
Nuclear Physics B259 (1985) 412-428 
© North-Holland Publishing Company 

T H E  S U ( 3 ) × U ( 1 )  INVARIANT BREAKING OF 

G A U G E D  N = 8  S U P E R G R A V I T Y  

H. N1COLA! 

CERN-1211, Geneva 23, Switzerland 

N.P. WARNER 1 

California Institute of Technology, Pasadena, CA 91125, USA 

Received 28 February 1985 

The SU(3) × U(1) invariant stationary point of N = 8 supergravity is described in some detail. 
This vacuum has N = 2 supersymmetry, and it is shown how the fields of N = 8 supergravity may 
be collected into multiplets of SU(3)xOsp(2, 4). A new kind of shortened massive multiplet is 
described, and the multiplet shortening conditions for this and other multiplets are used to 
determine, by the use of group theory alone, the masses of many of the fields in the vacuum. The 
remaining masses are determined by explicit calculation. The critical point realizes Gell-Mann's 
scheme for relating the spin-½ fermions of the theory to the observed quarks and leptons. 

I. Introduction 

The potent ia l  of  gauged N = 8 supergravity [1] has six critical points  which break 

the SO(8) gauge group down to a group con ta in ing  SU(3) [2]. The first is the trivial 

critical po in t  with SO(8) symmetry;  the cor responding  ant i-de Sitter (ADS) vacuum 

preserves all eight supersymmetr ies  [3], and  the fields of the N = 8 gauged theory 

are massless. ( In  this paper  we will always be cons ider ing  the maximal ly  symmetric  

AdS vacua.)  The SO(7) + and  SO(7)-  vacua  are discussed in some detail in [4-6], 

all the supersymmetr ies  are broken  and all the fields, except the gravi ton and the 

21 vector fields of the gauge group, become massive. The mass matrices are given 

in ref. [4]. The G2- invar ian t  vacuum has N = 1 supersymmetry,  with a massless 

N = 1 gravi ton mul t ip le t  and  fourteen massless N = 1 vector mult iplets  t ransforming  

in the ad jo in t  of  G2. The remain ing  fields form massive N = 1 multiplets .  The SU(4) 

invar ian t  vacuum breaks all the supersymmetry  and  only the graviton and  the fifteen 

gauge fields remain  massless. Fur ther  details of  the G2 and  SU(4) -  critical points  

may be found  in [6, 7]. It is the purpose  of this paper  to describe in detail  the only 

remain ing  SU(3) - invar ian t  critical point ,  having in fact an SU(3) x U(1) symmetry,  

and  discuss some of the propert ies of the cor responding  ant i-de Sitter vacuum.  

It was no ted  in [2] that  in the SU(3) x U(1) - invar ian t  AdS vacuum there were two 

unb roken  supersymmetr ies  t ransforming unde r  the U(1) factor of S U ( 3 ) x U ( 1 ) .  As 
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the Weingart Foundation. 
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a result, the fields of gauged N = 8 supergravity must decompose into multiplets of  
gauged N = 2 supersymmetry as well as multiplets of  SU(3), That is, the fields must 
fall into representations of  SU(3)×Osp(2 ,  4). Moreover, the only massless N = 2  
supermultiplets should be that of the graviton and the SU(3) octet of  vector 
multiplets. At first sight it does not seem possible to collect the remaining SU(3) 
representations into a mixture of  the long and short massive multiplets described 
in [8]. However,  we find that there is a new kind of shortened massive multiplet, 
whose length is intermediate between that of  the long and short multiplets of  [8]. 
Like the short multiplets, we find that the masses of  the fields in this new medium- 
sized multiplet can be expressed in terms of their spin and the cosmological constant 
of  the vacuum. Thus, the masses of  many of the fields can be determined from the 

algebraic structure, without explicit calculation of  the mass matrices. 
In sect. 2 we describe the multiplets of  Osp(2,4) ,  and in particular give the 

properties of  the new multiplet. We use the multiplet shortening conditions to obtain, 
in terms of  the cosmological constant, the masses of  the fields in all but the long 
multiplets. The masses of  these remaining fields are obtained in terms of the 
cosmological constant and the mass of lowest energy field in the multiplet. In sect. 
3 we give complete details of  the symmetry breaking critical point of  the potential, 
and explicitly calculate the mass matrices of  the spin-½ particles. From the work of 
sect. 2 this enables us to determine the masses of  all the fields in this vacuum state, 
and also provides several checks on the deductions made from the supersymmetry 
algebra. Finally, in sect. 4, we discuss the possible relationship between the SU(3) x 
U(1) critical point and particle phenomenology.  In particular we find that this 
critical point realizes the scheme suggested by Gell-Mann [9], for relating the spin-½ 
fermions of  N = 8 supergravity to the observed quarks and leptons. Thus, a glimmer 
of hope remains that there might be some, albeit indirect, link between N =  8 
supergravity and the real world. 

2. Short N = 2 multiplets  

In this section, we briefly describe the structure of N = 2 multiplets in anti-de 
Sitter space that occur in the analysis of  the SU(3)× U(1) critical point of N = 8 
supergravity. The necessary analysis has already been partly performed in [10] to 
which we refer for further details and references. Besides reviewing these results, 
we shall here describe a new multiplet which has not been discussed previously and 
which, although "medium-sized,"  is intimately tied to the properties of  anti-de Sitter 
space just as are the short multiplets of  [8]. 

Let us first recall a few properties of  Osp(2, 4). Its bosonic part  consists of  the 

generators MAB of SO(3, 2) and the hypercharge Y, while the fermionic part is 
generated by two Majorana supercharges Q~ (i = 1, 2) whose ant icommutator  is 

= '  ' j  A .  - ,  
lt~ Ic~ MAB + iA 6~#e Y ,  (2.1) 
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where the matrices l~aff are given in [8] and e ~2= - e  2~ = 1, e i~ = e 2 2 =  0. In contrast 

to [10], we have allowed for a rescaling of the hypercharge generator Y by including 
a factor A -1 in (2.1). Expressing the supercharge as 

_ ,  , a~ = ( a 2 )  +, (2.2) 
Q ' =  e~t3at 3 

and defining the combinations 

- -±  T - 1  

± _  T l - ±  =F I: 
a~, = q:x/~(a,~ + ia~)  , a,~ = q:(a,~) , (2.3) 

we have 

[ Y, aS] = + A ~ ,  (2.4) 

so the operators a + and a2, respectively, raise and lower hypercharge by A. Thus, 
A is also the hypercharge that must be assigned to the gravitino. For the construction 
of unitary irreducible positive energy representations [11] of  Osp(2, 4), one follows 
the well-known procedure which is summarized for example in [12, 13] where further 
references may be found. First, one introduces a set of  vacuum or ground states 
which are annihilated by the operators a~. 

aLl(E0, s, y ) E o s m y )  = 0. (2.5) 

Here, the quantities in round brackets label the representation whereas the remaining 
ones label the states in this representation. Eo, s and y denote the energy, spin and 
hypercharge of the ground state, respectively. An (infinite-dimensional) representa- 
tion of Osp(2, 4) is built from these vacuum states by successive application of the 
raising operators 6~ and the boost operators of  SO(3, 2). Requiring positivity of  
the norms of  all the states obtained in this manner,  one deduces certain inequalities 
on the quantum numbers E0, s and y. For instance, the unitarity condition for an 
ordinary "long multiplet" reads 

E0> A-lly]+s+ 1. (2.6) 

If  this condition is satisfied all states have nonvanishing norm and one obtains 
essentially the same multiplets as in N = 2 Poincar6 supersymmetry. (The structure 
of Poincar6 supermultiplets is reviewed in [14].) In certain limiting cases it is possible 
that some states have zero norm. These states have to be discarded since they are 
unphysical and one is then left with a shortened multiplet. It has been shown [8] 
that the Osp(N,  4) algebras allow new types of  rnultiplet shortening having no 
counterpart  in Poincar6 supersymmetry. 

For all the short multiplets it turns out the energy Eo is quantized in terms of the 
spin and isospin quantum numbers. This has the important consequence that the 
masses of  the associated particles are also completely determined. For N = 2, there 
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TABLE 1 

The massive vector multiplet 
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0 + 0 + 1 ~ ~ ~ ~ o- o o- 

w Eo+ 1 Eo+ ½ Eo+ ½ Eo +3 Eo +3 E 0 Eo+ 1 Eo+ 1 Eo+ 1 Eo+2 

Y y y+A y-A y+A y-A y y+2A y y-2A y 

are three types of shortened muitiplets which will all be needed in our analysis. 

Besides the usual massless N =2  multiplets, whose structure is the same as in 

Poincar6 supersymmetry, there are massive hypermultiplets whose energies are 

quantized according to [10] 

Eo=A 'ly[>½, s = 0 .  (2.7) 

The new short multiplet here is obtained by saturating the bound (2.6), that is, 

E0=:~-'lyl+s+l, s~>k. (2.8) 

We now enumerate the various multiplets that will be encountered in the SU(3) x 
U(1) decomposition of the relevant SO(8) representations of N = 8 supergravity. 
The only relevant long multiplet is the massive vector multiplet which consists of 

one spin-l, four spin-½ and five spin-0 states, all massive. Its properties are given 

in table 1. 

In all of  the tables throughout the rest of this section, s, w and Y denote the 

spin, energy and hypercharge of each ground state of  the SO(3, 2) representations 
in a multiplet; Eo and y are the corresponding values for the ground state of the 

entire supermultiplet. Since table 1 describes a massive multiplet and the ground 

state of the multiplet is a scalar, (2.6) has to be satisfied with s = 0; otherwise E0 

and y are arbitrary. The massive hypermultiplets relevant to this paper are character- 
ized in table 2, where, of course, (2.7) must hold and the upper (lower) sign in the 

third row of table 2 is to be taken for positive (negative) y. Finally, the new shortened 
multiplet with s = ½ is shown in table 3. Again, the upper (lower) sign in the third 

row of table 3 refers to positive (negative) values of y. The maximum spin in this 

TABLE 2 

The massive hypermultiplet 

l 0 + 0 S 2 

to eo+½ eo=Z 'IYl Eo+l 

Y y~ZA y y~2A 
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TABLE 3 

The  mass ive  s h o r t  sp in  -3 mu l t i p l e t  

s ~ 1 1 1 ~ ~ ½ o 

to E o +  1 Eo+½ Eo+½ Eo + 3  Eo E o +  1 E o +  1 Eo+½ 

Y y y + A  y - h  y T A  y y yZ~2h y~-A 

last multiplet is s = 3 and Eo has to obey (2.8) with s = ½: 

Eo--  A- ' ly [  + 3 . (2.9) 

Obviously, the multiplet in table 3 has no analog in N = 2 Poincar~ supersymmetry. 
In the Poincar6 limit, it becomes reducible and decomposes into ordinary massless 
multiplets, at least formally. We emphasize once more that the masses of particles 
forming a shortened multiplet are entirely fixed through the quantiza!ion conditions 
(2.7) and (2.8). This not only provides a useful check on the explicit mass matrix 
calculations in the following section but allows us to avoid several rather tedious 
calculations. In fact, the massive vector multiplet is the only one whose masses 
cannot be obtained from group theoretical consideratins alone. However, it is enough 
to compute the mass of one particle in the multiplet to determine all of the others. 

Since the unbroken group symmetry at the stationary point is SU(3)xU(1) ,  the 
fields of the N = 8 theory, originally transforming in SO(8) representations, must 
now be decomposed into SU(3)xU(1)  representations. Following [9], we assign 
the hypercharge y = ½ to the gravitino which is equivalent to putting A =½ in our 
formulae above. We get 

s = 2 :  1 ~ 1 ( 0 ) ,  

s =3: 8--> 1(½)@ 1(-½)@3(~)@3(-~) ,  

s = l :  28-->1(0)@1(0)O8(0)@3(32)@3(-~)@3(-½)Q -3(-~)@3(~)O3(5),2 - i - 1 

S ~ ½ .  ~ 1 1 1 -- 1 56 I(~)Q l ( - 5 ) @ 6 ( - g ) G 6 ( g ) O  1( -  ½)@ 1(½) 

O8(½)®8(-½)®3(~)® s 1 3 ( - ~ ) O 3 ( ~ ) O 3 ( - ~ )  

O ~ ( ~ ) O ~ ( - ~ ) O [ 3 ( ~ ) O ~ ( - ~ ) ] ,  

s = 0 :  70--> 1 ( 0 ) O 1 ( 0 ) O 1 ( 1 ) O 1 ( 0 ) O 1 ( - 1 ) O 8 ( 0 ) O 8 ( 0 )  

O3( -½)O3(½)O6(~)O6( -~ )O6(  -1~)O6(3)- 2 

2 1 1 -- 2 -- I -- 1 3(-g)  O3(x)O3(g)O 1(0)] (2.10) O[3(5) O 3 ( - ~ ) O 3 ( - ~ ) O  

The number in the round brackets after each SU(3) representation is the hypercharge, 
Y, of that representation. The SU(3) representations in square brackets in the 
decomposition of the 56 and 70 are the goldstino and Goldstone modes respectively, 
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and will therefore be eaten. From our  earlier discussion it is now straightforward 

to collect the remaining physical modes  into N = 2 supermultiplets.  Compar ing  

(2.10) with tables 1-3, one readily verifies the consistency of  (2.10) with the multiplet 
structure. There are two massless multiplets, the N = 2 graviton multiplet, which is 

an SU(3) singlet, and a massless vector multiplet, which is an octet o f  SU(3). The 

remaining singlets form a massive vector multiplet of  the type shown in table 1, 

with y = 0. The triplets and anti-triplets in (2.10) correspond to table 3, with y = 

and y = -2 ,  respectively, and the sextets and anti-sextets form massive hypermuit i-  
plets which coincide with table 2 for y = _2 and y = +5, respectively. 

It is most  remarkable  that the embedding  of  the U(1) group into SO(8) is 

determined by supersymmetry  (up to an overall normalizat ion).  Since SO(8) contains 

SU(3) × U ( 1 ) × U ( 1 ) ,  one may in principle take Y to be any linear combina t ion  o f  

the two U(1) generators.  With S U ( 3 ) c  SO(6), where the SO(6) group acts on the 
first six indices o f  the fundamenta l  SO(8) representation,  this means that 

y =  

0 0 ~  

- - s O  

0 ot 

--ol 0 

0 ol 

--o~ 0 

0/3 

-/3 0 

(2.11) 

To see how N = 2 supersymmetry  fixes a and /3, we consider  the triplets in (2.10) 

which have to fit the short multiplet of  table 3. From (2.11), one easily sees that the 
s = 3 triplet has Y = a, and therefore y = a from table 3. Likewise, the s = 0 triplet 

has Y = - 2 c ~  from (2.11) whereas table 3 requires y=y_l; thus y = a = ~ .  

Examinat ion  o f  the remaining states in the multiplet then leads to/3 = +3~, the two 

choices being essentially equivalent in that they lead to the same hypercharge 

assignments (e.g. for each s = 1 state with Y = c~ +/3 there is another  with Y = a - /3 ) .  

Choos ing  one o f  these two possibilities we conclude that 

o~ = ~ ,  /3 _ (2.12) 

This part icular  embedding  of  U(1) was originally chosen by Gel l -Mann in his 

analysis o f  SU(3) x U ( 1 )  embeddings  into SO(8) [9] but for quite different reasons. 
Here, we find that the choice (2.12) is forced upon  us by the structure of  N = 2 
supersymmetry  in AdS space. It is curious that for the decomposi t ion  (2.10) to make 

sense, the background  space must  be AdS rather than Minkowski  space. 
We conclude  this section by outlining how to compute  the actual mass matrices 

from the above results. This may be done by using the formulas given in sect. 3 of  
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ref. [13]. For the spin-½ fields, the relevant formula reads 

l ~ l = 2 t o - 3 ,  (2.13) 

where to is the ground-state energy of the spin-½, SO(3, 2) representation. Moreover, 
our considerations so far have been based on an anti-de Sitter space of unit radius. 
However, the cosmological constant at the SU(3) × U(1) critical point is A = - ~x/3g 2 
[2], and therefore (2.13) and analogous formulas must be multiplied by a factor of 

1 T 3 / 4  mo = ~x/~3 Igl. (2.14) 

As an example, we consider the spin-½ sextet in (2.10). The ground state of the 
associated hypermultiplet has y = _2 and thus Eo = 2]y[--4 by (2.7). The spin-½ state 
in the multiplet carries the energy Eo+½ according to table 2. Substitution into (2.13) 
and multiplication by (2.14) yields 

Im[_6][ = mo[2(Eo +½) - 3 ]  = ,/~3-'/41g1. (2.15) 

A similar calculation for the spin-½ triplets leads to the results 

l m [ _ 3 ' ( ~ ) ] [  = 453 ,/4]g[, 
Im[_3"(~)]l -- [m [3_ (-65)]1-- 4x/~3-1/a[g[. (2.16) 

3. The SU(3 )x  U(1) invariant vacuum 

The scalar expectation value at the SU(3) × U(1)-invariant critical point is 

I T + ~P!iki = ~x/~(AX ijkt + iA 'X ~kl), 

where 

(3.1) 

the index pairs [12], [34], [56] and [78] are 

i p3 pq2 pq2 pq21 pq2 p3 pq2 pq21, 
u = pq2 pq2 p3 pq2 I 

pq2 pq2 pq2 p3 ] 
(3.5) 

X ~ k l  ~ [ ~ 1 2 3 4  i - .~5678~ ..I- / ~ 1256-1- ~ 3 4 7 8 ~  ..I- [ .~ 1278 -1- R3456~ 
\ O ijkt - -  ° ijkl ] - -  \ ~' ijkl - -  ° ijkl ] - -  \ ° ijkl " ° ijkt ] ,  (3.2) 

X ~ k l  ~ _ F / . q 1 3 5 7  __ .q2468,~ .A.- / .q 1268 .~2457'~ 
LktJijkl t~ijkl / t \ O i j k l  - -O i j k l  ] 

q_ ( ~ 1 4 5 8  .q 2367 x [ R 1 4 6 7  R2358~q  
ijkl - - ° i j k l  l - - \ ~ ! j k l  t ' i jkl 1 J ,  (3.3) 

sinh (~/~A) = .,~, sinh (x/~A ') = x/~. (3.4) 

To establish the normalization used in (3.1)-(3.4), and for later reference, we 
note that the submatrices u~ rJ and v0r L of the 56-bein, °U, [1, 15] when restricted to 
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pt3 p2q p2q p2q] 
= 2q q3 p2q p2q| 

v {p2q p2q q3 p2q|, 
~p2q p2q p2q q3 J 
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(3.6) 

or equivalently 

Alo.=½33/4 diag(4,4 4 ~ , . . . , ~ ,  1, 1). (3.9) 

The condi t ions  for supersymmetry  to be preserved in the vacuum are 

&b. = O, (3.10) 

8X~k = 0 ,  (3.11) 

7 ~e ~ -x/~gAl;Jy, ej = O, (3.12) 

i A2jk;ei = 0 .  (3.13) 

It was shown in [16] that there is a complete  4-spinor solution o f  (3.12) for each 

eigenvalue o f  A1 ° whose modulus  is equal to 

(3.14) 

Moreover ,  f rom the tensor  identity [1] 

A ikA ~ A  i A klrn] + ~l  ~lkj--18~2 k;,,~zj I = - -  VSj, (3.15) 

we see that  the eigenvalue condi t ion on A~ ~ is satisfied if and only if A2~k; has a 

zero mode  as in (3.13)• It follows from this, (3.8) and (3.9), that  the vacuum has 
N = 2 supersymmetry ,  generated by e 7 and e 8. 

Because the coefficient o f  the vector kinetic term in the iagrangian is a funct ion 

o f  the scalar fields, this term does not have canonical  normal izat ion in an arbitrary 
vacuum,  and thus g is not  the usual gauge coupl ing constant.  Indeed,  the vector 
kinetic term is 

11- ] ~ ' +  [ ,~IJ ,  KL IJ +tzv - ~ t - - ,~m~o - 6KL)F KL+h.c . ] ,  (3.16) 

and 

• 1 1 p = cosh (½xf~A), q = smh (~x/~A). (3.7) 

An identical normal izat ion is used for the parameter  A'. 

At the critical point  one finds that the scalar potential  takes the value 

V= _9 /-~g2, (3.8) 
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where S is defined by 

( u ° u  + v ~ U ) S  u 'KL = U~KL. (3.17) 

Since the scalar expectation value is SU(3) x U(1) invariant, so are all the matrices 
in (3.17). Let w u = w t u l  be a vector transforming in the adjoint of SO(8), then, by 
Schur's lemma, if w u lies in the adjoint of SU(3) ×U(1), it must be an eigenvalue 
of all these matrices. Furthermore the eigenvalues must all be equal on the simple 
SU(3) factor. Let 

WllJ  ~- ~ l J  ~ l J  
v 1 2 - -  t . ,34 , 

w2lJ -~. ~ IJ A_ ~ lJ -4- R 1J _ ~ R IJ 
v 1 2 - -  ~ 3 4 - -  tP56 J ~ ' 7 8  , (3.18) 

then w~ lies in SU(3) and w2 defines the U(1). From (3.5) and (3.6) we see that wl 
and w2 have the same eigenvalues when acted on by either u or v. These are 

t z = p 3 _ p q 2 = p ,  ~,= q 3 _ p 2 q  = q ,  (3.19) 

respectively. Thus the eigenvalue of S u'~:L acting on SU(3) ×U(1) is 

/z = P ( P  + q) = ½(1 +x/3) (3.20) / x+u  

at the critical point. 
Allowing for the double counting relative to matrix multiplication entailed in 

summing over 56 values for the indices /Jr and K L  in (3.16), one finds that the 
canonically normalized gauge coupling constant, g', is given by 

g '=  3-1/4g. (3.21) 

(The rescaling is done so that the product gA~, is invariant.) From the couplings 
used in the N = 8 lagrangian [1], and the definition of the U(1) factor (3.19) of the 
unbroken symmetry, we find that the U(1) charge of the massless gravitinos are 

e~ = ± 3g,. (3.22) 

Hence the cosmological constant is given by 

A = - 9 / ~ g 2  = _ ~ g , 2  = -6 (  e+)2. (3.23) 

The factor of - 6  in this last equation is essential for N = 2 supersymmetry, and can 
be deduced from the commutation relations of the OSp(2, 4) superalgebra. 

In the previous section the arbitrary scale of the U(1) charges was determined in 
such a way that the massless gravitinos had charges of +½. Therefore, in order to 
make contact with this work, and that of ref. [9], one should take the U(1) coupling 
constant, g', to be 3. 

From the results of the previous section one can deduce the masses of all the 
particles, except for the SU(3) singlets, by the use of group theory alone. Moreover, 
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all the singlet masses can be determined simply by determining one o f  them and 

thereby obta in ing the value o f  E0 in the multiplet o f  table 1. Our  purpose  now is 

to obtain all the masses o f  the spin-½ particles in order  to confirm the earlier results 
and calculate the only undetermined masses. To do this we need to give the A2-tensor. 

Let x ~={x ~ . . . .  , x  8} be a cartesian system, t ransforming in the 8 o f  SO(8). 

In t roduce  a new complex  basis, defined by 

zA = N/~2(x2A 1 -I- iX2^), :?a = X/~(X 2A-' -- ix2A), A = 1, 2, 3, 4 .  (3.24) 

Note that this basis is a unitary t ransformat ion of  the old one. 

Define 

F = dz 1 ̂  d~? l + dz 2 ̂  d:?2+ dz 3 ̂  d:? 3 - dz 4 ̂  d f f  4 , (3.25) 

then 

X~kt dx i ^ dx j ^ dx k ^ dx I = - 1 2 ( F  ^ F ) ,  (3.26) 

X0k t dx i ^ d)d ^ dx k ̂  dx t = - 9 6  Re (dz~ ^ dz2 ^ d23 A d~4), (3.27) 

where X ÷ and X -  are given by (3.2) and (3.3). From this the SU(3) x U(1) invariance 

o f  the scalar expectat ion value, (3.1), is manifest. 
The tensors arising in gauged N = 8 supergravity [1] have SU(8) indices, with the 

convent ion  that an upper  index transforms in the 8 and a lower index transforms 

in the 8. Moreover ,  under  an SO(8) or SU(8) t ransformat ion upper  and lower indices 

t ransform under  the t ransformat ion matrix and its t ranspose respectively. Con-  
sequently, to convert  an SU(8) tensor to the basis described above one contracts a 
lower index, i, with Oxi /Oz  A o r  Oxi/O~ A and an upper  index, i, with o z A / O x  i o r  

a~a/Ox ~. In such a system one finds that the only non-zero components  o f  Az~kj are 

a 
A2  bed = A 2  bed = 3 - 1 / 4 (  t ~ d t ~ a  - -  ~aRd~ C'bVc] , 

n2ab44 = -A2~e4z = -½" 3 1/46;, 

A2abc~ = A2abc4 = i31/4eabc 

+ (all skew symmetr izat ions in lower indices) ,  

a, b, c, d, . . . .  1, 2, 3 .  (3.28) 

Observe that because SU(3) _~ SO(8) c SU(8) is a real embedding,  if we view the 

lowered indices a and ti as t ransforming in the 3 and 3 o f  SU(3) respectively, then 

upper  indices a and ~i must  t ransform in the 3 and 3 respectively (since they 

t ransform under  the act ion of  the t ransposed SO(8) matrix). It follows that (3.28) 

is SU(3) invariant. 
Using the charge normal izat ion o f  sect. 2, we assign charges o f  +-~ and - ~  to the 

lower indices a and ti respectively, and therefore the lower indices 4 and ~, must  
be assigned charges of  + ½ and - ~ respectively. Upper  indices must  have the opposi te  

U( I )  charges. From this one sees that (3.28) is U(1) invariant. 
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Note t h a t  A27qk = A28qk = 0 ,  and thus (3.13) is satisfied for e7 and es, providing 
a further check on the supersymmetry. 

Using (3.9) and (3.28) one can verify the condition for a critical point given in 
refs. [1, 4]. That  is, the tensor 

Qqkt = 3 A 2'nn[ qA 2nkq,~ -- 4 A l m[ iA ~jgt] (3.29) 

must be anti-self-dual. From explicit calculation, or from Schur's lemma and SU(3) × 
U(1) invariance, one finds that Q vanishes when it is not an SU(3)×U(1)  singlet. 
Furthermore 

Qaba(, = 2x/3( t~ aat~b5- t~ a6aba) , 

Qab4a = 2.,/3a a~, 

Qabca = Qa&4 = 0,  (3.30) 

which is obviously anti-self-dual. 

The quadratic fermion terms of the gauged N = 8 lagrangian [1] are 

-- --i I ~  j 1 j k l -  i I~ 1 -- ijkpqrlm n - eg{~/2Al~fl,~Or O~ d - g A 2 i  O ~  T X j k l - F l T 4 4 2 r l  e A 2  p q r X i j k X l m n + h . c . } .  (3.31) 

The first term defines the gravitino "masses" ,  and reduces to 

--i ,~v i --7 ~ v  7 --8 p.u 8 7!_ (3.32) 

in which the last two terms are those for massless gravitinos in anti-de Sitter space 
whose cosmological constant is given by (3.23). Note that the difference between 
the massless and massive gravitino mass terms in (3.32) is proportional  to the basic 
unit defined in (2.14): 

2 (3.33) I~o = ½" 3 1 / 4 g  = ½g,  = ~ m o .  

The second term in (3.31) determines which spin-½ particles are eaten to make 
the gravitinos massive. Indeed, the goldstino fields are defined by 

O, = - - a 2 / k • k , .  (3.34) 

Finally the third term of (3.31) gives the spin-½ masses, and also contains a 
goldstino "mass"  term which must disappear when one makes the field redefinitions 
which diagonalize (3.31) at the critical point (the "super-Brout-Engler t -Higgs 
mechanism," see [17]), In order to simplify this term we write the spin-½ fields in 
their SU(3) irreducible components.  Accordingly, define 

i f ( l )  1 abc 0.(1) '  1 ~/7c 
= ~E Xabe  , ~- ~E g a b c  , 

(2) ~ / i  . R a a  or(2)' - -  4 T  -¢,aa O r = w ~ l t J  , ) ( o a 4 ,  - - - - ~ l o  Xaaa, (3.35) 
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(1) 
7-a = X 4 4 4  , 

(2) / T ~ b b  
T a = " ~ 0  X a b b  , 

(3) 1 • bc 
7-a = 2 | E a  X b c 4  , 

7-~4) = I E a b ? ) ( ~ c g  ' 

7.(2)' a / l  c, b b  
= - - ~ / ~ 0  X a b 6  , 

7.(3) '  a I - bc 
- = ~ l e a  X b c ~  , 

' l t bc 
T(4)  d = 2 ~ X b c 4  
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(3.36) 

2 2 1 - 2 4 6  0 
tto -2~/6 4 0 " 

0 0 4 

SU(3) singlets and SU(3) triplets, are 

The eigenvalues of (3.40) are 3Uo(-1 ±x/i-7), and so the singlet masses are 

m[1] = 3tZo(~/1-7 ± 1), (3.42) 

with a singlet of U(1 ) charge + ½ and -½ for each choice of sign in (3.42). Comparing 

(3.40) 

(3.41) 

from the SU(3) gauge fields. 
The mass matrices for the (complex) 

respectively, 

3/Zo(_12 

=  (ob, = + 42 ob , 

! 1 cd --  c (2) ¢aa = ~ a 6 ) = ~ e a  X6,d+x/2ea6 7-c ] ,  (3.37) 

p~6 = [Xo64 + x/~ i6~6o'(2)] , 

, ~. (2)'  p a6= - [ X  ~ - x / ~ t ~  ~6o " ] ,  (3.38) 

with similar definitions for the irreducible components of X °k. This field redefinition 
is a mixture of  an orthogonal transformation on the fields X0k, and chiral rotations 
of o "(2), O "(2)', 7 -(3) and 7-(3)' (this accounts for the factors of i). The transposed 
orthogonal transformation and opposite chiral rotations must be used on the right- 
handed fields, X °k. The chiral rotations, are necessary because the pseudoscalar, 
i X - ,  is given an expectation value in the vacuum, breaking parity. With the field 
redefinitions (3.35)-(3.38), the spin-½ kinetic terms still have canonical normalization, 
and so the fermion masses are simply the eigenvalues of the mass matrix in this basis. 

Using (3.28) and (3.35)-(3.38) the spin-½ mass term in (3.31) reduces to 

(1) (1) (1) (2) (2) (1) aa (1) (2) M=-iZor /{3 [~  o - ' - 2 ( ~  o - ' + d  cr ' ) ] + 6 - [ 2 - f 2 ( ~  7-~ '+.~(2)_i,)'~,~ J~ J 

_~_-(9) (2)'--~-(3) (3)--~-(4) (4)' ,~ /7/-(2) (3)'---(3) (2)%1 t.a&~bb- t 1 
7-a-Td 1-qT-a 7-5 1-~+Ta 7-5 --ZVO[7- a T a -I-7" a T 5 )J--O 0 ~ab~t~ai,~. 

(3.39) 

First observe that there is no octet term, and so the octet mass is zero. This is, of 
course, to be expected since there must be a massless N = 2 vector multiplet starting 
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this with the long massive vector multiplet in table 1, and using the formulae (2.13) 
and (2.14), we see that the spin-½ particles must have masses of 

]/~] = 3tZo[2(Eo + ½) - 3] = 3/~o(Eo - 1), 

~p.o[2(Eo + ~) - 3] = 3/~oEo • (3.43) 

which is consistent with (3.42) for 

Eo =½(1 +~/17). (3.44) 

From this, and the formula of ref. [12], all of  the masses of the vector and scalar 
SU(3) singlets can be determined from table 1. 

From (3.34), we see that the goldstino triplets are 

3 /4  _( 1 ) ÷ , '~ / "~_(2)  ~ /-~ _(3)~ Oa =3- ( '~a  LV~Ta --~v.'~a f ,  

, __  3/4 _ (1 ) '+2x /~T(2) '  2~/gr?)') O a - 3  (~a - . (3.45) 

As is to be expected the corresponding vector (1, 2,]-2, - 2,/3, 0) is an eigenvector 
on the triplet mass matrix, (3.41), with the eigenvalue +8/*o. There are three other 
orthogonal eigenvectors, (0, 0, 0, 1), (2, -2-,/-2, -~/3, 0) and (12, 3.,/2, 4-,/3, 0), with 
eigenvalues 4/Xo, -41*o, and +tXo respectively. The goldstino "mass" is non-zero 
because the vacuum is anti-de Sitter space [17]. 

A useful consistency check on the goldstino is to look at the spin-½ supersymmetry 
transformation laws for the parameters ea and ea. In the anti-de Sitter background 
one has 

t3Xijk = --2 gA2tijket , (3.46) 

which, using (3.28), can be written 

6r~ l) = ½31/4ea, 

8r~ )= ½3 1 / 4 ( 2 4 2 E a )  , 

8r~ 3)= ½3- ' /4(-2x/?e,) ,  (3.47) 

and similarly for ea. This explicitly demonstrates that the goldstinos, (3.45), can be 
gauged away using the broken supersymmetry transformations. 

The physical triplets are those which are orthogonal to the goldstino, and their 
masses are the moduli of the remaining eigenvalues of (3.41): 

tt 1 m[3_'(1)] =/Xo, m[_3 (~)] = 4/Xo, m[_3(-~)] = 41Xo, (3.48) 

with identical masses for the 3 representations. This agrees exactly with (2.16) which 
was derived solely from the group theory. Once again the masses of the scalar and 
vector triplets can be obtained from the results of the previous section and the 
formulae of refs. [13]. 



H. Nicolai, N.P. Warner / Invariant breaking of gauged N = 8 supergravity 425 

From (3.39) one can directly read off the sextet mass 

m[_6] =/Xo, (3.49) 

which agrees precisely with (2.15). 

4. Physics? 

Among the stationary points of  gauged N = 8  supergravity, the SU(3)×U(1)  
extremum discussed in this paper  is undoubtedly the most interesting one for 

phenomenology.  SU(3)×U(1)  is the symmetry group that is generally believed to 
survive to the lowest energies, and the mere existence of a stationary point of  N = 8 
supergravity with this symmetry is both non-trivial and encouraging. Nonetheless, 
there remain severe difficulties in making contact with particle phenomenology,  
some of which will be briefly reviewed in this section, and it is clear that a much 
better understanding of the underlying dynamics of this theory is required before 
any further progress can be made. Here, we shall not even touch upon the problem 
of the huge cosmological constant at the SU(3) x U(1) critical point nor the problem 
that the fermion masses are predicted to be of  the order of  the Planck mass (if the 
masses and the cosmological constant are tuned to small values, the gauge coupling 
constants of  SU(3 )×U(1 )  become unacceptably small). Neither shall we address 
the question why nature should prefer the SU(3) × U(1) extremum over other stable 
critical points of  the N = 8 theory. It is quite possible that all of  these problems as 
well as the ones mentioned below are, in fact, interrelated and must be solved 
simultaneously. 

A first necessity (before calculating lepton masses, mixing angles, etc.) is to check 
whether there is any way to make the spectrum of the theory agree with that of the 
elementary particles found in nature. For the N - - 8  theory, this problem was first 
examined by M. Gell-Mann and Y. Ne 'eman (before the actual construction of the 
theory) who, proceeding from the observation that the gauge group SO(8) of  N = 8 
supergravity is not big enough to contain SU(3)c x SU(2)w × U(1)y, discarded the 
weak SU(2)w and tried to see whether at least the correct SU(3)c xU(1)  .... quantum 
numbers of  the leptons and quarks emerge from the appropriate  SU(3 )xU(1 )  
decomposit ion of the s -- ½ fermions after removal of  the goldstinos [ 18]. This attempt 
was unsuccessful, mainly because of the appearance of unwanted sextets and octets 
in (2.10). Therefore, the SU(3) cannot be identified with the SU(3)c of  strong 
interactions. 

More recently, in a second attempt [9], Gell-Mann introduced an additional family 
group, SU(3)y, and tried to identify SU(3) of  the N = 8 supergravity theory with 
the diagonal subgroup of SU(3)y x SU(3)c. With the assumption that there is a family 
of  three right-handed neutrinos, he found complete agreement with the SU(3) 
content of  the decomposit ion (2.10) and the physical particle spectrum. Moreover, 

1 by associating "spur ion"  charges of  q = ~ with the _3 representation, and q = - g  with 
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the ~ representation of the family group, SU(3)~ he obtained complete agreement 
with the U(1) charges as well. His assignments are as follows: 

( ~ )  3cX3y~6+3 Q= ' , , - ~ + q ,  

b c 

( i )  ' ~ c x ~ f ~ + 3 ' Q - = ~ - q ' L  

(~ i - )  ' ~ .  L 1~x3 /~3 ,  Q = - I + q ,  

( e i )  p~ , lc x]/-~ ] ,  Q = l - q ,  
\~" / ,  

~,, , 1~ x 3 / ~ 3 ,  Q=-q ,  

P, , l c x 3 f ~ 3 ,  Q=q, (4.1) 
\ ~ , / L  

1 which exactly agrees with (2.10) if q =~. It is not known whether the scheme (4.1) 
can be justified from the dynamics of N = 8 supergravity but it is clear that its 
realization requires a more sophisticated embedding of the phenomenologically 
relevant groups that one might naively expect. In principle, there is room for both 
SU(3)c and SU(3)s , as the gauge group SO(8) in the unbroken phase is the diagonal 
subgroup of SO(8) xSU(8) [1] where the SU(8) group is "hidden" [15]. Thus, the 
SU(3) xU(1) embedding is really 

SU(3) x U ( 1 ) c  SO(S)diagCS 50(8) xSU(8) . (4.2) 

Interestingly, the real embedding of SU(3) into SU(8) via S0(8) is such that the 
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m a x ima l  s u b g r o u p  o f  SU(8) ,  which  commutes  with SU(3) ,  is SU(2).  It is t empt ing  

to iden t i fy  this SU(2)  with the SU(2)w miss ing in (4.1), in which case the weak  

in te rac t ions  wou ld  be m e d i a t e d  by compos i t e  vec tor  bosons*.  Unfor tuna te ly ,  one 

may  eas i ly  convince  onese l f  that  the weak  quan tum numbers  do  not  come out  right,  

ma in ly  because  SU(3)  I in (4.1) does  not c o m m u t e  with this SU(2)w: the wou ld -be  

weak doub le t s  in (4.1) are such that  thei r  u p p e r  c o m p o n e n t  t rans forms  as 3_ o f  

SU(3)  s whereas  the  lower  c o m p o n e n t  t r ans fo rms  as 3_- o f  SU(3)f**. We have t r ied  

wi thout  success  to a l ter  the ass ignments  (4.1) in such a way as to make  them 

c o m p a t i b l e  with the SU(2)w ass ignments ;  i f  one wants  SU(3)y to c ommute  with 

SU(2)w, one  is forced  to put  the l e f t -handed  charge  - 3  ~ quarks  and  the charge  +2 

quarks  into the s a m e  r ep resen ta t ion  o f  SU(3)y, but  then it is imposs ib le  to get the 

right sextets and  octets  requ i red  by (2.10). Thus,  it a ppe a r s  that  (4.1) is the only  

poss ibi l i ty .  

It is a lso difficult to see how the e m b e d d i n g  o f  N = 8 supergrav i ty  into eleven-  

d i m e n s i o n a l  supergrav i ty  [21 ] cou ld  he lp  with these p rob lems .  Using the techniques  

d e v e l o p e d  in [6], it is cer ta in ly  poss ib le  to f ind the c o r r e spond ing  so lu t ion  of  d = 11 

supergrav i ty  with SU(3)  x U(1) symmetry .  However ,  at least  accord ing  to the  prevai l -  

ing ph i l o sophy ,  l ep tons  and  quarks  shou ld  emerge  as the massless  fe rmions  in a 

K a l u z a - K l e i n  theory  whereas  the s =½ fe rmions  a p p e a r i n g  in (2.10) and  (4.1) are 

all mass ive  with the excep t ion  o f  the octets.  E m b e d d i n g  the S U ( 3 ) x U ( 1 )  cri t ical  

po in t  into the a s soc ia t ed  so lu t ion  o f  d = 11 supergrav i ty  wou ld  ev ident ly  lead  to an 

infinite tower  o f  mass ive  s = ½ exci ta t ions ,  and  there is no obvious  reason  why the 

set (2.10) shou ld  be d i s t ingu i shed  in any way,  apa r t  f rom the fact  that  it co r r e sponds  

to a cons i s ten t  t runca t ion  of  the e l even-d imens iona l  theory.  

We are gra teful  to B. de Wit,  S. Fe r r a ra  and  D.Z. F r e e d m a n  for several  helpful  

d iscuss ions .  One  o f  us (N.P.W.)  would  like to thank  C E R N  for its suppor t  and  

hosp i ta l i ty  whi le  the ma jo r i ty  o f  this work was car r ied  out. 
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