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A complete local gauge covariant formulation of all known free string theories is given. It 
only involves a finite number of supplementary string fields. 

1. Introduction 

A recurrent theme in modern physics is that apparent inconsistencies between 
diiterent branches of physics have been overcome by introducing a unifying theory 
that possesses a local symmetry. What is equally remarkable is that these theories 
are specified entirely by a knowledge of the appropriate local gauge symmetry group 
and the fields upon which the symmetry is realized as well as the principles of 
causality and unitarity. 

In the last few years it has become apparent that quantum mechanics and gravity 
are not reconcilable within the framework of point quantum field theory. Fortunately 
quantum field theories based on strings have been developed since around 1970 
and it is now widely believed that these theories may provide a consistent theory 
of gravity quantum mechanics and Yang-Mills symmetries. 

Despite the relatively long history of strings the local gauge symmetry underlying 
these theories has not been found, as a result there has not existed a covariant 
second-quantized description of string theories. Presumably this symmetry principle 
uniquely determines string theories and is responsible for their many known 
miraculous properties as well as many more properties to be discovered. 

From a practical point of view it is desirable to have a symmetry manifest when 
quantizing a theory. In general, results are more easily proved in a second-quantized 
covariant formulation. Up to now, the most popular method of quantizing string 
theories has been the sum over histories in a first-quantized formalism [for reviews, 
see ref. [1]]. The analogue for point field theories is a sum over world trajectories 
of the point particle. This latter scheme has been superseded by a true second- 
quantized description of  point field theories, where results are more easily available. 
There also exists a second-quantized form of strings in the light cone gauge [2] and 
more recently in more general gauges [3]. 
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Recently, a gauge covariant formulation of bosonic string theories was given [4]. 

This formulation was explicitly found for the first six levels for the free theory and 

a systematic procedure to find the free action to all levels was given. The general 

technique to find the interacting theory was explained and the first interaction term 

was found*. Other attempts [6,7] to find such a formulation started from the known 

projector [8] onto physical states. However, these formulations were non-local and 

we have argued that they cannot extend to the interacting theory. 

The crucial observation to find the results of ref. [4] was that the string field itself 

did not provide enough degrees of freedom to describe its gauge covariant propaga- 

tion. Supplementary string fields were needed and could be eliminated by an 

appropriate gauge choice to recover the well-known on-shell conditions. In this 

paper we find the local gauge covariant formulation of all known string theories 

for ati levels. These formulations require only a finite number of supplementary 

string fields. All open strings require only six supplementary fields. Closed strings 

require twenty supplementary fields, except the Ramond-Ramond sector of closed 

superstrings, which requires twenty four. 

It is remarkable that this also provides a complete and surprisingly simple solution 

to the problem of a causal, covariant and unitary description of massive fields of 

arbitrarily high “spin”, at least at the non-interacting level. 

2. Conformal (super)algebras in two dimensions 

For the convenience of the reader, we briefly review some basic facts about the 

conformal and superconformal algebras which generate the conformal and supercon- 

formal transformations on the world-sheet [the interested reader may consult ref. [l] 

for further details]. It is well known that ordinary open strings are parametrized in 

terms of the normal mode operators a)l,, m E Z which satisfy the commutation 

relations (a?, = a”,+) 

[a$, a:1 = ~~nl+n.OgCIY~ 

From these one constructs the Virasoro operators 

(2.1) 

(2.2) 

which satisfy the algebra [l] 

[L, LA= (m - n)L+, +i3dm2- l)Sm+n,O. (2.3) 

A consistent bosonic string theory exists only for D = 26, in which case one can 

prove the absence of ghosts. In this case, the physical states obey the generalized 

Klein-Gordon equation 

(L-1)4=0, (2.4) 

* For an early attempt in this direction, see ref. [5]. 
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as well as the constraints 

L,~0 = 0 for n >I 1. (2.5) 

In a covariant formulation of string theories, (2.4) and (2.5) should emerge only 
after choosing a suitable gauge. Thus, to obtain such a formulation, one must relax 
these constraints and allow for appropriate gauge transformations. It is not difficult 
to see that these are generated by the operators L_,  with n/> 1. It then follows from 
(2.3) that all operators in this gauge algebra can be generated out of  the two operators 

L_1 and L-2 by taking successive commutators,  as, e.g., 

L_ 3 = [L_~, t - 2 ] ,  etc . . . . .  (2.6) 

I f  one considers closed bosonic strings, one simply has to double the number of  
operators since the string is now described by left-moving modes a,,-~' and right- 
moving modes a~ .  The corresponding operators Lm and/7,,, obey the same algebra 
as in (2.3); moreover [Lm,/7,,] = 0. The physical states satisfy constraints completely 
analogous to (2.4) and (2.5). In addition, the requirement that there should be no 

distinguished point on the string implies 

(Lo -/50) ~0 = 0. (2.7) 

For spinning strings, the algebra (2.3) is extended to the superconformal algebra 
in two dimensions. As is well known, one distinguishes two cases depending on the 
boundary conditions for the world-sheet fermions. The Ramond (R) sector [9] 
describes space-time fermions with normal mode operators a ~  and d~.  The Neveu-  
Schwarz (NS) sector [10] describes space-time bosons with normal mode operators 
ce~ and br ~ where r ~ Z + ½. In the R-sector, the superconformal algebra is generated 
by the operators L,, and Ft, and is characterized by the (anti-)commutation relations 

{Fro, F,} = 2L,.+, +½Dm28rn+n,o, 
[ L , , , F , ] = ( ½ m - n ) F m + ,  ( m , n ~ Z ) ,  

[ L,, ,  L , ]  = ( m  - n)Lm+n +~Dm38, .+ , ,o  • (2.8) 

The physical states obey the generalized Dirac equation [9] 

and the constraints 

FoqJ = 0  (2.9) 

F.~b = L.~O = 0 f o r n ~ > l .  (2.10) 

The algebra of gauge transformations in this sector is therefore generated by the 
operators F_,, L_,  with n/> 1. All operators in this gauge algebra can be generated 
out of F_I, L_~ by taking successive commutators because 

L_2 = F2~, F_2 = 2[L_~, F_~], etc . . . . .  (2.11) 
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It is therefore sufficient to construct an action which is gauge invariant with respect 
to just F ~  and L_~ gauge transformations, where the gauge transformation 
parameters are completely unconstrained. 

In complete analogy, the superconformal algebra in the NS sectors is generated 
by the operators L,. and Gr which satisfy the following (anti-) commutation relations 

{G.  Gs}=2Lr+s 1 2 l + ~ D (  r --Z)¢~r+s,O , 

[ L " , G r ] = ( ½ m - r ) G , , , + r  (m, n c Z ;  r, sc77+½),  

[L,,,, L,,] = (m - n)L,,,+,, + ~ D m ( m  2 -  1)6,.+,,o. (2.12) 

The mass -shell condition reads 

while the constraints are now 

(Lo-½)~0 = 0,  (2.13) 

L,q~ = Gr~ = 0,  n~>l ,  r~>½. (2.14) 

The algebra of gauge transformations in this sector is generated by L_, and G_r. 
As before, all of  these operators can be generated out of just G-1/2 and G-3/2 (but 
not G-I /2  and L 1 9, and the same comments apply as for the R-sector. We remind 
the reader that the absence of ghosts in the physical spectrum requires D = 10 in 
(2.8) and (2.12). Both the value D = 26 for the bosonic string and the value D = 10 
for the spinning string will be crucial for the results to be presented in the following 
sections. 

To proceed, we next introduce string functionals qJ(x~" (cr)) which are in one-to-one 
correspondence with the states created by applying the normal mode operators. For 
the open bosonic string, we have 

4,v(X"(cr)) -- a(x)10) + a " , a , ( x ) 1 0 )  

t t  u + {a ta_ta~,~(x)  + ot~_zA'~(x)][O) + ' ' ' ,  (2.15) 

with bosonic fields A ( x ) ,  A , , ( x )  . . . . .  In the NS-sector, the corresponding expansion 

reads 

qJNs(X"(~r)) = ~(x)10)+ b~-,/2~,~(x)lO) 

+[bU_~/2b~i/2q~,~,(x)+ot~_~o'~(x)]lO)+ " " " , (2.16) 

with bosonic fields q~(x), ~ , ( x ) , .  . . . .  In the R-sector, the expansion is 

~kR(X~'(o-)) = ~b(x)10) + a~_,q6,(x)lO)+ a_,q,~,(x)lO)+. • ", (2.17) 

where the fields ~b(x), c , ( x ) , . . ,  are now spinors in ten space-time dimensions. 
Obviously, the functional fields ~bv, ~bNs and ~bR contain fields of  arbitrarily high 
spin. The supplementary fields and gauge transformation parameters to be intro- 
duced below will be understood to have similar expansions. For closed strings, one 



A. Neveu et al. / Free strings and superstrings 577 

can write down analogous expansions which, however, must satisfy the constraint 
(2.7) or its analogues for the spinning string. It is important that these constraints, 
which relate left and right movers, are purely a lgebra ic  because the kinetic operator 
cancels in (2.7). Thus, taking the closed bosonic string as an example, we have 

4,v,~,(x"(cr)) -- h(x)10)+ a~_,,i~_~h,, , ,(x)lO)+ • • . .  (2.18) 

Similarly, for closed spinning strings, we introduce the notations ~bNs.h--g, ~bR.~--~, 
~bR.~, and for the heterotic string ~bNS,9 and ~bR.% to distinguish the various sectors 
in a self-explanatory notation. 

Finally, we recall that in order to recover the superstring in the "old"  formalism, 
one must introduce appropriate projection operators in the NS- and R-sectors before 
coupling them together [11]. In the NS-sector, the projector is given by 

PNS =- ½[1 -- (-- 1)E'~'/2b-~'b?], (2.19) 

whereas in the R-sector, it is 

PR------ ½[1 - y*(--1)E"~'d-~"d~"], (2.20) 

where 3'* is the 3'5 matrix in ten dimensions. 

3. Open superstrings 

In this section we give a local gauge covariant formulation of the free open 
superstring. We do this within the context of the original Lorentz covariant formalism 
of refs. [9] and [10]. One could also consider the more recent formulation of 
ref. [12]. However, even at the non-interacting level, the action of ref. [12] is not 
bilinear in the fields. In the original formulation the supersymmetry is realized 
by a vertex operator [11]. We find this to be an encouraging feature since the new 
group theory of strings is based on vertex operators [13]. This has emerged for 
strings based on group lattices [14]. 

We begin with the Ramond sector. The ~b field equation for the Ramond sector 
is of the form Fo0+ . . . .  0. Because of the gauge invariance of 0 it must be 
annihilated by the action of F~ and L~ when the other equations of motion are used. 
Consequently we require equations of the form Ll~b . . . .  and F~O . . . .  , and so 
supplementary fields ~b <~) and X <1). The O equation is now of the form 

FoO + F-~ch ~l) + L - 1 X  ~l) + . . . .  O.  

We then require L~ and F~ on ~b <~) and X °), i.e., four more supplementary fields 
~b<2), ~2), X<2) and )~2) which yield the equations F~b <~) . . . .  , F~X ~) . . . .  , L~ch ~)  = 

• • • ,  L~X ~) . . . .  , respectively• One might expect that one requires F~ and L1 on 
these level-two supplementary fields, but since they do not occur in the ~ equation 
of motion this is not clear. In fact explicit calculation shows that these six supple- 
mentary fields are sufficient to obtain gauge invariance at all levels. The result of 
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this a rgumen t  is the set o f  equat ions  

Fo~O + F_~O (~) + L_~X m = 0 ,  (3.1) 

F,~O = (3.2) 

L ~  = 

F,q~(') = 

F1XO) = 

Limb (1) = 

L1X ~1) = (3.3) 

which fol low f rom the act ion [ ( ,  ) indicates the scalar p roduc t  in Fock space] 

S = ½(qJ, Fo~b)+ (q,, F_,~b( '))+ (~b, L _ , X  ('>) 

d- 5(t~ (1), X (')) - (~b ('), Fo~b (1)) q- (Llt~ (1), t~ (2)) d- (Flt~ ('), ~(2)) 

+ ( X  <'), L, q , ) + ( L , x  ('), )7(2)) + (X (1), FOX(')) + ½(~b (2), Fo(b (2>) 

l ( t ~ ( 2 )  ' (~(2)) _2((~(2), X(2)) . (3.4) 

We emphas ize  that  all higher-level equat ions  of  mot ion  are a consequence  of  
( 3 . 1 ) - ( 3 . 3 ) .  For  instance,  

F2~b = - 2 [ L , ,  F,]~b 

= 2(~ ( 2 ) -  3)((2) , etc . . . . .  (3 .5 )  

It is ra ther  s t ra ight forward now to prove  the invar iance f o r  all levels of  the equat ions 
of  mot ion  (3.1)-(3.3) or, equivalently,  the act ion (3.4) under  the gauge t ransforma-  
tions 

66  = F _ I A ,  

8(b(2) = F~A, 

("F~ gauges" )  and 

3 ' 6  = L I A ' ,  

6'd~ ~2) = - F ~ A '  , 

2 F o ~  (1) - 5X(1)  - Z_l q~(2) - F _ l ~  (2) ' 

-2FOX (1) - ~c~ (~) - L _ ~  (2) - F_~X (2) ' 

- Fo4,  (2> + ~472) _ 2X(2) ,  

- -Fot~  (2) - 2t~ (2) + 2 ~ ( 2 ) ,  

_ Vox~2> + ½,~<2) + ½4,(2>, 

F o r  (2> + 2X (:> + ½47 ~) , 

~ ¥ ( 1 )  = -2A, 

a4~ <2) = 6~? <2) = 0 (3.6) 

6 ' ~  (1) = - ½ A ' ,  6 ' , ¥  (1) = - F o A ' ,  

8',~ (2) = - L I A ' ,  6'(~ (2) -- ~'X (2) = 0 (3.7) 

( " L  1 gauges") .  To show that  this set o f  equat ions  correct ly describes the R-sector,  
we now have to show that,  af ter  impos ing  suitable gauge condit ions,  we are led 
back  to (2.9) and (2.10); in addit ion,  we must  show that  the supp lemen ta ry  fields 
can be gauged  away so there are no new physical  degrees of  f reedom besides those 
conta ined  in ~,. F rom (3.6) and (3.7), we see that  the supp lemena t ry  fields 4) (1) and 
X ~) can be gauged  away  by use of  A and A' ,  i.e., we can put  

~b(~) = X(I) = 0 .  (3.8) 

a # ' =  F o A  , 

6)((2) = - L1A , 
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Substituting (3.8) into (3.1)-(3.3),  one shows that (2.9) is recovered indeed, and the 
remaining supp lemen ta ry  fields are forced on shell, i.e., 

(Lo + 2)4) (2) = (Lo + 2)q~(2) = (Lo + 2)X (2) 

= (Lo+ 2))? ~2) = 0 .  (3.9) 

The remaining  system of  equat ions possesses a residual on-shell  gauge invar iance 

g¢, = ( L_2 + L:_ , )n+ + ( L _ , F _ ,  + ~ F _ t ) n -  , 

g4) ~) = ( - ~ -  V_ ,F , )a  + - ~ L _ , F , O -  , 

6c~ (2)= - L _ , F , / 2 +  + (½ + ~ F _ , F , ) / 2 -  , 

6"X(2) = _F_IL1.Q+ 9 3 - ( g -  ~ L _ I L O / 2  , 

8 4 ( = ) = _ ( 1  + ~ - + L _ I L O / 2  - ~F- lL1 /2  , (3.10) 

where the paramete rs  /2~ are subject to the on-shell  condi t ion 

Fo/2+ + 2/2-  = /2+  - Fo/2-  = 0 .  (3.11) 

(This condi t ion is necessary for  the p roo f  of  gauge invariance.)  The above  on-shell 

gauge invar iance  is quite analogous  to the one that  occurs in ord inary  electrody- 
namics:  the Landau gauge 0~'A~, = 0 is preserved by aA.  = 0J2  with I-1/2 = 0. To see 
that the remaining on-shell supplementary fields can be gauged away by use o f /22 ,  
we define the l inear combina t ions  

4),(2)__ _¼q~(2) + X(2) ' X,(2) = ½07~2) + 4)(2)), (3.12) 

such that  these fields satisfy the same equat ions a s / 2  ±, i.e., 

Fo6(2) + 24),(2) = Fo4),(2) _ ~(2) = 0 ,  

FoX '(2) + 2X (2) = FoX (2) - X '~2) = 0.  (3.13) 

4)(2) and X ~2) can now be gauged away,  and (3.13) then implies that  also 4),(2) = X,(2) = 

0. Altogether,  we have thus shown the existence o f  a gauge where  all supp lementa ry  
fields vanish.  In this gauge,  (3.1) and (3.2) are then equivalent  to (2.9) and (2.10). 
An alternative,  quicker,  me thod  of  gauge fixing which arrives at the same constraints  
is given for  the Veneziano model  in the next  section. 

The t rea tment  o f  the NS-sector  is entirely analogous.  One introduces six supple-  
mentary  fields 4)(~/2), 6(3/2), ~.(1), ~(2), ~,(2) and ~(3). The equat ions of  mot ion  read 

(Lo - ~)~' + G-1/24) O/2) -4- G_3/24) (3/2) , (3.14) 

Gl/2~t = --24)(1/2)+ G_3/2~ (2) - O_l/2~ "(1) ' 

G3/2~ = -104)  (3/2)'t- G_3/2~ (3)-  G_t/2r , ' ( z )+2G1/2~ (1) , (3.15) 

G1/24) (1/2) = 2G_1/24) (3/2) -- (Lo+½)~ (l) ' 

G~/~# '/~) = - 4 (  Lo + ~) ( ~ )  - (Lo + ])  C'~:), 

G,/2#3/~)= (Lo + ~ ) ~  ~2) , 

G3/24) ~3/~)= (Lo+-~)ff (a) • (3.16) 
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These equations follow from an action very similar to the action of the R-sector. 

This is left as an exercise for the reader. The gauge transformations are given by 

&b = G _ 1 / z A  , 

t~ "(1)= G ~ / 2 A ,  

("Gi/2 gauges") and 

6'qJ = G _ 3 / 2 A '  , 

t ~  (1/2) = - L o A ,  

6~ "'(2) = G 3 / 2 A ,  

S'~b O/2) = 0,  

6'~ (') = - 2 G - I / 2 A '  , 

~,y(3/2)  = 0 , 

(~-(2) = (~,(3) ~- 0 ,  

8'~b (3/2) = - ( L o +  1 ) A ' ,  

8 ' ~  (2) = - G 1 / 2 A '  , 

6,~,(2) = 4 G I / 2 A ,  ' (~,~(3) = --  G 3 / 2 A ,  ' 

(3.17) 

(3.18) 

( " G 3 / 2  gauges"). As before, one uses A and A'  to gauge away ~b (1/2) and ~b(3/2); this 

gauge choice puts all fields on shell. In particular, 

(Lo+½)s r( ' )= (Lo+3)(~ "(2) or s r'(2)) 

= (Lo+~)~  "(3) = O. (3.19) 

The residual on-shell gauge invariance can be used to set equal to zero all the 
remaining supplementary fields and we recover the familiar equations 

(3.20) ( L o - ½ ) ~ b  --- O,  G1/2ffl  = G3/2~b = O. 

It should be emphasized that the value D = 10 for the critical dimension has played 
a crucial role in our considerations. Although it is not immediately evident what is 

so special about this value, one may convince oneself that the above construction 
with just six supplementary fields fails for D # 10. 

As the number of supplementary fields is the same in the NS- and RS-sectors, 
one can argue that the supplementary spectrum is supersymmetric after the appropri- 

ate projections in each sector. This will however, have to wait for the explicit 
calculation of the fermion emission vertex and the supersymmetry generator. 

4. Open bosonic string 

We now return to the D = 26 open bosonic string which may also be "covariant- 
ized" by the introduction of just six supplementary fields (~(1), ~(2), ~.(,), ~.(2), ~.(3) 
and s r~4). The trick which allows one to avoid the introduction of infinitely many 
supplementary fields is to go to a "first-order formalism" quite analogous to the 
treatment of  NS- and R-sectors. In this formalism, the equations for motion are 

(Lo - 1)~, + L_,~(~) + L_2tb ~2) -- 0,  (4.1) 
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L10 = -2~b (1) - L- I~  {2)- L-2~ (3) , 

L20 = -4~b (2) - L - I R  ' ( 3 ) -  L - 2 ~  ( 4 ) -  3~ (2) , 

L~d, ")= (Lo+ 1)( 2)-36 <2) , 

L2~b (l) = (Lo+ 2)~  '(3) , 

Limb (2) = ( L o + 2 ) ~  "(3) ' 

L2~b (2) = (Lo+ 3)~ (4) , 

They are invariant under  the local gauge t ransformations 

30 = L _ I A ,  64a (j) = - L o A ,  6~b (2) = 0 ,  

~b~ "(2) = - L 1 A ,  6s r(3) = 0 ,  

6~ "'(3) = - L 2 A ,  6~ "(4) = 0 

and 

6 ' O = L _ z A  ' , 6 '~ (1 )  = 0 , 6 ' q b ( 2 ) = - ( L o + l ) A  ' ' 

6~ "(2) = - 3 A ' ,  6~ (3) = - L 1 A ' ,  

581 

(4.2) 

(4.3) 

(4.4) 

6~ '(3) = 0 ,  6~ "(4) = - L 2 A ' .  (4.5) 

The invariant  action from which the above equations follow is 

½(0, (Lo - 1)0) + (L,O, 4, ¢')) + (L20, ~b (2)) 

+ (~bo), ~b(,)) + (L,6( , ) ,  ~.(2)) + (L2~b(l) ' ~.(3)) 

+ 2 ( 6 ( 2 ) ,  6 ( 2 ) ) +  (L I6 (2 ) ,  ~,,(3))+ (L26(2)  ' ~-(4)) 

+3(,# 2), ~'<2~)- ½((~), (Lo+ 1)~ "~2)) 

_ (~-(3), (Lo+  2)~.,(3)) 1(~(4) ,  (Lo+3)sr(4)). (4.6) 

To show that  the above answer is correct we must  recover the well-known on-shell 

condit ions which guarantee the correct spectrum. We first use A1 and A2 to gauge 

to zero L10 and L20, respectively. However,  we can still make gauge t ransformations 
that preserve these condit ions.  Consider,  in particular 

Then one has 

1 '1) 1 (2, 
60=L- ' - -~b 'Lo + L  2 L - - - ~ b  ' .  (4.7) 

( L o -  1)(0 + 60)  = 0 .  (4.8) 

Further,  using the equat ions o f  motion,  one verifies that L180 = L260 = 0. Finally, 
making the cor responding  gauge t ransformations on the supplementary  fields yields 

0 = ~b ") + &b (1) = ~b (2) + &b (2) , etc . . . . .  (4.9) 
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The reader may wonder what is the relationship between the Veneziano model 
presented here and that given in ref. [4]. Since L~O and L~q~ are known, we can 
c o m p u t e  L3O; we also observe that one can eliminate algebraically ~b~ and &2 from 
eqs. (4.1)-(4.3). One then obtains 

( L o - I - ½ L _ ~ L ~  ~ 3 ~ ~ ~ ~ - a L _ ~ L ~ ) ~  (4.10) -- ~L_2~" 2 - ~L_ i ~"2 - ~L_ 1 L - 2  ~'3 - ~,L-2~'4 = O,  

L 3 0 = - 5 ~ 3 - 4 ~ - L - 1 L 2 ~ +  L ~ L I ~  + L 2 L ~ 4 +  L - t ~ 4 ,  (4.11) 

L ~ L ~ q ~ = - 4 ( L o + 2 ) ~ 3 - 2 L o ~ - L  , L ~ - 3 L _ I G - 3 L , ~ - L _ : L , ~ 4 ,  (4.12) 

together equations of motion for if2, ~3, ~ and ~'4. Setting ~3 = --~3--2~3, one then 
recovers, up to third level, the formulation of ref. [4] with the supplementary fields 
~b2-= ~'2, ~ b 3 ~ - ~ - 2 ~ 3 .  Introducing ~b~, ~b~,..., one would recover the results of 
ref. [4] at higher levels. 

5. Closed bosonic string 

The construction of a gauge covariant action for the closed bosonic string proceeds 
in similar fashion to that of the open strings; it is just made somewhat more lengthy 
by the fact there are both left- and right-moving modes; the gauge transformations 
for the original string field are 

8~0 = L_1A~, g~0 = i _ l A ,  

8 '6  = L_2/I, g '0  =/S_2A. (5.1) 

By analogy with the previous sections, we introduce four supplementary fields, ~1, 
~ ,  &2, d~2, related to the action of L~,/]~, L2,/~2 on 0, and sixteen more, analogous 
to ~2, ~3, ~ ,  ~'4 of the previous section, related to the action of LI, t l ,  L2, E 2 on 
each of the supplementary fields d~l, ~ ,  d~2, ~2. The non-vanishing gauge transforma- 
tions of the supplementary fields are: 

8qbl = - 2 L o A  , 8~2 = - L 1 / l  , 8(2 = - L I A  , 

8X3 = - L 2 / 1 ,  8~3 = - L 2 A ,  8'~b2 = - 2 ( L o +  1) / l ' ,  

8'~2 = - 3 . 4 '  , 8'~3 = - L 1 A ' ,  8'(3 = - L I A ' ,  

8'X4 = - L 2 / l ' ,  6'~4 = - L 2 A ' .  (5.2) 

It is then a trivial matter to verify the invariance of the action 

S =  ½~b( Lo + f- .o-  2)@ + OL_~&, + ~l,L_lq~, + ~bL 2~2 + OL-zq~2- - + '~49,2 

+ d)l L _ I  ~2 + ~bl £_1  ~ +.  bl L_2~.3 + - , 1 - 2  - - - ~bl L -2~3  + ~ 1  + q~l t - 1  if2 + ~bl L - I  ~'2 

+ dplL_2(  3 + da1L_2~+ dp~+ qb2L_lx  3 + ~)3/.~_ 1X~ + ~2L_2x4 

4- (D2/_..-',_2Xt 4- 3~2~'24- ~24- (~2L_I, ~ 4- ~2L_l,~ ~ 4- ~2L_2,1~44 . q~2L_2~ ' 

+ 3 d,2~':~- ~'2(Lo + 1)~-2~(Lo+2)¢~-2~3(Lo+2)X3- 2(~Lo~'-~ - (-~(Lo + 1)~:~ 

- 2(3(Lo + 1)X~ - 2x3(Lo + 2)~'3 - x4(Lo + 3)X4 - 2X~,(Lo + 3)X~.  (5.3) 
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In checking the gauge invariance of  S in eq. (5.3), one must bear  in mind the 
algebraic constraints o f  sect. 1, 

( L o -  Lo)~b = ( L o -  Lo+ 1)(b~ = (Lo - Lo - 1)(~ 

= (Lo- /~o + 2)~'2 . . . .  0 .  (5.4) 

It is a s traightforward exercise to gauge away on-shell all supplementary  fields 
and recover the usual equat ion of  motion and constraints 

( L o + / S o -  2)qJ = 0 ,  L, ~0 =/S, ~b = L2q~ =/S2q~ = 0 (5.5) 

by the same procedure  as described in the previous section. 

6. Closed superstrings 

Closed superstrings come in three different sectors, according to whether  the 
fermionic right- and left-moving modes are in the same sector, Neveu-Schwarz  or 
Ramond,  or in different sectors. The corresponding string fields are ONs.h-~, ~bR.h-~ 
and ~bR,~. The NS, NS sector proceeds in exactly the same fashion as the bosonic  
closed string, requiring twenty auxiliary fields, and the action is found to be 

½ + (Lo + Lo-  1) ~b + ~G_l/2~o 1/2 ~- ~ t G _  1/2~1/2 "[- t~G-3/2~03/2 "4- ~ / G - 3 / 2 ~ 3 / 2  

1 2 
~- 2~  1/2 -Jr- ~ 1 / 2 G _ 1 / 2 ~ 1  Jr ~ 1 / 2 G _ 3 / 2 ~ 2  d- ~1/2G_1/2) (1  "-~ ~t)l/2 G_3/2,¥2 

5 2 # 
-F ~ 3 / 2  4- ~ 3 / 2 G _ 1 / 2 ~  2 d- ~ 3 / 2 G _ 3 / 2 ~ 3  - 2 ( P 3 / 2 G 1 / 2 ~  1 -F (P3 /2G- l /2~2  

- - 1 - 2  + ~3/2G-3/2X~ + ~ , / 2  + ¢1/~(~-,/~, + ~,/~G-3/~ ~2+¢1/2G-,/~,  

- 5 - 2 - -- --v - -- -- 
+ ~01 /2G-3 /2 ) (2  + 2~)3/2 d- ~ 3 / 2 G _ 1 / 2 ~ 2  -~ (pa /2G_3 /2~3  - 2 ~ 3 / 2 G 1 / 2 ~  1 

+ ¢3/2 G_ ,/2,t 2 + (o3/2 G_3/2A3 + ~, (Lo + ½) ~, - 6(Lo + 3) 6 

+ ~2(Lo+~)~+X,LoX, + x2(Lo + I)~.2 + sY~(Lo + ~)~ 

- 4(~2 (/.~0 + 3) ~2 + 2 ~2(Lo + 3) ~7-~ - ,~, Eo,1(, + 2.~2(Lo + I)~.2 

+ 2,X3(Lo+ I)i3 +2~(£o + ~)~, + (3(£o + ~)(3 

+ ~'3(Lo +-~)~'3 • (6.1) 

The corresponding gauge invariances are easily deduced.  
The R, NS (or R, NS) sector naturally exhibits mixed features o f  R and NS open 

strings. The @R,~ string field satisfies the algebraic constraint  

(Lo- /~o + ½) q'R.~--g = 0 .  (6.2) 
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In this sector also, one needs twenty auxiliary fields, and the action writes 

SSR,NS = ½6F06 + 6 F - , 9 ,  + 6 L  ,X, + qJG ,/2~,/2 + 6 G  3/2~3/2 - -  91F091 +59,X, 

+ 9, L_29~ + 9~ F_192 + 91 G-1/2~3/2 + 91G3/2 f5/2 + X~ FoX, 

+ ' XI G -3/2775/2 + 292 Fo  92  x I L _ 1 x 2 x I F _ I X 2 + X I ~  1/2 T]3/2 _~_ - 1 1 ! - 2 9 2 9 2  

+ 2 9 2 X 2 + x 2 F 0 9  ~ t 1 ! t 1 t t - 2X2X2 - ~92X2 - i X 2 F o X 2  + 7"3/2F1 f i t /2  + 27"3/2/'/3/2 

+ 7"3/2FosC3/2 + 7"5/2F~ (03/2 + 2 7"5/275/2 + r3/2Fo~5/2 + 0"3/2L~ ff 1/2 

__ ~O.3/2~:3/2 ..1_ 0.3/2F0.03/2 1 --  20"5/2~5/2 + °rs/2Forls/2 + ° '5/2L1 ff3/2 

-F ~3 /2F0~1 /2  -- ~ l / 2 G _ 3 / 2 f f 2  + ~1/2  G_1/2~71 -~- ~t~l/21~? 17-3/2 

+ ~,/2L_,0"3/2- 2~, G-,/2~3/2 + ½(,Fo(, + ~G, /2~3/2  - (~Fo~ 

- 1 - ~ 3 / 2 d l / 2 9 , - S ~ 3 / 2 F o ~ 3 / 2 - ¢ 3 / 2 G  3 / 2 ? 3 + 2 ? 2 F o ? 2 - [ ~ F o ~ .  (6.3) 

The gauge transformations of the various auxiliary fields can be found by inspec- 
tion, by analogy with those of  the Ramond and Neveu-Schwarz open strings, and 
we do not write them out here. 

Finally, the @R,~ sector exhibits some special features. These are due to the fact 
that it is a bispinor. Its massless fields are bosons which are described by a 
Kemmer-Duffin equation: 

(Fo+ Po) @R.~ = 0.  (6.4) 

The solutions of eq. (6.4), together with the massless modes of the NS, NS sector 
correctly reproduce, after the appropriate chiral truncations, the bosonic spectrum 
of massless bosonic states of closed superstrings previously worked out in the 
light-cone formulation [12]. Hence, it is the correct starting point for the string field 
equations of  motion. One then proceeds by analogy with the other sectors, looking 
for the supplementary fields, and an action invariant under the gauge transformations 

8qJ = F _ t A ,  8 '~  = L _ I A ' ,  8~ = F ~A, 6 '~  = L_~A' .  (6.5) 

However, one finds at the first excited level that four more supplementary fields 
are needed, ~1, sol, ~'~, ~:~, with the following non-zero gauge transformations 

6~1 = FoA,  6'~1 = FoA ' ,  

~ = Foff, 6'(~ = Foff ' ,  (6.6) 

together with the supplementary fields 4~, ~b~, X~, )?a of sect. 3 and their transforma- 
tion laws. Further when constructing the invariant action, one finds that it depends 
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on one free parameter.  This parameter,  however,  is fixed when one requires that  by 

choosing the gauge 

F1~ = PlO = Limb = / S ~  = 0 (6.7) 

all the supplementary  fields are gauged away, and one has the equat ion o f  mot ion 
(6.4). For higher levels, one then finds that sixteen other supplementary  fields must  

be in t roduced,  as for the other  sectors o f  closed strings. Since this case is slightly 
special, we write out the complete  action to all levels and its gauge invariances: 

S = ½qJ(Fo+ Po)~b + qJF,~p, + 4 'L- ,x ,  + ~ , X ,  - ~ ,Fo~,  

+ q,F_,~, - 6 t _ , ~ ,  - ~,Fo~p, -½~,ffo~P, -½~,~, - ~,FoX, +½X,ffoX, 

+ 2X,~, - ½s~, Po~ :, + ½~, Po~', + ;,F-,~P2 + ~p2~ffo~P2 + (, ,L-,x~+X~PoX2 

~:1 L _  1 q~2 _ ~q)2Fo~02  + ~01 p _  1 )k2 _ - _ , - -  ~ I F _ I X  2 ! 1 ! - -  ,' - -  ~ l L _ l l ~ 2 -  X l Y _ l l . t 2  

- , +  - + - , - , - 
- x I L _ I A 2  ~ 1 J ~ _ I A 2  - ~ ' I L _ I H , 2  ~ I F _ I ~ 2 - I - ~ I L l h . 2 + J t 2 F A . 2 + ~ , A . 2 2  

2/*'~X2- ' - '  l - ,  . . . . . . . .  - A2FoA2-Stz2A2+I~2Folz2+Iz2Fol~2-2A2I~2+~L-~x2 

t 1 1 t 
+ ~o~F-~p2+x~F-1x2+x~L-I~p2 +X~FoX~ + ~ 2 F o ~ o 2 - ~ 2 X 2 +  

1 t ! 1 t ! t t 
2 ~ 2 X 2  - -  ~ 0 2  Foq~ 2 - 2(P 2,~2 (6.8) - -  2 ~ 2 ) (  2 + ) ( 2 F O X 2  . 

To the above terms one should add all those obtained by exchanging barred and 

unbarred symbols  [except for the first one, ½~b(Fo+ Fo)~b, o f  course). The gauge 
t ransformat ions  which leave this action invariant are: 

a ~ ,  = F o A ,  8 X ,  = - 2 A ,  8 ~ ,  = F o A ,  ~ ' ~ ,  = F o A ' ,  

8X2 = F ,A ,  a'X~ = ~--qA', at~)l = - I A t ,  atX1 : - F o A '  , 

812~ = I_.,A, a112 = E A '  (6.9) 

together  with those in which all barred and unbarred symbols are interchanged.  It 

is left for the reader  to check that one can gauge away to zero all twenty-four  
supplementary  fields, and end up with 

(Fo+  Fo)q' = F,~/, = L , 6  = P, qJ =/Tqq, = 0 .  (6.10) 

7. Heterotic string 

The Lorentz  covariant  formulat ion o f  the heterotic string involves the co-ordinates 
x ~',/z = 1 to 10, x I, I = 11 to 26 and ~ , / z =  1 to 10 and a = 1 to 2, where the index 

a is a two-dimensional  spinor  index. This means that it has a ~', b ~ and d ~' right 
moving oscillators and 6~', 6 ~ left-moving oscillators. In this formulat ion,  there are 
two string fields ~bNs.v for the bosons  and $R,~, for the fermions. The result is found 
in a similar way to the previous closed strings and reflects a mixture o f  the features 
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found in the open superstring and open bosonic string. One requires twenty supple- 
mentary fields in each sector. The result for the action for all levels is, in the NS, 
~¢ sector: 

SNS,V¢ = ½tk( Lo + Lo -3)t,b + qJG-,/2~,/2 + qJG-s/2~s/z + t~E_,q~, + ~OE_2q02 

q'-1~01/2~1/2"1- ~I/2G 1/2~1 + qOl/2G-3/2~2 q- ~Ol/2E-IX3/2 q- ~1/2/-~-2X5/2 

5 2 
q-2~3/2 q- ~3/2G-1/2~2 q- ~3/2G-3/2~3 q- ~03/2L-l/V/(15/2 

+ q~3/2ff.-2X7/2 - 2q~3/2G,/2~, + ~,(Lo + ½)~, - 4sr2(Lo + 3)~2 - 2~'2(Lo + ~)~%' 

-- 2X3/2GK3/2  - 2Xs/2(G+ 1)K~/2- A2(/7.o + 1)X2+ ~3(Lo+ 25)6 -2X 's /2GK5/2  

- 2X7/2 (/7. o + 1 )/£7/2 - 2A ~(L o + 2)A 3 - A4(/7, 0 + 3)A 4 + q~l/_7., ~ +)~p21 

+ 3tP2A2 + ~ I E - 1 A 2  + ~Pl E-2A3 q- ~t)l G-1/2K3/2 + ~01G-3/2K5/2 -~- ~ 02 -}- ~2/~ 1A~ 

+ ~02/S 2A4+ ~02G-1/2/£'5/2+ qo2G 3/2/£7/2 (7.1) 

and, in the R, 9 sector: 

SR.9 = ½OFoO + OF_,q~, + O L - , x ,  + XE- ,~ ,  + CL_2r.2 - (pl FO~l q-52~1,¥1 + ~Ol L-l@2 

+ ~01F 1~02 + qOlE-1 A2 + q~IE-2A3 + XI/£0X1 + x I L - 1 Y ( z + x I F - I x 2  

+x,L_1Ar2+XtE_2A~3+~IF_, /£2+~IL_, /£~+f f lE ,bt2+~'lE 2/.I.3 

+fflFo~'l+ff2/~7 1/£3+~'2L 1/£~ + ~2I-. ll, Z ~ + ff2E 21J.4 + ff2Fo~2 + 3ff21d.2 

1 1 - - - I - - 1 1 -  - + ~ 2  Fo~02 - ~02~02 + 2 ~P2X2 + X2 Fo~02 - XzX2 - ~02X2 - ~ - ~X2FoX2 

+ A2Fo/£ 2 1 t t ¢ t t t -- ~A2/£ 2 -{- A3 Fo/£ 3 + A3/£ ~ - 2A ~K3 - A 2F0/£ 2 - A 3 Fo/£ 3 - 2A 3/£3 

1 t 

- ~tz2Fo~2 - / x3  Fo/z 3 -/x4Fo/x3. (7.2) 

The gauge transformations of  the fields and the gauge invariances of  Sss,~ and SRS, 
are easily deduced. 

8. Conclusions 

We have displayed the linearized gauge invariance and corresponding free actions 
for all known string theories. In ref. [4] we sketched the method to introduce 
interactions. The interactions and the corresponding non-abelian vertex algebras 
will be reported elsewhere. Knowing the algebra and transformations, the geometric 
principle from which they can be derived can be more easily found. 

One could also examine the equations of  motion found in this paper  in terms of 
the infinite set of  component  fields. One would find that it describes particles of  
arbitrarily high spin in a causal, covariant and unitary way. It is interesting that it 
involves a kind of  first-order formalism. 
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