearrangements and shifts of variables. 
Before doing such manipulations, one should normal order the quartic terms, since 
otherwise quadratic or constant terms may be missed. 

Consider first the terms bilinear in K. 

nK ix K i ~ - ( i  i ] =  - ~ y~,nOa [, aLlo :q[i ,qX]: - - ( i ~ j ) .  
_ , , - - , ,  , - , - % ,  o_. _ , . _ , - , ~  

n =  [ n =  1 .~, t 

To normal order this expression one uses Wick's theorem, which produces the 
following quadratic terms 

(d-2) ~ ~_] nO(t-n):qi_,q/°o. 
I ~ ' - O C  I 1 = 1  

(4.10) 

For half-integer-moded oscillators this is equal to 

½(d-2) ~ (t2-¼):qi_,qa/:. 
I = - - O C  

For integer-moded oscillators the result is ambiguous because 0(0) is not well- 
defined. This is due to the fact that the relative ordering of the zero-mode oscillators 
has not yet been specified. The ambiguity is resolved by requiring that their upper 
indices appear always in the order i, j, k, and that furthermore the identity q~oq~ = J ~d 
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be used. To implement this we define a new 0 function 

1, x > O  
O.(x)= O, x < O .  

a,  x = O  

Instead of (4.11) we find then 

~ n[dO1/2(t-n) + Ol(t--n) + Oo(t- n)] ~ qi-,q~: 
t = - ~  n = l  

oo  

= l ( d - 2 )  E t2:q'-,q/°. 

A very similar calculation for the K -  fl terms yields 

-2i~ ~., KiJ,,fl,,-~=-i: E K~,,~-,q,A,-tq~ °+A'J, 
tl ~ - oo ll ~ - oo t 

with 

A i i =  _ L ; r l k ' i . J _  ~ ° a ~  " . . . .  0 3t2 o ._ ,__  o ( Jz ) . inte e r -moded. ,  
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A i j = _  ~.~ ( 3 t 2 + ¼ ) : q i _ , q / :  
I ~  - -OO 

(half-integer-moded). 

the terms proportional to t 2 cancel (they correspond to the term For  d =  8 
proport ional  to d -  8 in (3.26)). In both cases one obtains the required term - i  K~I .i, 
although from different sources. 

5. The spectrum and interactions 

We will now demonstrate in some detail how one supersymmetric sector of any of 
the four known d = 10 closed string theories is contained in the bosonic theory. The 
first problem is to find the right vacua. We clearly need two massless states 18,)o 
and 18~)o on which the operators q act in a sensible way. The massless sector of a 
compactif ied string with original transverse Lorentz group SO(8) and gauge group 
G is in the representation [8v,1 ] + [1,adjoint] of SO(8) × G. The state [8v,1 ] is 
obtained as a '_ l l0  ) and is not a very attractive candidate for 18v)0. It would be 
difficult to argue that 10) (i.e., the tachyon) does not belong to the physical 
spectrum if d _ l l 0  ) does. Furthermore, we would like to relate 18v)0 and 18~)o by a 
supersymmetry transformation. This has only a chance of being successful if both 
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states come from the adjoim of G, namely if G D Spin(8). Of the two SO(8) 

embeddings discussed at the end of sect. 3, only Es( x E~) 3 SO(8)1 × SO(8)2( × Es) 
has the property that the adjoint representation contains both (8,,) and (8~). In the 

following we ignore the second Es group (states which transform non-trivially under 
it are, by definition, not in the physical spectrum), and construct the Lorentz 
generators out of SO(8)1. 

The SO(8)1 states (8,,) and (8~) in the (248) are eightfold degenerate, which is 
unacceptable. To solve that problem we choose three fixed (8`'), (8.,) and (8c) weight 

vectors 7v, 7., and "qc in SO(8) 2, and eliminate all states with an SO(8)2 weight 
vector not equal to these three (in particular this eliminates the tachyons). These 
vectors correspond to what was called "hypercharge"  in ref. [6], and we will 

therefore call them hypercharge vectors. The states of lowest mass are now 

18`')o = I#v, 7v ) ,  

18, )o = 

18c)0 = IN, 7c) ,  (5.1) 

where ,8 i can be any (8i) weight vector in SO(8)`'. The ground state is fixed by 
choosing two out of these three possible states. The eight-vector (,8 i, 7i) is of course 
a legitimate E s root-vector and describes massless states. 

Consider now the action of the q-operators on some state with arbitrary SO(8) 
lattice momentum ,8, but (for simplicity), no Cartan subalgebra excitations 

d z  
q,n. ll3, 7) = f ~ z r +  1/2eiS"O'e'nqzn'reinO~:)lB 7).  

2 ~riz 
(5.2) 

This expression reduces to 

where 

dz _,,ei,~.q+(:)l ~ 
q~l~,7) = f 2~riz z + 6,7) 

, , = - ( r + + + p - 8 ) .  

(5.3) 

(5.4) 

Because Q+(z) is regular at z = 0, the result vanishes unless n >/0* (notice that n is 
always an integer). For positive n one gets 

1 __d" :) [fl + qnrlfl'7) n! dz" e ' 8O ' l  6 , 7 ) .  (5.5) 
2:0  

* One should he more careful with the infinite sum over the oscillators if a second q-operator acts on 
thc .,talc. Wc can ignore that complication here. 
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The multiple derivative produces a sum of creation operators of the nth level. For 
example, if n = l  one finds 8 . a  1; for n = 2  ( 6 . a  1 ) 2 + ( 8 . a  2), etc. We can 
calculate the mass of the state that is created using formulas (2.16) and (5.4): 

l ~ )2  ~n,- = ~(,8 + 8 + ~ T I 2 + n -  1 

= {_f12 + !,r;2_ 1 - r.  (5.6) 

Thus an operator q,q increases the mass of a state by - r ,  as one would expect. 
Using (5.5) we can write any state created by fermionic operators qA explicitly in 
terms of bosonic string states. Clearly the correspondence works mass-level-by- 
mass-level. 

For Neveu-Schwarz-type operators one observes that the mass (5.6) can take 
half-integer values. The mass formula of the compactified string (2.16) is, however, 
integer-valued because we are on an even lattice. The reason for this apparent 
inconsistency is that an odd number of Neveu-Schwarz operators map even-length 
weights into odd-length weights, which are not states of the lattice. In other words, 
the E~ root lattice contains only those Neveu-Schwarz states that appear in the 
superstring after the GSO projection! [21]. 

A different problem arises in the Ramond sector. There an odd number of 
Ramond operators flips the chirality of the spinors in SO(8)1, but does not affect 
SO(8) 2. Consequently one creates states like (8~, 8~), which is not an Es-root vector. 
This problem can be solved in a simple way: one can define a new Ramond 
operator  which has an additional factor pV where pV is a SO(8)2 Dirac matrix which 
maps lq.~ into ~ and vice versa. (It is obviously always possible to find a matrix p~ 
and vectors TI~ and ~ which have that property.) The same problem exists for 
Green-Schwarz operators, and it can be solved in the same way. There is now a 
simple way to obtain the fermionic states of the superstring. One considers the 
complete collection of states created by Ramond operators from the vacua J8s) 0 and 
18.)o, and keeps only those states with hypercharge vector ~ls- This reduces the 
number of fermionic states by t and one can easily verify that this gives precisely 5, 
the GSO projection for the fermions. Of course, no projection is necessary if one 
uses Green-Schwarz operators. 

To summarize we write down the Neveu-Schwarz, Ramond and Green-Schwarz 
operators N, R and G: 

Ni l ,=  q~,y#, ( r  half-integer), 

R { ' =  q~'~,a,p v (n integer), 

G,a,= q,a,.~,# O~ (n integer), (5.7) 
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o~lns) = In~), ovid/c) = Ins), 

(5.s) 

(i.e. pc is a triality rotated SO(8) Dirac matrix). The factors 3',~ are the cocycle 
factors. If necessary, one may also write these operators on a real basis as in (4.3). 
Readers should note that N r and R,, in (5.7) do not change the space-time statistics 
of the state to which they are applied whereas (7,, does: therefore the G,,'s are just 
the modes of the supercharge operator in the new superstring formalism. 

The superstring spectrum is obtained by letting all these operators (plus the al, 
oscillators) act on the three vacua (5.1) and keeping only legitimate E 8 states with 
hypercharge ~r and rts. The complete superstring is generated either by the (N, R) 
operators or by the G-operators. For example, one may check explicitly that at the 
first massive level the following: spinning string and superstring states are composed 
out of identical bosonic string states: 

the same is true for 

NB_'!,/2NB_"I/218,,)o, O _ O ' l  I Ss)o, (5.9) 

n5,18c)o, G_~,lSv)0. (5.10) 

In a similar way, one has the equivalence of the NSR formulation, the GS 
formulation and the bosonic formulation at higher levels. 

Instead of using fermionic operators one can also construct all superstring states 
directly out of bosonic string states. First, one should calculate the complete 
SO(8) × E 8 × E' s state at a given level (see, e.g., refs. [3] and [22] for the lowest few 
levels), then eliminate all non-trivial E' 8 representations and decompose E 8 to 
SO(8) 1 × SO(8)2. In the second SO(8) only the states with weights equal to the 
hypercharge vectors ~v and ~s are kept. Now one still has too many states: some of 
the remaining states are constructed with a/-oscillators in the Cartan subalgebra of 
SO(8) 2 which do not shift the hypercharge vectors. After eliminating those states 
one is left with the complete set of states of the superstring. 

All this can be easily understood in terms of the E 8 partition function. If we 
ignore the contributions of the transverse oscillators al, and the second E' 8 group 
(which are trivial to take into account), the partition function for the E 8 excitations 
is [23] 

1[ ] 
PE~(q) = ~q f i ( l + q " - ' / 2 ) ~ 6 +  fi(l_q,,-~/:)~6 

n = 1 Jl = 1 

OG 

+ 128 IF] (1 + q,,)16. 

(5.11) 
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This may be recognized as the partition function of a 16-dimensional NSR model 
with a GSO projection removing positive G-parity states. Indeed, this function has a 
simple interpretation in terms of the SO(16) subgroup of E~: the first term gives the 
number of "bosonic" SO(16) states, while the second term gives the number of 
fermionic ones at each level. We can factorize this expression so that it has an 
S0(8)~ x S0(8)2 interpretation: 

.) 

{l  ,l_q lJ2, 1} v E , ( u ) =  ,,=, ,,=, 

+ " ~  n = 1 Jt = 1 

+2 8 (1 + q")s (5.12) 
i1= I 

The first term corresponds to the product of two eight-dimensional Neveu-Schwarz 
models with only odd G-parity states. In each factor these states consist of the 
tachyon and everything created from it by an even number of NS operators. None 
of the states in SO(8)2 obtained this way is an SO(8) vector, so that all these states 
are eliminated by our truncation. The second term has no poles at q = 0, and is 
therefore free of tachyons. Here we have the even G-parity states of two NS models. 
Our truncation prescription is to keep only states with SO(8)2 weight ~ and not to 
allow Cartan subalgebra excitations in SO(8)2. This implies that only the massless 
ground state of the second factor is kept, so that we should take the limit q ~ 0 in 
this factor. Furthermore we must divide by 8, because we keep only one of the eight 
components of the ground state. The third term corresponds to two Ramond 
models. Again we take q = 0 in the second factor, divide by eight, and then by two 
because we keep only one of the two hypercharge vectors rl, ~ and rt c. After these 
operations the partition function of the truncated model is 

l[ 
1-~ (1+  q"-' /2) 8 -  [-I ( 1 - q " - l / z ) S ] + 8  I-I ( 1 +  q,,)8. 

n = 1 n = 1 n = 1 

(5.13) 

This is indeed the partition function of the spinning string or the superstring. 
The spectrum of all closed ten-dimensional superstrings can now be obtained 

from the 26-dimensional bosonic string in a straightforward way. To get the 
heterotic strings, it suffices to combine the left supersymmetric sector contained in 
the Es x Es compactification after projecting out the irrelevant states with a right 
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sector compactified either on E 8X E 8 or on Spin(32) /Z  2. To get the N = 2  
superstrings one compactifies both sectors on E s x E 8 and performs the projection 
on both sides. In this way, one gets indeed both the chiral and the vector-like N = 2 
theories as the identification of the fermionic ground states to (82, ags) or to (8 c, ~c) 

can be done independently in the right and in the left-sectors*. 
One can also obtain heterotic superstring in less than ten dimensions [8] by 

compactifying the ten-dimensional one on the torus of a simply laced group G of 

rank m. To this effect one uses m of the eight transverse bosonic operators in both 

sectors but one can get of course massless gauge vectors only in the right sector. In 

this case the gauge group becomes E 8 x E 8 × G [or Spin(32) /Z 2 x G] and the 
corresponding even self-dual lorentzian lattice is E 8 x E 8 x G x G [or Spin(32)/Z 2 
x G × G] with the group constraint (2.22). More general even self-dual lorentzian 

lattices can be used and can generate new gauge groups in d < 8 dimensions [8]. 
Such superstrings, which are not necessarily compactifications of the ten-dimen- 
sional heterotic string, are always contained in the original 26-dimensional bosonic 

string: one may simply extend any of the lattices used in [8] with an E 8 × E 8 lattice. 
The new lattice (which is obviously even, lorentzian self-dual) is then used for 
compactif ication of the bosonic string, and one obtains a superstring sector from the 

additional E 8 × E 8. 
To conclude this section, we show that the interactions of the superstring can also 

be understood from the bosonic theory in 26 dimensions. The bosonic vertex of 

superstring theory, which describes the emission of a ground state vector 18v), is 
given by [24] 

Vs(~,k ,z)=~i[kjKiJ(z)+ Pi(z)]eikx':),  (5.14) 

where ~ and k denote the polarization and the momentum of the state emitted we 
have chosen for simplicity special ~ and k; the more general vertex can be obtained 
from Lorentz transformations. When viewed from D = 26 bosonic string theory, this 
expression is nothing but the linear combination of the D = 26 tachyon emission 

vertex with external momentum (k, flso~s)) and the D = 26 vector emission vertex; 
note that the latter also contributes to the first term on the r.h.s, in (5.14) through its 
components  P '  with i = 9 . . . . .  12. Eq. (5.14) is not what one would naively expect, 
namely the purely tachyonic vertex for the state (8 v, r/v) with space-time momentum 
k. This is, however, not so surprising in view of the symmetry breakdown of the 
original Lorentz group which intertwines two previously independent SO(8) groups. 
Using the explicit representation (4.5), we can also reconstruct the fermion emission 
vertex V v [24]. On the ground state, the only surviving contribution of the 
supercharge operator  is its zero mode Go Be, cf., (5.7). Therefore, on the ground state, 

~' One ~vould also obtain in this way open (and closed) type-I superstring if one allowed for suitable 
( ' han -Pa ton  factors. 
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the fermion emission vertex is simply obtained by 
operator, i.e., 

8vB 
= . 

"peeling off" the zero mode 

( 5 . 1 5 )  

Since all amplitudes can be expressed as ground state expectation values this is 
already sufficient to establish that all (on-shell) superstring amplitudes are con- 
tained in the (on-shell) amplitudes of the D = 26 string theory. 

6. Strings in 18 dimensions?* 

Up to this point we have only reconstructed existing theories. One may, however, 
ask whether there exist further and less conventional theories. A possibility that 
comes to mind almost immediately is to repeat the basic procedure for the E 8 theory 
in 18 dimensions which is obtained by compactifying the bosonic string on just one 
E8 lattice. The group E8 has a maximal subgroup SO(16) which is also the 
transverse group in 18 dimensions. The main challenge is the construction of a full 
Lorentz algebra. In keeping with the previous construction, the new transverse 
subgroup would be defined as the diagonal subgroup of the old transverse SO(16) 
and the SO(16) subgroup of E 8. For j i - ,  however, something radically different is 
needed since otherwise one will inevitably find a critical dimension of 10 instead of 
18 (this is obvious once one realizes that the model is just a superposition of the 
ordinary NS and R-models in d = 16, see below). 

Even without knowing how to proceed one can check a necessary condition, 
namely whether the excited SO(16) states (with JiJ as defined above) fit into SO(17) 
multiplets. The massless level of the E 8 string consists of SO(16)R x E 8 representa- 
tions (16,1)+(1,248),  which transform under j u  as (16)+(120)+(128).  This 
theory is obviously not a superstring: there are 128 fermions and 136 bosons at the 
massless level. 

At the first excited level one obtains the SO(16)T X E 8 representations (135,1) + 
(16, 1) + (1,1) + (16,248) + (1, 3875) + (1,248) + (1,1). This decomposes into the 
following set of representations of the new transverse SO(16): 

(1920) + (1920)'+ (128) + (128)' 

(1820) + (560) 

(1344) + (120) + (135) + (16) 

(135) + (16) + (1) 

= ( 4 0 9 6 ) ,  

= ( 2 3 8 0 ) ,  

= ( 1 6 1 5 ) ,  

= ( 1 5 2 ) ,  

(1) = (1). (6.1) 

* Wc arc very grateful to N.P. Warner for stimulating conversations concerning the topics discussed in 
this sccticm. 
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These states fit into the SO(17) representations indicated on the right-hand side. 
There are 4096 fermions and 4148 bosons. We have repeated this calculation at the 

next two levels, and find that again all states fit in SO(17) multiplets. At the second 
level there are 69632 fermions and 69 888 bosons in the following SO(17) multiplets 

fermions: (30464) + (34816) + (4096) + (256), 

bosons: (33592) + (12376) + (11340) + (9044) + (1615) 

+(952) + (680) + 2(136) + (17). (6.2) 

At the third level, things become rapidly complicated, but again we have been able 
to fit all 835328 fermions and 835091 bosons in SO(17) multiplets. (A rather 
amusing observation is that the spectrum seems to become "asymptotically super- 
symmetric" with increasing mass.) 

All this cannot be a coincidence, and indeed there is an explanation. The crucial 
point is that all states in the E x theory can be constructed with 16-dimensional 
Neveu-Schwarz-Ramond oscillators. This works in almost exactly the same way as 
the construction in the previous section, except that this time we do not need any 
truncation at all. In the Neveu-Schwarz sector one makes the opposite G-parity 
selection as in the GSO spinning string (i.e., one keeps the tachyon), and the 
intercept is chosen so that the (120) of SO(16) (which is the state qil/2qJ~/2JO)) is 
massless (i.e, = - 1 instead of = - ~ as in d = 8). In the Ramond sector the only 
difference is that no Weyl projection is needed, because the E 8 lattice contains only 
states with the correct chirality. A rather convincing check of this construction is a 
comparison of the partition functions of the 16-dimensional NSR model (with GSO 
projections as indicated above) and the one of the E~ string theory. They are equal, 
and we already used the result in the previous section (formula (5.11)). 

It is now clear that all states fit in SO(17) multiplets because the NSR model has 
that property in any dimension, This fact is familiar in the case of the bosonic 
string. It also makes it plainly obvious that the recombination of all states into 
SO(17) (massive) muhiplets is not sufficient to render the theory consistent. A 
crucial ingredient, namely the closure of the Lorentz algebra, is still missing. Indeed, 
counting the anomalies, we get 2 6 - 1 8 - 9 = - 1  =g0 which indicates that the 
model is inconsistent as it stands. Notice that the absence of space-time super- 
symmetry, which is evident from the spectrum, furthermore indicates that the 
associated d--= 2 model has no world-sheet supersymmetry (which anyhow would 
make matters worse from the point of view of anomalies). However, the supercon- 
formal invariance on the world-sheet is necessary to remove the two unphysical 
degrees of freedom of the world-sheet fermion in the same way as ordinary 
conformal invariance is needed to eliminate the unphysical bosonic degrees of 
freedom such that one is left with only transverse degrees of freedom. It was for this 
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reason that the truncation described in the foregoing section was necessary, and one 
may speculate that a similar truncation may have to be carried out to make things 

work. 
An even more daring speculation is a possible connection of this theory with 

d = 11 supergravity (after a suitable truncation of the type alluded to above). The 
compactification on E 8 gives rise to massless fermions in the inequivalent spinor 
representations (128) + (128'). The massless states of d = 11 supergravity are in the 
SO(9) (the little group for massless particles in 11 dimensions) representations 
(44) + (84) (for bosons) and (128) (for fermions). Remarkably, this is precisely what 
is obtained from the (128) and (128') if the spinor of SO(9) is embedded in the 
vector SO(16) [25]. We have tried to check whether it is also possible construct 
massive "supermultiplets" in this way, by decomposing the SO(16) states at the next 
two levels of SO(9), and then combining equal numbers of bosons and fermions into 
SO(10) representations. This is indeed possible, and at the first excited level the 
solution is unique. We obtain 2048 bosons in the SO(10) representation (1200)+ 
(560) + 2(144) and 2048 fermions in (1728)+ (320)* (about half of the original 
states has to be eliminated.) At the next level there are several solutions. We have 
here tried to obtain the massive SO(10) supermultiplets in the left- and right-moving 
sectors separately just as in the known theories. However, there is a possibility that 
the procedure might only work for closed strings thus leading to a unique (closed 
string) theory in D = 11. We also emphasize that the counting arguments of ref. [6] 
(see also sect. 7) cannot be directly applied because the embedding of SO(9) into 
SO(16) is not regular. 

7. Outlook 

In this paper we have presented detailed arguments which establish that the 
consistent superstring theories [1, 2, 3, 8] are contained in the purely bosonic closed 
string theory in 26 dimensions. This was achieved by identifying the superstring 
states and operators in terms of the states and operators of the D = 26 theory; the 
interaction vertices of the superstring can be understood in a similar fashion. 
However, this identification forced us to discard certain states which were physical 
in the original D = 26 theory. At first sight, this truncation looks like a somewhat 
arbitrary procedure, but we have argued in [6] that the discarded states should give 
rise to the two longitudinal components of a world-sheet fermion and the super- 
ghost which is necessary for the covariant quantization of superstrings. The reason 
for this is that these fields contribute the same amount to the conformal anomaly. 
We recall that in units where the conformal anomaly is - 1 for a scalar and - ½ for 
a Majorana fermion, the general co-ordinate ghost and the superghost contribute 
+26 and - 1 1 ,  respectively [26]. Thus, matching the contribution from p scalars 
(the truncated coordinates) with those from the unphysical fermion states and the 

* We need not stress that these numbers are profoundly related to the Fischer-Griess friendly giant. 
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superghost, we get 
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p ( - 1 ) =  - 1 1 + 2 ( - ½ ) = - 1 2  (7.1) 

and, splitting p into d +  _~d, where d is the number of transverse space-time 
dimensions, 

a = 8.  (7 .2)  

Taking into account that some of these dimensions may still be compactified to 
lower dimensions, in which case no further degrees of freedom are discarded, we 
arrived at the bound [6] 

d ~< 8. (7.3) 

At this point, one may ask how the decoupling of the erstwhile physical states and 
their conversion into unphysical states could actually be realized. It is clear that the 
light-cone gauge formulation is not a suitable framework for this since it describes 
only physical states. Rather one must resort to a covariant formulation of the theory 
in which all unphysical degrees of freedom are kept. In such a formulation, the 
physical subspace is defined by the condition [27] 

QBRslphys> = 0, (7.4) 

where QBRS is the BRS-charge operator which obeys 

Q~RS = 0. (7.5) 

The formalism is the same for ordinary strings and superstrings (see, e.g., ref. [28] 
and references therein) with the only difference that the nilpotency of QBRS requires 
D = 26 and D = 10, respectively, with the corresponding values of the intercepts; 
these conditions are again equivalent to the vanishing of the conformal anomaly on 
the world-sheet. By imposing (7.4) one also defines and eliminates the unphysical 
states. We now conjecture that the BRS-charge of the D = 26 theory is actually 
background dependent and will therefore change as one moves away from the 
tachyonic vacuum (by "background" we here mean possible vacuum expectation 
values for all the higher excitations of the string and not just the D = 26 gravita- 
tional background). To see how this is possible we recall that the full action in 
covariant string field theory is [29] 

S =  ~QBRs  g ' +  " ' "  , (7.6) 

where ~ is the fundamental string field (containing infinitely many ordinary fields 
of arbitrarily high spin) and the dots stand for possible interaction terms. Observe 
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that, in (7.6), QBRs plays the r61e of the kinetic operator. At a non-trivial soliton-like 

solution of the equations of motion, which follow from (7.6), 'it" will acquire a 
vacuum expectation value (possibly corresponding to vacuum expectation values for 

infinitely many  ordinary fields). Shifting to the new vacuum, we see that QBRS is 
also modified through the interaction terms such that (7.6) becomes 

S = @ ' Q n R s @ ' +  " " ,  (7.7) 

with a new "kinetic operator" QBRS- The nilpotency condition (7.5) for this new 
operator,  which is necessary for consistency, puts non-trivial restrictions on the 
possible soliton-like solutions of the D = 26 theory*. While the actual solution, that 

corresponds to the superstring, remains to be constructed, these arguments strongly 

point towards its existence. 

We are grateful to A. Neveu, R. Slansky and A. Taormina for useful discussions. 

Appendix A 

EVALUATION OF COMMUTATORS AND NORMAL-ORDERED EXPRESSIONS 

In this appendix we will calculate some expressions of the form 

or 

JAm, B,, ] , (a) 

F__,/(.)A B (b) 
× n l  - -  t l  / I  ~< ' 

I I  

where A,, and B, are moments of operators A(z) and B(z) [i.e. A,= 
f(dz/2~riz)z"A(z)], which are functions of a set of bosonic oscillators a~. The 
" n o r m a l  ordering" indicated in (b) just  means that negative modes should appear to 
the left of positive modes. It is not to be confused with normal ordering of the c~ 
oscillators. The method used in all these calculations is always a variation on the 
same general principle, which works as follows. One writes the expression to be 

evaluated as a double contour integral over two variables z and ~'. Then one normal 
orders the operator  product A(z)B(~) (or B(~)A(z)) with respect to the c~ 
oscillators, and one performs the sum on n in case (b). These operations are usually 
only valid for either Izl > I~'1 or  Izl < I~'1- If all goes well, one obtains the difference 
of  two double contour integrals around the origin, one with Izl > I~'1 and one with 
Izl < I~'1- This is equivalent to a z-integral over a contour C(z, ~'), which positively 
encircles ~', but not the origin. At z = ~" the integrand is of the form (z - ~') - " ' ,  for 

* It is perhaps instructive to note the similarities with t'Hooft's anomaly matching conditions [30]. 



342 F. E,iglert et al. / Superstrings 

some integer n, and because there are no other singularities within the z-contour, it 
is simple to evaluate the integral using Cauchy's theorem. The classic example is the 
derivation of the Kac-Moody algebra of the vertex operators Am(r), explained for 
example in ref. [10]. We will adopt the conventions of that paper. 

Before discussing special cases, we list some useful identities. We define operators 
Q ~ ( z )  and P~(z)  as 

Q~+(z) = - i  ~ - a _ , , z " ,  Q~_(z) = i - a ~ z - " ,  
, t~  l 7l .,1=1 ?'/ 

d 
P~ ( z ) = iZ-~z Q~ ( z ) . 

Then their commutators are 

Z 
[ P ~ + ( z ) , Q ~ ( [ ) ] = - i  

f - z  
8 "~ (Izl < I~'1), (AA) 

[p._(z), Q :  = - ;  (Izl > I~'1)- (A.2) 

The following normal ordering formulas are frequently used 

:ei"Q{n: :eisQ~n: = : exp( i r -Q(z )  + is" Q(~')) :(z - ~,)r.s, 

Z 
p"(z )  :ei"°~'): = r" 

z -~"  
: e"o¢: ) :  + " P " (  z ) e i r ' O { z ~ :  , 

:ei"O(:): p~(~) = r ~ 
~ - z  

:e,,.o~'). + :p~(~)ei,.o~z):, 

: e Z ( z ) :  :e',o(~): = . p 2 ( z ) e i , o ~ ) .  

+ - -  
2z Z 2 

Z --~ : r ' P ( z ) e i ' ' Q ~ n : + r z - ( z - f )  2 

:eir.O(z~: :p2(~-): = : p2(~.) ei,.O(z): 

2~ ~': 
- --:r'z_~ P ( z ) e i " O ( : ' :  + r 2 ( z  - ~.)2 

(a.3) 

(A.4) 

(A.5) 

:e;"O{:):, (A.6) 

:e ' q~ ' ) "  . (A.7) 
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Expressions (A.3)-(A.7) are valid for [z I > ]~'[, and 
putting the zero mode oscillator p~' to the right of ¢' .  

We obtain the following results: 

343 

we use the convention of 

dz d~" 
(I)  [A,,,(r),fl,, ,,,,+,~,, 

- Jc(:.;)  2~riz 2~ri~" 

[: p2(~)  ei,.e(=): - 2~" 
2-~" 

: r .  P(~)  e/rQ(:): 

+ r  ~ - -  

~2 ] 
(z  - ~.)2 :e i "q( : ) :  

=mA,,+,,(r) ( r  2= 2), (A.8) 

where 

B,,-=" f dz  z":P2(z) :. 
2 ~r iz 

(2) L mr.P_mA,,(r)- ~ mA_,,,(r)r. Pm 
. I  = l m - -  l 

.dz d~ ~ z p:r.p(z)&r'QC:): + r 2 
(-,.~ ~ 27ri ( z -  ~.)2 z -  ~" 

: e i r ' Q ( : ) :  

dz :e,.Q,.:_ f ~__~i :(r.p(z))2e,.O,=>: = f 2=---S 
( r  2= 2), (A.9) 

where we made use of the fact that terms linear in P~' can always be removed by 
partial integration. 

(3) L m[A-,, ,(e,+ev)A,,(el3-ev)-A .... (e~-ev)A,,,(%+ev) ] 
• ' I t  ~ [ 

=fc(:.D~idz 2~rid~ (zZ-~) :exp(i(e~+ev).Q(z)+i(e~-ev).Q(z ). 

= -~-f~-~i :[(e.+e~)-e][(e,--%).P]exp(i(e. +e,) .Q): .  (AA0) 
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where G,  e~ and e? are orthogonal unit vectors. 

(4) × × ~.. A _,,(r)fl,,- .~ 
I I =  - -  OO 

_ l f d z  d£  Z 2 
- _T Yc - - [ : e i " Q { : ' P 2 ( £ ) "  

(:,£} 2~riz 2~ri£ z - £ 

2£ £2 
+ ~ - z  :ei"Q{:}r'P(~'): + r2(z  :ei"Q{:}: 

! f dz . p 2 ( z ) e i " o ' : } : -  f ~ i : ( r . p ) 2 e ' r ' ¢ :  = A o ( r )  + 2 J 27r i 

(5) ~ q, ,q . , - ( -1)* 'Oq~q~ 

f dz d£ 

Jc {:,;} 2~ri 2~ri 

(for r 2= 2). (A.11) 

= ~ (a  + # )  ~,,+.,,o 

- - ( z  - £ )° '#z" - l /2£"- l /2 :exp( ia .  Q(z)  + ifl" Q ( z ) ) :  

(6 )  ~ ~'. 
t l  ~ O 0  

(012 = f 1 2  = 1; n, m integer or half-integer). 

(A.12) 

( q*, _ ,,qO _ ( _ 1) °'~q~ _ ,,q,,~) 

_ I f  d z  d £  

- 5 Jc{:.D 2rriz 2~ri£ 
£)*'p-' 

X [ :exp(iot • Q(z )  + ifl. Q(~')): + (  - 1)*'#:exp(ifl  • Q(z)  + ict. Q(£))  

o, ,+ 
= Am(" ~), 

ct * P m 

i f a . f l = l  
i f a . f l = 0  
if a ' f l =  - 1  

(7) 

(a2 = f12 = 1 ; n integer or half-integer). (A.13) 

o A A o  n. q,, _ ,,q,, 

= Y~'fc dz __dz z ' - -  v /~  : e x p ( i a . Q ( z ) - i a . q ( z ) ) :  
_+,, {:.~}27ri 2~ri ( z - £ )  3 

dz / -  

= I ~ _ . _ z ' : P Z ( z ) : -  ~d3,,,o (integer-valued n) .  (A.14) 
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The triple pole gives rise to a double derivative, which produces the c-number term 

because it acts on ~-  (if one does the ~" integral first). For half-integer valued n, one 

gets an extra factor 7/-~/z in the integrand, and the c-number term vanishes because 
(d2/d~2)~ " = 0. In deriving the result one furthermore uses the completeness relation 

E+,c&c~ R= 26 AB, where the sum is over all eight weights of the 8 v, 8 c or 8~ 

representation of SO(8). 

Appendix B 

CLOSURE OF THE LORENTZ ALGEBRA 

In this appendix we shall show that the commuta tor  [ J ; - ,  J J-]  whose vanishing 
ensures the closure of the Lorentz algebra can be written as the sum of two terms. 
The first one involves only oscillators in the uncompactified dimensions while the 

second one contains only oscillators in the compact  ones. The vanishing of both 

terms separately is discussed in sect. 3. 
One can write the commutator  as follows [see, e.g., [16]] 

1 
[ J ' -  J J - ]  ( p + ) Z { 2 i ( ' Y o - C ) ( M i J + K ~ J ) + F ~ p j - F j P i + [ F i F j ] } .  (B.1) 

Here we have used p + p - =  ~ ' o -  C, where C is the intercept parameter,  to be 
determined later. It is convenient to write F ~ as R i +  S i, where R ~ and S ~ are the 
two terms in (3.76). The commutator  of two R ' s  is exactly the one of the bosonic 

string, with a,~ replaced by 7',,-. The result is 

[R i , R  j ] = - ~ N  m - - -  a_,,,a~,, _ 
m=l m 

+2 ~.: m(a  i_.,aM,j - aJ_,,c~i,) - 2 i ' / o M i j +  R J p i -  RipJ. (B.2) 
m =  1 

For  the commuta to r  of the S ' s  one obtains immediately 

[ S i , S j  ] = E i(Ki_k ,60+KtJ,,_ _ , ,S ik - -K ij_ ,, _ ,,_Stk] a,,u,,-k 
?~1, i1 

j i rnKi tK a (B.3) - Y ' . k m a , , o t _ , , d -  Y'. __;,,___,,. 
¢~1 H1 

We have omit ted terms proportional  to 6ij, since such terms will cancel. All sums 
with unspecified boundaries are from - ~ to + ~ .  The last term can be written as 
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follows: 
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Z Ft'l /1 /I ~ t'l I I  K, ,K  .... = - m(  Kff,,,K/, I - K ,,,K;,, ) 
I l l  l i t  = ] 

+ ~ m[K/ , [ ,K i l , , , ] .  (B.4) 
m = ] 

The commutator  term is equal to iZ,,~,=lm(2- d ) K ~ J ( + 3  i/ terms). This diverges 
and one should really regard the sum as being regularized as rn ~ ~ ,  by any 
convenient method (such as including a factor e -  ~",'-). 

Next we consider the central charge contribution in (B.3), again omitting 3 ~j 
terms: 

) i ~ 0{/ ~ k m a ; , , a _ , ,  k m (  i i = a _ ,,am - .... an,) .  (B.5) i 

I l l  I H  ~ l 

Finally we normal order the a oscillators in the first three terms in (B.3) (the K 
operators depend only on the extra-dimensional oscillators, and do not affect this 
normal ordering). This produces a term i ( d -  u 2)K 0 Z,,=ln,  which precisely cancels 
the one from (B.4). After normal ordering, the third term in (B.3) can be written as 
follows 

I / ,  - i  ~ Kiim- -,,.'a,,a,ll I.. = - i  ~ K ~ , , , . a  . . . . .  all. 
I l l ,  I I  I l l ,  II 

. i l  - - 2t Z K : ,,la,,, (B.6) 
n l  

Combining these results we get 

[ S ' , S q  i E  ( K  I~ " '  ~" " ' '" .Or'rift n. + g l i n t  ) 
t H ,  I1 

- . ,< ,  . _ , . , ° . , )  2 , 2 K : o , . . ,  _ j i _ . i j  - 

. 1  = 1 m 

. ,  ( K 5 , K,j,,,x,i', ). - , , ,  K ; , ,  - 

i l l  ~ I 

(B.7) 

Finally we must commute R and S. It is straightforward to derive: 

[R i , S  j]  i E E 1 (nKJ,  . , , .  K j, . i a , . ~  ~-- - -  - -  n . O ~ m O l . . - - I 1  - n ' O l m  n ' )  

m :~ 0 ii m 

+i E m K / , [ y - , , , - i  ~ mK~ ./. (B.8) 
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T h e  last t e rm is due  to normal  o rde r ing  of the te rms  b i l i n e a r  in  a,,,i a n d  requ i res  a 

r e g u l a r i z a t i o n  of  the sum. Now we shift  the s u m m a t i o n  in  the s econd  t e rm f rom n 

to n + m. T h e n  the factor 1 / m  cancels ,  so tha t  the  s u m  can  be  e x t e n d e d  over  all m.  

T h e  resul t  is 

• i I .  [Ri,  S j ] - [ R j , S i ] = 2 i ~ - ' K S , , Y , ?  + i  E (gJ',,_,,'a,,a,,i i._Ki,. _ . . . .  _ oe,,a,,.) 
t l  m ,  11 

-iS.'pi + i S > ' -  2iK~J'yo- 2i ~ rnK~ ./. 
m = l  

(B .9) 

• ij - The first t e rm  can  be c o m b i n e d  wi th  the fifth one  in  (3.17) to 21Z,,K,,~3,, , where  

/3,, --- "1',,- - a , [ .  We  can  " n o r m a l  o r d e r "  this exp res s ion  in  the  fo l lowing  sense* :  

Y'~ ×K i.i B -  × = Kii,,~,[ - + ~_, ,K, ,  . (B.10)  
X - -  t l r n  × 

1,1 ,'1 = 0 II  = 1 

T h e  c o m m u t a t o r  te rms o b t a i n e d  f rom this n o r m a l  o r d e r i n g  precise ly  cance l  the last  

t e r m  in (B.9). 

C o m b i n i n g  (B.1), (B.2), (B.7) a n d  (B.9), we get 

[ j i - , j j - ]  

{ (=c 1 ~ (d_ ,,a,{ - aC ,,al,) 

(p+)= n = l  

~ N ( n - 1 ) + ( 2 - k ) n ) }  

1 { 2 i C K 6 . " - ~  m ( K ' t . , K ~ [  _ _ . , _ _ . , , +  } -- -- K jl K ill 2 iY[  ×KiJlq- × 
( p + ) =  ° , = 1  - , ,  × , , , - , ,  x , 

(B.11)  

wh i ch  m u s t  van i sh .  
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