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Starting from a manifestly supersymmetric superfield formalism, we construct the lagrangian 
of fourth-order supergravity in component field form. The super-Gauss-Bonnet theorem can be 
used to eliminate one of the three terms in the superfield lagrangian. We verify the super-Gauss- 
Bonnet theorem explicitly or the bosonic part of the theory. 

1. Introduction 

One of the important unsolved problems in theoretical physics is the formulation 
of a unified theory that includes gravity. If one calculates quantum corrections to 
classical Einstein gravity in the presence of matter and gauge fields, one finds (at 
one-loop) infinities proportional to the square of the curvature (see e.g. ref. [1]). That 
means that in order to subtract these divergences one has to introduce counterterms 
in the lagrangian which cannot be absorbed in the original lagrangian simply by 
renormalizing fields and Newton's constant. If one, however, starts with a classical 
lagrangian that already includes terms quadratic in the curvature (i.e. ~2, 6~,, ~Am, 
and ~t~mnpqt~b mnpq) then, as has been shown by Stelle [2], one arrives at a renormaliz- 
able theory. 

Presently the most promising candidates for a unified theory of all known 
interactions are supersymmetric theories: N = 1 supergravity in eleven dimensions 
and superstring theories (for reviews, see e.g. refs. [3] and [4]). Supergravity in eleven 
dimensions is one-loop finite, but is not expected to be finite at higher loops. The 
infinities will again be proportional to higher powers of the curvature as those are 
the only possible counterterms. 

Superstring theories have ordinary supersymmetric theories as their low-energy 
limits. Corrections to these low-energy field theories will again contain terms of 
power greater than one in the curvature. This follows from the fact that the 
supersymmetry transformation rules of the various fields include terms of this 
kind [51. 

Appealing now to particle physics phenomenology we know that the only realistic 
low-energy supersymmetric theory is N = 1 supergravity in four dimensions coupled 
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to gauge and matter fields [6]. For these theories it has been shown that one-loop 
infinities are proportional to terms quadratic in the curvature [7]. 

These observations motivated us to study fourth-order N = 1, d = 4 supergravity. 
There are several ways to arrive at supersymmetric lagrangians: the Noether method, 
the tensor calculus and the use of superfields. (These methods are reviewed in ref. 
[8].) In the superfield method one starts with a manifestly supersymmetric superfield 
lagrangian defined in superspace. One then arrives at the component field lagrangian 
by an expansion in the Grassman coordinates. We have chosen this method since it 
seems to us the most straightforward for the problem considered. 

The paper is organized as follows: in sect. 2 we set up the superfield lagrangian by 
supersymmetrizing the lagrangian of ordinary fourth-order gravity, and we gener- 
alize the Gauss-Bonnet theorem to the supersymmetric case. In sect. 3, the supersym- 
metric @2 term is constructed starting from the superfield lagrangian and using the 
0-expansion of the superfield R. In sect. 4 the same is done for the G 2 term after 
obtaining the 0-expansion for the superfield 14/. 

In appendix A we clarify our notation and collect some important formulas used 
in arriving at the results of sects. 2 through 4. Appendix B reviews the spinor 
decomposition of the curvature tensor in the presence of torsion, and we state the 
Gauss-Bonnet theorem in terms of tensor and spinor quantities. In appendix C we 
show how to get the components of the 0-expansion of the superfield G~a since it is 
needed in sect. 4. We also verify the super-Gauss-Bonnet theorem for the bosonic 
sector of the integrand explicitly. 

2. The supedield lagrangian 

The most general fourth-order lagrangian for ordinary (i.e. non-supersymmetric 
gravity with zero cosmological constant and without torsion is given by [9] 

~ =  -- 10l~1~ + ~,0~ 2 + " [ ~  mn6,~b mn + ~6,~ mnpq6,~ mnpq + E['~t~ . (1) 

For compact spacetimes or in the case where the metric tensor and its derivatives fall 
off fast enough asymptotically, and in the absence of special boundary effects such 
as singularities, the last term can be ignored since it is a total divergence. We will do 
this in what follows. 

If we now use the identity (which is valid in four dimensions only) 

(? ~.,.pq + 2@m.@m. _ ~ ~2 (2) 6"f~ mnpq 6~mnpq = --mnpq-- 

with (3,,,pq being the Weyl conformal tensor, we can rewrite eq. (1) 

~= -12a6f~ + bt~2 + c( 67~ mn~t.mn- 296.j~2) + bG.,npq~mnpq (3) 

where 

a = a ,  b = / 3 + { V +  ~3, c = 23 + ~,, b = 3. 
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The reason for writing E in this form is that now each term separately has a 
supersymmetric extension. 

With the help of the Gauss-Bonnet theorem, which expressed in terms of the Weyl 
tensor reads (for the torsion free case), [10] (see also appendix C) 

f d'xe { C,,,pq(3 ""eq- 26Am,6,~ ''" + _~ c.j{2 } = 32w2X, (4) 

the term in eq. (3) containing the Ricci-tensor can be eliminated. (X is the Euler 
number of the manifold integrated over.) We then obtain the following action 

S=fd'xe{-~a#~,+(b+~c)e,.~qem"~o+(b+~c)rA,~}. (5) 

Before writing down the supersymmetric extension of eqs. (3) through (5) in 
superfield language let us recall that the superspace Bianchi identities (c.f. appendix 
A) reduce the number of independent superfields contained in the vierbein E~ and 
the connection q~MA B tO the following three superfields: (i) the complex chiral scalar 
superfield R which contains the curvature scalar, (ii) the hermitian superfield G,a 
which contains the Einstein spinor, and (iii) the totally symmetric chiral superfield 
W~ov containing the Weyl spinor. (Details can be found in refs. [11] and [12].) The 
supersymmetric form of the lagrangian in eq. (3) is then 

~= f d~0 z ~  { - ~ R  + O ( ~  - 8R)R + g + 't  ~ - 8R)Co~C "~ 

+dW~IjvW ~av} +h.c.  (6) 

Here /~ is the chiral density and (U92-8R) the chiral projection operator. The 
relation between the coefficients in eq. (3) and eq. (6) is 

a = 6 a ,  b= - 1 8 b ,  c =  - ~ c ,  d = 8 b .  

This follows from 

fd~O 2£'(@ 2 - 8R)R+R + h.c. = - ~ 2  + . . .  , (7a) 

fd2OZP-(® 2- 8R)a.~G a" + h.c. = ( - 4q , , aa t }q"t~ ' i~  - ~ 2 )  + h . c . +  --- 

= -2(qR,,,,~,""-~c,'~2)+ " - . ,  (7b) 

fdzO2P, W~avW,aV+h.c.=l{o~ ~,,avn h.c.) + 

= -lC~ (~'~"pq -4- . . .  ( 7 c )  8 ~ m  tt p q ~  - -  
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which in turn follows from the analysis below. The ellipses stand for terms induced 
by supersymmetry containing the gravitino and auxiliary fields. The notation is 
explained in appendix B. Using these results we can immediately supersymmetrize 
eq. (4) and obtain the super-Gauss-Bonnet theorem [13] 

f d ' x  f d202E[8W~,I~rW "#v + (UD2- 8R)(G,,~,G"a-4RR +) + h.c.] = 32~r2x . (8) 

It can be used to eliminate the term in eq. (6) containing the superfield Go~ with the 
result 

k~= f d20 2/~ { - 3oR + 8( b + 21c )W,,~vW"av - 18( b + {c )( U02 - 8R)RR + } + h.c., 

(9) 

which is the supersymmetrized version of the lagrangian of eq. (5). 
The super fields R, G and W and the chiral density/~ can be expanded in powers 

of 0. Their component fields can be expressed in terms of the lowest, i.e. 0 = 0--  0 
components of R and Gaa, - 16M and - {b~a, respectively, the lowest components 
of the vielbein E~,  the vierbein* e~, = E~I and the gravitino field 1 2 t#,, = E~I and the 
irreducible components of the curvature spinor. They are defined by the following 
decomposition [15] 

- 31(ea,ea, + ea, e#,)A] -4e,#e,,XI" ~?, + h.c., (10) 

where 023 and O are symmetric in their indices and ~ is symmetric in each pair of its 
indices. For more details on the spinor decomposition of various geometric quanti- 
ties we refer to appendix B. The fist term on the right-hand side of eq. (9) is just the 
well-known ordinary Einstein supergravity lagrangian 

f 1 m I -- 5 ~ klmn £ R = - - 3  d E O 2 E R + h . c . = e { - ½ ° ~ - ~ M M * + ~ b m  b +2~bky Vt6"~ke }, 

(11) 

where 

~-~rn~/n = ( Orn 4- L2iWmPqOpq)~ n (12) 

and ~,.Pq is the spin connection. 

* The vertical bar behind any expression means that it is to be evaluated at 0 = 0 - O. 
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3. The ~2 term 

In this section we will find the supersymmetric extension of the 6~2 term in terms 
of component fields from its superfield equivalent. Let us review the general method. 
If L is a chiral lagrangian superfield (i.e. UDaL = 0), then using the 0-expansion of 
the chiral density [12] 

_ -  .o- . 2E e { l + t O o ~ b ~ - O O ( M  + (13) 

E=  e -a f d20 2/~L + h.c. = - ~®2L I + ~ i ~ y ® L I  - ( M *  + d/,,6"b~t,)LI + h.c. 

Here we consider L = ( ~  2 -  8 R ) R R  +, and it follows that we need Rl , °~RI ,  
6~2R[, ®®2R I, ®2®2R I and their hermitian conjugates. Using the results of ref. 
[12], we get: 

R I -- - ~ M ,  (15) 

6D~RI ~ ~h # =-3(0 ),,+,~bB+16i(o"~/a)oM- gt+,,ab' ", (16) 

4 2 
®2RI = - {*A+ 13i( ~"8"~b,,,. + d/"o"~. , , )  - 2iDmb" + - M M *  + -b . , ,b"  

9 9 

- - - -  I -- --m +16 ( d/ ~b M + q~ d/ M * ) + g ( ~ mO ~ . " -  - q~,,,o 6.)b", (17) 

@&@2R] = -4iS'~'"@,,,UO~R[ - i(Srn~bm)~'@2Rl + 2baa@3 ~,R 

2 - m  n -  & a ^ + 3(O 0 * m )  e n D a M ,  (18) 

~2O~2RI _ a ,,, ^ a = % 0  M +   bob°M-    mo° mboM 

,. ~ ,,,. _ ~ib"~,,,®R I - 8 ~  ®,.®RI + 3e/,,,.o ®RI 

+ ~ib,,,~k.o"6"®RI - ~M®2RI  - 2q,,.~k"®2RI, (19) 

where the hat over the derivative symbol denotes supercovariant derivatives which 

(14) 

we get the following component field lagrangian ~ in terms of O-derivatives of L: 
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are defined as follows: if A ---91, then b~A = eD~q~[; 

D a M  = e~( OmM - ~l moPql~p q "~- ½i~/mOn~n M -- ½i~ra~nbn ) , (20) 

J_ C-- b~bh e : ® m b h -  2( q, ~o i L b -  - - '  

+ ¼i( ~o"~v,. + - -" , , e- ~,oo V,,)b~ + ~ , ~ e ( ~  o ~,o- ~'~e~,o)b~ 

- ¼ , ( ~ o ~ M *  - ~ o ~ M ) .  (21) 

Eqs. (18) and (19) can be obtained from eqs. (15)-(17) with the help of (A.3). 
Using above results we get after a tedious but straightforward calculation 

where g~2 is the bosonic part of the lagrangian 

e-'fa~ 2= - a {  °~2 - 4 (8 , .M) (a"M*)  + 4(°~,.b") z -  ~ib"( M * O . , M -  MO. ,M*)  

+ ~ ( M M * ) Z +  {(b , , ,b ' ) z+ 4 * ,,,_ ~MM b.,b 4-~b b " ' -  a3~MM* } 3 m 

(23) 

¢~2 is the part of the lagrangian quadratic in the gravitino field 

e - l e ~  2= - ~{(2MM" + 4 b , , , b " - 6 ~ ) A  + 8 ( ® , , b ' ) B -  12~"8-~X 

+ i~b'M*O, My"~b,,, + 2ib. ~./~-OM. ~/+ ib. ~ 7 5 8 M . y y  • ~b 

- iR . 7 " ~ .  77" ~k - 2 R . 78-'-M. tk + { iMM *~,d(4o'"~,  

+ib .  ~/(43~/2,5 +/~)X - 6( @. ~ ) f 4  X + i~.  y(bySl~l + 2 M M * ) x  

+6(6Dpb.~/)'yP~ISx- iR.'y( f'I + i~Is)X + 6X@~,. R }. (24) 

Finally, EFt4 is the contribution to En, quartic in the gravitino field 

e - ~ e ~ '  = - ~ { 4 B :  + 9a ~ - ~ i f f " v ' v " ¢ . ~ . v ' ~ t x  - 3i~.  ¢ % ¢ . v ~ x  

+ 3ib. ~/75~,~*'X - 3ib. ~k'yq7 • ~/qT~X 

+ ~ib. tk75707 • ~ q X  -- 3iR "7@p~"X - ~iR "yvqy'l~l~qX 

+ 3iR .rVs~kt, fft"/5 x + ~iR "7753'q7 • ~k~Tq3'~X }, (25) 
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where we have defined: 

A = ~i~'~)'"~b,,, - ~A~/~b + ~ff" VTsff • b,  

B = - ¼i~m'YS]Vl~ m -- ¼ib. 5Y" ~ - ~ m Y n Y s t ~ , , ,  

"t- l eranpq~m'~n'ySl~Pbq'+ - I . T i n  5 n  

X = - 1 6 i ( ' y ' R  +{'-M-'~y- ff + y'ff-  b ) ,  

R p = - e P q ' " . t s T q ~ . , ~ .  , 

37/= R e M +  iTSlm M. 
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(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

The curvature and covariant derivatives contain torsion. We also have converted to 
four-component notation (c.f. appendix A). 

We notice that in contrast to Einstein supergravity the fields M and b satisfy 
dynamic equations of motion and can no longer be eliminated. 

4. The  C 2 term 

In this section we show how to get the supersymmetric extension of the (2 G ' ' ' 'pq - m n p q -  
term starting from the superfield lagrangian 

= f d2O 2EW'~avW, ,#v  + h.c. (32) 

This is just the lagrangian of conformal supergravity expressed in superfield lan- 
guage (c.f. first of ref. [13]). The component field lagrangian was worked out in ref. 
[14] using the full superconformal algebra. Here we will show how to get it from the 
superfield lagrangian. 

After expanding the integrand in eq. (32) in powers of O and performing the O 
integral we find 

• 10~ 2~ W e - l ~ , ' 2 = { - W a ~ ' [  M + ~ ' , f i " b ~ h + ~  1 , ~ ,  

(33) 

i.e. we need to evaluate W~vl, ®pw~l and @2W~vl. The first of these is given in 
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ref. [12]; we will write it in the following convenient  form: 

where  

with* 

1 
= (o  e ) ~ O ~ ,  v (34) 

P(aBv) 

~ v = ~ D ~ v - ½ i b ~ v .  (36) 

The  evaluat ion of ®pWo#vl and 6D2W./~v I is rather involved, and we will give some 
of  the details. 

Using the solutions of the Bianchi identities, we can show that 

6DsWo#vl = - Y.#~,81 + Is v~ es .~ ,W,o~, l  " (37) 
P(aOy) 

Y~#vsI is computed  with the help of the relation 

6 ~ el m .fLc,tat,- e a ec Rmnabl 

_ N M v 
-- E d E.  RMNab ] -- EfEcMRM~_ab[ -- EdNEc~RaNabl + Ed-E~Ro._.hl , (38) 

where underl ined indices are summed over dot ted and undot ted indices. Not ing  that 
N M l u E d E~ RMNob=R~dob and fd" I =- 2~d, Edi, I =--½q,~ and that Y~#,8 = 

~6(I/4.)Zpt~#v,)Rv.~s #~ (c.f. appendix C) and making extensive use of the solu- 
tions of the Bianchi identities, we get (after a considerable amount of algebra) 

et~#v) 

i 

P(aByS) 
(39) 

The  superfields W and G satisfy the relation (refs. [11] and [12]) 

= - + %G/) [----- (40) 

* Since some of the manipulations leading to eq. (44) will involve integrations by parts, it will be 
important to remember that the vierbein is covariantly constant with respect to 9,,, and not ~. ,,,. 
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where F~ = b~bb - b~b~ is the supercovariant field strength defined in terms of the 
supercovariant derivative (c.f. eq. (21)). We note that the M dependence of b~bb 
drops out of the combination ~'~b and ®aW.av[ is independent of M. 

Finally, to get 6~2Wo#,1 we write ®'63~W~p = [(®°, ® }  + @~®~]Wao a and also 
®~®~W,, a = ®~®°W,# * + ®~W#~ a. Using formula (A.3) and the solutions of the 
Bianchi identities, we find { 63", ®~ }W~#, = 20R + Wpy, and comparison gives 

(41) 

This equation is symmetric in all its indices. This is not obvious for the last term on 
the fight-hand side but we can easily show that ea°®,®°Wpljv = ½ ( ®~, @P } W~Ijv = O. 
With the help of eqs. (40), (A.3) and the solutions of the Bianchi identities, we find 

6D,°~°W.#,I = - ~ i  E ( - ~3iba~vGp~l + 2o~aB~m6DvG,~I 
P(a~a) 

• [J -- - - &  + 
+tea  ,¢a~a6"~ R I)" (42) 

The evaluation of @~®vGaljl is tedious and outlined in appendix C. Our final 
expression or ®2WavsI is 

P(Bvs) 

We note that after using this expression in eq. (33) ~ :  will be independent of M. 
Furthermore, the real vector field b,, only appears through the field strength and 
covariant derivatives, i.e. it plays the role of a gauge field. [In fact, from the 
four-component form of the covariant derivatives given below it will be apparent 
that it is a chiral gauge field.] Collecting arguments we finally get the following 
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expression for the lagrangian: 

- -  w - ~ l  r l  O v w__ v 

- -  - -  v . --m n v p q  
-- ~iEranPq6~m( ff q'Ynff p --b ~n'Yq~p) q- 2 i~mnpq~m'Yn~pq  -- l~mnpq~  "Y dp 

+o(+'), (44) 

where we have not explicitly written out the terms of fourth and higher order in the 
gravitino field because of their large number and the fact that an equivalent form 
(c.f. below) can be found in ref. [14]. In above expression all curvature terms as well 
as the covariant derivatives are without torsion, and we have defined 

= _ 1  ( 4 5 )  

~ m n  = 1 "  ' [ ' P q  (47) 2 ~mnpq~r 

and 

(48) 

Since, as noted at the beginning of this section, eq. (32) is just the superfield version 
of the lagrangian for conformal supergravity our result is equivalent (i.e. up to a 
total divergence) to the result of ref. [14]. We have verified this explicitly for the 
kinetic energy terms. 

5. Conclusions 

We have derived the most general fourth-order N = 1 supergravity lagrangian. To 
do this we used the superfield formalism to supersymmetrize the action of ordinary 
(i.e., non-supersymmetric) fourth-order gravity, eq. (3). T.he super-Gauss-Bonnet 
theorem (eq. (8)) allowed us to reduce the number of fourth order terms from three 
to two which left us with the expression eq. (9). We then expanded the superfields W 
and R in a power series in the Grassmann coordinates 0 and /~ and arrived at the 
component field expressions eqs. (22)-(25) and eq. (44) for the supersymmetric 
extensions of the R 2 and Cm~pqC ""pq terms respectively. We found that the fields b 
and M satisfy dynamical equations of motion in contrast to Einstein supergravity 
where their equations of motion are algebraic, and these fields can be eliminated 
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from the lagrangian. In the super-conformal case, previously considered in ref. [14], 
the dependence on M canceled and the field b appeared as a chiral gauge field. 

I wish to thank Mark Srednicki for helpful discussions, comments and encourage- 
ment. 

Appendix A: Notation and formulas 

Throughout  we follow the notation and conventions of ref. [12]. We use a metric 
with signature ( - ,  + ,  + ,  + )  and define %123 = - 1 .  Upper case indices are super- 
space indices, lower case Latin indices refer to commuting coordinates (vector 
indices) and range from 0 to 3, lower case Greek indices (dotted and undotted) range 
from 1 to 2 and refer to anticommuting coordinates (spinor indices). Indices from 
the beginning of the alphabets are Lorentz indices whereas indices from the middle 
of the alphabets are world indices. The vielbein and its inverse connect the two types 
of indices. Superspace indices are contracted as follows: VAW A = V . W "  + V'~W,, + 

Ve, W ~" and likewise for world indices. We also use the following notation: ®2 = 6~%D. 
and ~2 = 6D~®~" The torsion and curvature superfields satisfy the following Bianchi 
identities: 

6~TA = E SR s A , (A.1) 

°-0R = O, (A.2) 

with ® being a covariant exterior derivative, E s the connection one form, T A the 
torsion two-form, defined by T A =  6DEA and RA A the curvature two-form. (All 
forms are superspace differential forms.) The Bianchi identities can be solved, and 
the torsion and curvature components can be expressed in terms of three superfields, 
R, G and IV, which are not completely independent. For the complete solutions of 
the identities (A.1) and (A.2) as well as all the conditions on R, G and W we refer to 
refs. [11] and [12]. The results given there will be extensively used to arrive at the 
results of sects. 3 and 4 as well as appendix C. 

The following important identity for the (anti)commutator of two covariant 
derivatives follows from the Bianchi identities: 

. =  .... .... 

x V A , -  o .... A,,Rcso,,4 , _ TcBorDoVA,... ~,., (A.3) 

where V A, ' 'a '~  is a Nth rank tensor 0-form, and b is zero or one depending on 
whether B is a vector or spinor index. 



698 S. Theisen / Fourth order supergravity 

We go from two- to four-component notation by choosing the following represen- 
tation for Dirac-matrices: 

where o "  = ( -  1, a), 8 "  = ( -  1, - a )  and a being the Pauli matrices. The -/" satisfy 
{,/",~,"} = - 2 , / ' " .  We also define ,/5= _/~,o~,~,/2~,3=(-~ o). With the above 

definitions, ~,0 and ~,~ are hermitian and ~,' (i = 1,2,3) are" ~antihermitian.-" We also 
define o " " =  ~i[),", ~,~] and can show that o " " =  - ½i~mnpq'~SOpq and o""~k,,, = 

½2,. R. 
A four-component Majorana spinor is given in terms of a two-component Weyl 

spinor 

(xa) × =  ~ , ~ = × % , 0 =  - ( x " ,  2 . ) -  

We then get the following formulas for the transition from two- to four-component 
notation: 

XO" ...  S"~N@ + ~S" '  . . .  o"~"~ = _~ym, .. .  y"~%b, (A.S) 

XO"' • • • o ' 2 ~ ' ~  + XO"' • • • o ' :~÷ '~  = - X~"~ • • • Y""÷'~k, (A.6) 

xo" ' - - -#"~"6  - ~#" ' . - .  o"~"ff = ~vsv" '  ... v"~"¢, (A.7) 

X O / ~ l l  • • • O ~I12N+ | ~ - -  ~ O / f f l  • • • o t ' t l 2 N  ~ I ~ = X ~  ~ t l ' l l  • • • ~ / t t l 2 N +  1 ~ . ( A . 8 )  

Appendix B 

Since we are using the spinor decomposition of the Riemann tensor in the 
presence of torsion, we want to briefly review it. (c.f. ref. [15]) The symmetries of the 
Riemann tensor are ~,b~d = ~[ablcdl" We write 

I 

The bar means complex conjugation, xr, p,s and its complex conjugate are irreduci- 
ble spinors which satisfy ~ / ' .~  = ~/'(.~×,~). ~o~vs, which satisfies ~.#~s ffi 96(~D)(~a) 
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can be further decomposed as follows 

699 

(B.2) 

where ~°t~n = ~(.ovs) and 0 ~  = O(aa). In terms of the above defined spinors, the 
Ricci curvature and curvature scalar are given by 

~*,~v* --- ~*~Ot}v* aB = - 2 ° a ~ v * ~ . c  (B.3) 

~,= - 4 ( A  + ~.). (B.4) 

The symmetric and antisymmetric parts of the Ricci-tensor are 

- (B.5) 

(B.6) 

The Weyl tensor becomes 

+ + h.c. (a.7) 

In the absence of torsion the Riemann tensor satisfies the additional symmetry 
property 6Xathcdl = 0 from which the symmetry of the Ricci tensor follows. In terms 
of the spinor quantities defined above this leads to A = A i.e. A is real, %azv8 = 
%~8~#, ff'~,~ -- ff'~.# and O.~ = 0, and the Weyl tensor is completely determined by 
the Weyl spinor ~.av6 and its hermitian conjugate. 

Above we have related Oo0 to the antisymmetric part of the Ricci tensor and 
q'oa~ + ~*~aa to the traceless part of the symmetrized Ricci tensor. The quantity 
q'~p~ - ~k,~ap describes the part of the Weyl tensor antisymmetric under interchange 
of the first and second pair of its tensor indices, and the imaginary part of A gives 
the torsion contributions to the part of the Weyl tensor symmetric under the 
interchange of its first and second pair of indices. This follows easily from eq. (B.7). 
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We now give the Gauss-Bonnet theorem in four equivalent versions (each of them 
is only valid in 4 dimensions): 

1 
= 32rr 2 fd4xe*q~ *,..pq_~.""~q (B.8a) X 

1 
- f d 4 x e { 6 ~ , . . p q ~ P q m " - 4 f f C , . ~ 6 ~ " + ~ 2 }  (B.8b) 

321r 2 

1 
-- f d4x e { C,.,pqC Pq"" - 26&.,.°~ ""  + 3z~ 2 } (B.8c) 

32¢r 2 

1 
- fd%e{~.a,,~"a'~-,I',,,/~q'""~-O.,O°'+~A2+h.c.} (B.8d) 

8,//.2 

In above equations X is the Euler number of the manifold integrated over. Due to 
presence of torsion it is important to note how the indices are contracted. 

Finally we want to point out that it follows from the Bianchi identity (A.1) that 
the curvature superfield Rabcd satisfies R~tma] = 0, i.e. its spinor decomposition is 
simply 

with 

q,.#,s = ff,s  , x = X.  (B.9) 

Appendix C 

In this appendix we outline the evaluation of @~i@.tG, p[ and also, for complete- 
ness, indicate how the other terms in the 0-expansion of G may be obtained. G,~I is 
defined to be - 31b#~ and ®°GAB [ is given in ref. I121. Using relations such as 

~°~oG,~ = { ~ ,  ®,, } G,~ - ~, ,~G,~ = 2i6~,,~G, ~ _ 12,,o~ 2R , (C.2) 

we find from the solutions of the Bianchi identities 

1 - -  l 

+ ~i[3®8,G,a + 3~/3G8~- @.~Gdj- @raGsB]. (C.3) 
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a_o * -/~ (c.f. appendix Using now eq. (38) and tkvot~a-- - ,~,-~-~8 aa 
solutions of the Bianchi identities we get 

~l~@,G,~=2vI 'a$~- ,%re t j~  r, i - a t  E [3e~aar~-o) , ,Gra]  
P(8~, l 

p(8~) p(/}~) 

- iC i4's#vU),i R+ l -  ~i~""B°3, R [ -  ±'"2,~.,,°'-g'~.r*~,.ot~h 
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B) and again the 

(c.4) 

4 "  ¢" + ®2G~ 12R +G~a + t%a®cR (C.8) 

These results, together with the other results of this appendix and the 0-expansion of 
R given in sect. 3 suffices to obtain the complete 0-expansion of G. The expansion 

and from this 

To calculate oDf~vGa~ we observe that 

E = o, 
P(ayt) 

which can easily be verified using { 0~, ~ ) G , ~  = 4(%,G~ + %~G~)R +. With the 
above equation we can readily show 

2{ ®~°D,,G,a + °~°3,G,, + °)°~yG~a } = 0 .  (C.5) 

On the other hand we also have 

63°'3Gw, + @ffO~G,, + %~3~'QOGp, - 4R + { %,Gv, + e,.G~, } = 0, (C.6) 

which follows from ®.@vG., = { @~, 63v } G,, - @vo-~G,, and °)°D.rG.~ = t , . o )~"Gp ,  + 
o')~°_~Gv, upon subtraction. Combining (C.5) and (C.6) and using '~c')°Gp,= 
630~,R " = - 2io,~aOD .R  + we find 

@,~,G,,, -- - 4 R  + { ea.Gr$ + er.G~, * ) - 2ier.o,~a°~, R ~ (C.7) 
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of ( ~ 2 _  8R)G.~GO. induces a term -O0(®p®~Go~)(®P~G~)I which leads to 

fd20 2/~(®2_ ~ _ 2 (~ , . ,@, - ,  _ 9zo~2) + , 8R) o G + b.c. = . - .  

a result used in sect. 2. 
To conclude, we want to explicitly verify the super-Gauss-Bonnet theorem eq. (8) 

for the bosonic part of the integrand. To do this we have to find the complete 
bosonic sector of fd20 2/~(~D 2 - 8R)G,~,G *e' + h.c. After some algebra we find 

f d20 2 8 (  ~2 _ 8R)G,,,~G,,~, + h.c. 

-- - ~ ( M M * )  2+ ~9( a=M )( atom * ) - ~ibm( M O . M  * - M*O. ,M ) 

+ ~°~b2 - ~(b2)  2 - ~ ( M M * ) b  2 + ~ ° ~ M M *  

m n  12 rtt n + b 

-~9(°'D~b") 2 -  ~9~,,,. b''b" + efermion " (C.9) 

If we insert this together with eq. (23) and the bosonic part of eq. (44) into eq. (8), 
we get 

4 m n p q  2 , ~ '  ~ m n  f d x e {  mnpq  + a36r~2 -- 2°'~mn6~mn -- 3- mn--  

12 m n + 9(°-O=b.)(°"O b )-{(°"O=b.)(°"O"b")-{(°"O,.b')E-~9°'-X,..b"b"}. (C.10) 

Using now F,..  = ®,.b. - ®.b,. and [®,., ®.]b" = R,. .b"  we are after integrating by 
parts just left with the Gauss-Bonnet integrand of eq. (B.8c). 
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