HIDDEN SYMMETRY IN $\boldsymbol{d}=11$ SUPERGRAVITY

B. DE WIT
Institute for Theoretical Physics, Universtty of Utrecht, Utrecht, The Netherlands

and

H. NICOLAI
CERN, Geneva, Switzerland

Receıved 1 March 1985

Abstract

Eleven-dimensional supergravity is reformulated in a way suggested by compactifications to four dimensions The new version has local $\operatorname{SU}(8)$ invariance The bosonic quantities that pertain to the spin-0 fields constitute 56 - and 133-dimensional representations of $E_{7(+7)}$ Some implications of our results for the \mathbf{S}^{7} compactification are discussed

Simple supergravity in eleven dimensions [1] was originally constructed to understand the complexities of $N=8$ supergravity in four dimensions. The explicit reduction led to the discovery of "hidden" symmetries [2], whose origin has so far not been understood in the framework of higher dimensions. In this paper, we show that, in fact the $d=11$ theory itself possesses a hidden symmetry. it is possible to rewrite all the transformation laws of ref. [1] and the freld equations, which follow from the action given in ref [1], in a form is manifestly covariant under local chiral $\operatorname{SU(8)}$ Furthermore the bosonic quantities that pertain to the spinless fields, which include the $\operatorname{SU(8)}$ connections, constitute representations of the group $\mathrm{E}_{7(+7)}$. Our construction is based on $d=11$ supergravity rewritten in a certain way as a four-dimensional theory with fields that depend on seven extra coordinates. This theory is still equivalent to the full eleven-dimensional one, and there exists a natural reformulation of our results within the context of any nontrivial ground-state solution, as we will occasionally indicate below. As explained in ref. [3] the compactification to four dimensions occurs naturally if certain components of the four-index field strength acquire nonzero values.

The strategy for obtaining the new version of $d=11$ supergravity has been outlined in ref. [4], where we already presented some partial results. The basic idea is to first restrict the tangent space group $\operatorname{SO}(1,10)$ of $d=11$ supergravity to $\mathrm{SO}(1,3) \times \mathrm{SO}(7)$ by a partial gauge choice and then to enlarge 1 to $\mathrm{SO}(1,3) \times \mathrm{SU}(8)$ by the introduction of new gauge degrees of freedom. In contrast to the construction in ref. [2], which followed a similar pattern, all physical degrees of freedom of the $d=11$ theory are retained here. Since the derivations leading to our results are rather lenthy, details will appear elsewhere [5], but we refer the reader to ref. [4] where several relevant steps have been described. We note that there exist earlier attempts to understand the origin of hidden symmetries [6], and that our procedure is somewhat reminiscent of a recent proposal to change the tangent space group in the "internal" dimensions [7]. However, there are crucial differences between these approaches and our construction as will become obvious below.

We now briefly summerize our conventions and notation (see also ref. [4]) For $d=11$ supergravity we follow those of ref. [8]. The fields of the $d=11$ theory are the elfbein $E_{M}{ }^{A}$, a 32-component Majorana vector spinor Ψ_{M} and a three-index gauge field $A_{M N P}$ which appears only through its invariant field strength $F_{M N P Q}$ in the equations of motion [1] These fields depend on the $d=11$ coordinates z^{M}, which are subsequently split into
$d=4$ coordinates x^{μ} and $d=7$ coordinates y^{m} corresponding to a compactification $m_{11} \rightarrow m_{4} \times m_{7}$ of elevendımensional space-tıme Similarly, all $d=11$ indices are decomposed into curved and flat $d=4$ indices μ, ν, \quad, and α, β, \ldots, respectively, and curved and flat $d=7$ indices $m, n,$. , and a, b, \ldots, respectively For the present construction, it is necessary to redefine the fields of $d=11$ supergravity according to the "standard" prescription [2, 4]. One first makes use of the local $\operatorname{SO}(1,10)$ invariance of the theory to fix a gauge where the elfbein assumes the form
$E_{M}{ }^{A}=\left[\begin{array}{ll}\Delta^{-1 / 2} e_{\mu}{ }^{\alpha} & B_{\mu}{ }^{n} e_{n}{ }^{a} \\ 0 & e_{m}{ }^{a}\end{array}\right]$.
The tangent space group is reduced to $\operatorname{SO}(1,3) \times \operatorname{SO}(7)$ in this way Compensating rotations are needed in the supersymmetry variations and coordinate reparametrizations in order to maintain the gauge choice (1) Moreover, we have already included a Weyl-rescaling factor
$\Delta(x, y) \equiv \operatorname{det} e_{m}{ }^{a}(x, y)$
in (1), which is just the factor needed for the canonical normalization of the $d=4$ Einsten action. It is also possible to perform the Weyl rescaling with respect to a nontrivial background by replacing the full siebenbein in (2) by the deviation $S_{a}{ }^{b}$ from the background ${ }^{\circ}{ }_{m}{ }^{a}$ [4], i.e.
$S_{a}{ }^{b}(x, y)=\stackrel{\circ}{e}_{a}^{m}(y) e_{m}^{b}(x, y)$.
The fermionic fields have to be redefined in an analogous manner It is convenient to use fields with $d=11$ flat indices, in terms of which the redefined fields are given by
$\psi_{\mu}=e_{\mu}{ }^{\alpha} \Delta^{1 / 4} \exp \left(-\frac{1}{4} 1 \pi \gamma_{5}\right)\left(\Psi_{\alpha}-\gamma_{5} \gamma_{\alpha} \Gamma^{a} \Psi_{a}\right), \quad \psi_{a}=\Delta^{-1 / 4} \exp \left(-\frac{1}{4} \pi \gamma_{5}\right) \Psi_{a}$,
where γ_{α} and Γ_{a} are $d=4$ and $d=7$ gamma matrices, respectively. Note that we also use a redefined supersymmetry parameter
$\epsilon^{\mathrm{new}}(x, y)=\Delta^{1 / 4} \exp \left(-\frac{1}{4} 1 \pi \gamma_{5}\right) \epsilon^{d=11}(x, y)$.
In order to enlarge the internal tangent space symmetry from SO(7) to $\operatorname{SU}(8)$, one must now "complexify" all fields of the theory. For the fermions, this is accomplished by noting that chiral $\operatorname{SU}(8)$ can be realized on the eight dimensional spinor representation of $\operatorname{SO}(7)$ through the matrices $\Gamma_{m n}, \Gamma_{m 8} \equiv 1 \Gamma_{m}$ and $\gamma^{5} \Gamma_{m n p}$ The vanious expressions can be further simplified by the use of chiral notation. We employ the letters A, B, C, \ldots to denote spunseven indices which are then promoted to chiral $\operatorname{SU}(8)$ indices For the gravitino field ψ_{μ}, these are introduced in such a manner that
$\gamma^{5} \psi_{\mu}^{A}=+\psi_{\mu}^{A}, \quad \gamma^{5} \psi_{\mu A}=-\psi_{\mu A}$
For the redefined spin- $1 / 2$ fields, one first eliminates the $d=7$ vector index by switching to the combination $\Gamma_{[A B}^{a} \psi_{a C]}$ [2] and then defines [4]
$\chi^{A B C} \equiv \frac{3}{4} \sqrt{2} 1\left(1+\gamma_{5}\right) \Gamma_{[A B}^{a} \psi_{a C]}, \quad \chi_{A B C} \equiv \frac{3}{4} \sqrt{2} 1\left(1-\gamma_{5}\right) \Gamma_{[A B}^{a} \psi_{a C]}$.
The fermion fields ψ_{μ}^{A} and $\chi^{A B C}$ thus transform according to the eight- and 56 -dimensional representation of chiral SU(8), respectively.

To identify the proper $\operatorname{SU}(8)$-covariant bosonic quantities is a more diffuclt task. The analysis of ref [4] suggests that the stebenbein must be replaced by the antisymmetric tensor
$e_{A B}{ }^{m}=\mathrm{i} \Delta^{-1 / 2} e_{a}^{m} \Gamma_{A B}^{a}$,
which is, however, not $\operatorname{SU}(8)$ covariant. We now redefine the fields ψ_{μ}^{A} and $\chi^{A B C}$ and the supersymmetry parameters ϵ^{A} by means of a local $\left(x\right.$ - and y-dependent) $\operatorname{SU}(8)$ transformation Φ_{B}^{A}; the degrees of freedom contaned
in Φ can then be used to promote (8) to a pioper $\operatorname{SU}(8)$ tensor, viz
$e_{A B}{ }^{m} \equiv 1 \Delta^{-1 / 2} e_{a}^{m} \Gamma_{C D}^{a} \Phi_{A}^{C} \Phi_{B}^{D}$
In order to avoid the introduction of new degrees of freedom we let Φ be subject to a local (x - and y-dependent) SU(8) group, according to
$\Phi_{B}^{A} \rightarrow \Phi_{C}^{A} U_{B}^{C}$,
so that by going to a special gauge ($\Phi=1$) we recover (8) After extracting Φ from the fermion fields and the supersymmetry parameter, these quantities and (9) will transform covariantly under the local $\operatorname{SU}(8)$ induced by (10) according to their index structure (note that the complex conjugate of (9) has upper indices, i.e. $\left.e^{m A B} \equiv\left(e_{A B}{ }^{m}\right)^{*}\right)$

Observe that the $\mathrm{SO}(7)$ subgroup of $\mathrm{SU}(8)$ is the ordinary tangent-space rotation on $e_{a}{ }^{m}$ in (8) as it should be The Weyl rescaling factor $\Delta^{-1 / 2} \mathrm{in}(8)$ and (9) may seem unnecessary, but it is essential for our construction below Instead of the usual relation between vielbem and metric one now has the $\operatorname{SU}(8)$ covariant "Clifford property" $e_{A B}^{m} e^{n B C}+e_{A B}^{n} e^{m B C}=2 \Delta^{-1} g^{m n} \delta_{A}^{C}$,
which determines the metric $g_{m n}(x, y)$ because $\Delta=\left(\operatorname{det} g_{m n}\right)^{1 / 2}$. There are also further constrants on higher-order products of the $e_{A B}{ }^{m}$ which can be derived from the properties of seven-dimensional gamma matrices (see ref. [2].

Evidently the introduction of the complex quantity (9) forces us to transcend the framework of remannian geometry. Through the analysis of the fermion transformation rules obtained in ref [4] we identify the other quantities which contan the remanning bosonic fields

$$
\begin{align*}
& \mathscr{O}_{\mu A}{ }^{B} \equiv \Phi^{C}{ }_{A}\left\{\frac{1}{2} \Omega_{\mu a b} \Gamma_{C D}^{a b}-\frac{1}{12} \sqrt{2} \Delta^{-1 / 2} e_{\mu}{ }^{\alpha} F_{a b c \alpha} \Gamma_{C D}^{a b c}-\frac{1}{12} \sqrt{2} \Delta^{-1 / 2} e_{\mu}{ }^{\delta} \epsilon_{\alpha \beta \gamma \delta} F_{\alpha \beta \gamma a} \Gamma_{C D}^{a}-2 \delta_{C D} \mathcal{D}_{\mu}\right\} \Phi_{D}{ }^{B}, \\
& \mathcal{A}_{\mu}{ }^{A B C D} \equiv\left(\Omega_{\mu a b} \Gamma_{E F}^{a} \Gamma_{G H}^{b}-\frac{1}{36} \sqrt{2} \Delta^{-1 / 2} e_{\mu}{ }^{\delta} \epsilon_{\alpha \beta \gamma \delta} F_{\alpha \beta \gamma a} \Gamma_{E F}^{b} \Gamma_{G H}^{b a}\right. \tag{12}\\
& \left.-\frac{1}{6} \sqrt{2} \Delta^{-1 / 2} e_{\mu}{ }^{\alpha} F_{a b c \alpha} \Gamma_{E F}^{a} \Gamma_{G H}^{b c}\right) \Phi_{E}{ }^{[A} \Phi_{F}{ }^{B} \Phi_{G} C_{\Phi_{H}}{ }^{D]}, \tag{13}\\
& \mathscr{O}_{m A}{ }^{B} \equiv \Phi^{C}{ }_{A}\left(\frac{1}{14} \sqrt{2} 1 f e_{m a} \Gamma_{C D}^{a}+\frac{1}{2} e_{a}{ }^{n} \partial_{m} e_{n b} \Gamma_{C D}^{a b}-\frac{1}{48} \sqrt{2} e_{m}{ }^{d} F_{a b c d} \Gamma_{C D}^{a b c}-2 \delta_{C D} \partial_{m}\right) \Phi_{D}{ }^{B}, \tag{14}\\
& \mathcal{A l}_{m}{ }^{A B C D}=\left(e_{a}{ }^{n} \partial_{m} e_{n b} \Gamma_{E F}^{a} \Gamma_{G H}^{b}+\frac{1}{42} \sqrt{2} 1 f e_{m a} \Gamma_{E F}^{b} \Gamma_{G H}^{b a}+\frac{1}{24} \sqrt{2} e_{m}{ }^{d} F_{a b c d} \Gamma_{E F}^{a} \Gamma_{G H}^{b c}\right) \Phi_{E}{ }^{[A} \Phi_{F}{ }^{B} \Phi_{G}{ }^{C} \Phi_{H}{ }^{D]}, \\
& e_{\alpha \beta A B}^{+}=\left[\left(-\frac{1}{16} 1 \Delta^{1 / 2} \Omega_{\alpha \beta a}+\frac{1}{8} 1 \Delta^{-1 / 2} e_{a}{ }^{m} e_{[\alpha}^{\mu} \partial_{m} e_{\mu \beta]}\right) \Gamma_{C D}^{a}+\frac{1}{32} \sqrt{2} 1 \Delta^{-1 / 2} F_{\alpha \beta a b} \Gamma_{C D}^{a b}\right]_{+} \Phi_{A}^{C} \Phi_{B}^{D}, \tag{15}\\
& \mathscr{A}_{\mu}{ }^{A B C D} \equiv\left(\Omega_{\mu a b} \Gamma_{E F}^{a} \Gamma_{G H}^{b}-\frac{1}{36} \sqrt{2} \Delta^{-1 / 2} e_{\mu}{ }^{\delta} \epsilon_{\alpha \beta \gamma \delta} F_{\alpha \beta \gamma a} \Gamma_{E F}^{b} \Gamma_{G H}^{b a}\right. \\
& \left.-\frac{1}{6} \sqrt{2} \Delta^{-1 / 2} e_{\mu}{ }^{\alpha} F_{a b c \alpha} \Gamma_{E F}^{a} \Gamma_{G H}^{b c}\right) \Phi_{E}{ }^{[A} \Phi_{F}{ }^{B} \Phi_{G} C_{\Phi_{H}}{ }^{D]},
\end{align*}
$$

where F is the four-mdex field strength with $d=11$ tangent-space indices, and $e_{\alpha \beta A B}$ is selfdual in indices [$\alpha \beta$] (the antiselfdual tensor is $\mathrm{C}_{\alpha \beta}^{-A B} \equiv\left(\mathrm{C}_{\alpha \beta A B}^{+}\right)^{*}$) Furthermore
$f(x, y) \equiv-\frac{1}{24} 1 \epsilon^{\alpha \beta \gamma \delta} F_{\alpha \beta \gamma \delta}(x, y), \quad \mathcal{D}_{\mu} \equiv \partial_{\mu}-B_{\mu}{ }^{m} \partial_{m}$,
and the relevant coefficients of anholonomity are given by

$$
\begin{equation*}
\Omega_{\mu a b} \equiv e_{a}^{m} \mathcal{D}_{\mu} e_{m b}-e_{a}^{m} \partial_{m} B_{\mu}^{n} e_{n b}, \quad \Omega_{\alpha \beta a}=2 e_{[\alpha}^{\mu} e_{\beta]}^{\nu} \mathcal{D}_{\mu} B_{\nu}^{m} e_{m a} \tag{19,20}
\end{equation*}
$$

In a nontrivial background m_{7}, (18) is replaced by

$$
\widetilde{\mathrm{D}}_{\mu} \equiv \partial_{\mu}-B_{\mu}^{m} \stackrel{\circ}{\mathrm{D}}_{m}
$$

where $\stackrel{\circ}{\mathrm{D}}_{m}$ is the \mathcal{M}_{7} background covariant derivative, with ensuing modifications for the quantities above, e g

$$
\widetilde{\Omega}_{\mu a b}=\left(S^{-1} \widetilde{\mathscr{D}}_{\mu} S\right)_{a b}-S_{a}^{-1 c} \stackrel{\circ}{\mathrm{D}}_{c} B^{m} \dot{e}_{m}^{d} S_{d b}
$$

where $\stackrel{\circ}{e}_{m}{ }^{a}$ and $S_{a}{ }^{b}$ have been defined in (3)
The transformation (10) now induces corresponding $S U(8)$ transformations on the quantities (12)-(15), $\mathscr{B}_{\mu A}{ }^{B}$
and $\mathscr{B}_{m A}{ }^{B}$ transform as gauge fields associated with x - and y-dependent $\mathrm{SU}(8)$ transformations. It is noteworthy that the $\mathrm{SO}(7)$ part in (14) is not the usual $\mathrm{SO}(7)$ spin connection as one might have navely expected. The complex tensors \mathscr{A}_{μ} and \mathscr{A}_{m} are selfdual in the indices $[A B C D]$, i.e.

$$
\begin{equation*}
\mathcal{A l}_{M}^{A B C D}=\frac{1}{24} \epsilon^{A B C D E F G H} \mathscr{A}_{M E F G H}, \quad \text { for } M=\mu, m . \tag{21}
\end{equation*}
$$

The tensors $e_{\alpha \beta A B}^{+}$and $C_{\alpha \beta}^{-A B}$ are antisymmetric in $[A B]$ and transform in the 28- and $\overline{28}$-representation of $\operatorname{SU}(8)$. The quantities (12), (13) and (16) have already appeared in the analysis of ref [2], but only for a y-mdependent set of configurations and after certan duality transformations. In that case the quantities (14) and (15) simply vanish. In the gauge $\Phi=1$ (12), (13) and (16) have also been identıfied in ref. [4]

The new $\operatorname{SU}(8)$ quantities which we have introduced above are subject to $\mathrm{SU}(8)$ covariant constraints. In particular, one can verify that

$$
\begin{align*}
& \mathcal{D}_{\mu} e_{A B}^{m}+\partial_{n} B_{\mu}{ }^{m} e_{A B}^{n}+\frac{1}{2} \partial_{n} B_{\mu}{ }^{n} e_{A B}^{m}+\mathscr{O}_{\mu}{ }^{C}{ }_{[A} e_{B] C}^{m}-\frac{3}{4} \mathscr{A}_{\mu A B C D} e^{m C D}=0 . \tag{22}\\
& \partial_{m} e_{A B}^{n}+\mathscr{B}_{m}{ }^{C}{ }_{[A} e_{B] C}{ }^{n}-\frac{3}{4} \mathscr{A}_{m A B C D} e^{n C D}=0 . \tag{23}
\end{align*}
$$

These relations generalize the usual vielbein postulate of remannian geometry to the comples geometry considered here. It is remarkable that $\Re_{\mu}, \mathscr{A}_{\mu}$ and \Re_{m}, \mathscr{A}_{m} take the form of the gauge connection of the exceptional group $\mathrm{E}_{7(+7)}$ Hence both $\left(\mathscr{B}_{\mu}, \mathscr{A}_{\mu}\right)$ and $\left(\Re_{m}, \mathscr{A}_{m}\right)$ can be assigned to the 133 -dimensional (adjoint) representation, and furthermore $e^{m A B}$, and $e_{A B}{ }^{m}$ constitute the 56 -dımensional representation of $\mathrm{E}_{7(+7)}$.

There are further restrictions on the quantities (12)-(16) which follow either from manifest restrictions on the various coefficients in (12)-(16), or from the fact that the four-index field strength $F_{M N P Q}$ satisfies Bianchi identities. These restrictions can again be written in $\operatorname{SU}(8)$ covariant form. For instance
$e_{B C}{ }^{[m} e^{n C D} e_{D E}{ }^{p} e^{q] E A}\left(\partial_{m} \mathcal{B}_{n A}{ }^{B}+\frac{1}{2} \mathscr{B}_{m A}{ }^{F} \mathscr{B}_{n F}{ }^{B}+\frac{3}{8} \mathscr{A}_{m A F G H} \mathcal{A}_{n}{ }^{B F G H}\right)=0$.
It is now possible to recast the supersymmetry variations of all fields into a manifestly SU(8) covariant form One has
$\delta e_{\mu}{ }^{\alpha}=\frac{1}{2} \bar{\epsilon}^{A} \gamma^{\alpha} \psi_{\mu A}+$ h.c.,
$\delta \psi_{\mu}^{A}=\left(\mathcal{D}_{\mu}-\frac{1}{4} \omega_{\mu \alpha \beta} \gamma^{\alpha \beta}-\frac{1}{4} \gamma_{\mu} \gamma^{\nu} \partial_{m} B_{\nu}{ }^{m}\right) \epsilon^{A}+\frac{1}{2} \mathcal{Q}_{\mu}{ }^{A}{ }_{B} \epsilon^{B}+\gamma^{\alpha \beta} \gamma_{\mu} e_{\alpha \beta}^{-A B} \epsilon_{B}$

$$
\begin{equation*}
+\frac{1}{2} e^{m A B}\left(\partial_{m}+\frac{1}{2} \Re_{m}\right)_{B} C_{\gamma_{\mu}} \epsilon_{C}+\frac{3}{16} e_{C D}^{m} A_{m}{ }^{A B C D} \gamma_{\mu} \epsilon_{B} \tag{26}
\end{equation*}
$$

$\delta B_{\mu}{ }^{m}=\frac{1}{8} \sqrt{2} e_{A B}{ }^{m}\left(2 \sqrt{2} \bar{\epsilon}^{A} \psi_{\mu}^{B}+\bar{\epsilon}_{C} \gamma_{\mu} \chi^{A B C}\right)+$ h.c.,
$\delta \chi^{A B C}=3 \sqrt{2} e_{\alpha \beta}^{-[A B} \gamma^{\alpha \beta} \epsilon^{C]}+\frac{3}{4} \sqrt{2} \gamma^{\mu} A_{\mu}{ }^{A B C D} \epsilon_{D}+(3 / \sqrt{2}) e^{m[A B}\left(\partial_{m}+\frac{1}{2} \mathcal{B}_{m}\right)^{C]}{ }_{D} \epsilon^{D}$
$+\frac{9}{16} \sqrt{2} e_{D E}{ }^{m} A_{m}{ }^{D E[A B} \epsilon^{C]}+\frac{3}{4} \sqrt{2} \mathscr{A}_{m}{ }^{A B C D} e_{D E}{ }^{m} \epsilon^{E}$,
$\delta e_{A B}^{m}=\sqrt{2} \Sigma_{A B C D} e^{m C D}$,
where

$$
\begin{equation*}
\Sigma_{A B C D} \equiv \bar{\epsilon}_{[A} \chi_{B C D]}+\frac{1}{24} \epsilon_{A B C D E F G H} \bar{\epsilon}^{E} \chi^{F G H} \tag{30}
\end{equation*}
$$

The Lorentz spin connection appearing in (26) is the standard one but with the modified derivative \mathcal{D}_{μ} of (18) instead of the usual ∂_{μ}. Furthermore, in order to bring the spin-0 transformation law into the form (29), we have included an $\operatorname{SU}(8)$ rotation with parameter
$\Lambda_{A}{ }^{B}=\frac{1}{8} 1 \bar{\epsilon} \Gamma_{a b} \psi^{b} \Gamma_{A B}^{a}-\frac{1}{4} 1 \bar{\epsilon} \Gamma_{a} \psi_{b} \Gamma_{A B}^{a b}-\frac{1}{16} 1 \bar{\epsilon} \gamma^{5} \Gamma_{a b} \psi_{c} \Gamma_{A B}^{a b c}$.

The next task is to rewrite the field equations in terms of the new quantities introduced above. Here, we only give the fermionic part of the $\operatorname{SU}(8)$ covariant lagranglan, which can be directly obtaned from the fermionic lagiangian of ref [1] For the bosonic lagrangian, a direct derivation is not possible because of the explicit appearance of the gauge field $A_{M N P}$ It is a nontrivial check on the ideas proposed here that all (quadratic) fermionic terms of the $d=11$ lagrangian can be reassembled into a manifestly $\operatorname{SU}(8)$ invariant expression. After a rather tedious calculation (details will be provided in ref. [5]) one finds

$$
\begin{align*}
& \mathcal{L}_{\text {fermionic }}=-\frac{1}{2} e \bar{\psi}_{\mu}^{A} \gamma^{\mu \nu \rho}\left[\left(\mathcal{D}_{\nu}-\frac{1}{4} \omega_{\nu}^{\alpha \beta} \gamma_{\alpha \beta}-\frac{1}{4} \gamma_{\nu} \gamma^{\sigma} \partial_{m} B_{\sigma}{ }^{m}\right) \psi_{\rho A}+\frac{1}{2} \mathscr{B}_{\nu A}{ }^{B} \psi_{\rho}^{B}\right] \\
& -\frac{1}{12} e \bar{\chi}^{A B C} \gamma^{\mu}\left[\left(\mathcal{D}_{\mu}-\frac{1}{4} \omega_{\mu}^{\alpha \beta} \gamma_{\alpha \beta}\right) \chi_{A B C}+\frac{3}{2} \mathscr{B}_{\mu C}{ }^{D} \chi_{A B D}\right] \\
& +\frac{1}{8} \sqrt{2} e \bar{\chi}_{A B C} \gamma^{\nu} \gamma^{\mu} \psi_{\nu D} \mathscr{A}_{\mu}{ }^{A B C D}+e e_{\alpha \beta A B}^{+}\left[-\bar{\psi}^{A}{ }_{[\mu} \gamma^{\mu} \gamma^{\alpha \beta} \gamma^{\nu} \psi_{\nu]}^{B}\right. \\
& \left.+(1 / \sqrt{2}) \bar{\psi}_{\mu C} \gamma^{\alpha \beta} \gamma^{\mu} \chi^{A B C}+\frac{1}{72} \epsilon^{A B C D E F G H} \bar{\chi}_{C D E} \gamma^{\alpha \beta} \chi_{F G H}\right] \\
& +e e_{A B}{ }^{m} \bar{\psi}_{\mu}^{A} \sigma^{\mu \nu}\left(\partial_{m}+\frac{1}{2} \Re_{m}\right)_{C}^{B} \psi_{\nu}^{C}+\frac{1}{4} \sqrt{2} e e_{A B}{ }^{m} \bar{\chi}^{A B C} \gamma^{\mu}\left(\partial_{m}+\frac{1}{2} \not \Re_{m}\right)_{C}{ }^{D} \psi_{\mu D} \\
& -\frac{1}{144} e \epsilon^{A B C D E F G H} e_{A B}{ }^{m} \bar{\chi}_{C D E}\left(\partial_{m}+\frac{3}{2} \Re_{m}\right)_{F} F^{\prime} \chi_{F^{\prime} G H} \\
& -\frac{1}{8} e e^{m A B} \mathscr{A}_{m}{ }^{C D E F} \bar{\chi}_{A B C} \chi_{D E F}+\frac{3}{32} \sqrt{2} e e_{A B}{ }^{m} A_{m}{ }^{A B C D} \bar{\chi}_{C D E} \gamma^{\mu} \psi_{\mu}^{E}+\frac{1}{8} \sqrt{2} e \mathcal{A}{ }^{m}{ }_{A B C D} e_{m}{ }^{D E} \bar{\chi}^{A B C} \gamma^{\mu} \psi_{\mu E} \\
& \text { + hermitean conjugate, } \tag{32}
\end{align*}
$$

where e is the vierbein determinant ($e=\operatorname{det} e_{\mu}^{\alpha}$). The fermionic field equations, which follow from (32), are manifestly $\mathrm{SU}(8)$ covariant. By the $\mathrm{SU}(8)$ covariance of the transformation rules (25)-(29), the same is true for the bosonic field equations (in fact, the $\operatorname{SU}(8)$ covariance of the field equations follows also from the $\operatorname{SU}(8)$ covariance of the full set of supersymmetry transformations alone, as their commutator gives rise to field equations).

In ref [2] it was pointed out that the scalars of $N=8$ supergravity live on the $\mathrm{E}_{7} / \mathrm{SU}(8)$ coset space This result, which was found rather indirectly, is naturally recovered in the present framework. In the truncation of ref [2] where the y-dependence is discarded, we have $\mathfrak{B}_{m}=\mathscr{A}_{m}=0$; moreover, a somewhat tedious calculation relying on the equations of motion and the Bianchi identities for the field strength $F_{M N P Q}$ reveals that, in this truncation,
$\partial_{\mu} \mathscr{B}^{A}{ }_{\nu B}-\partial_{\nu} \mathscr{B}^{A}{ }_{\mu B}+\frac{1}{2}\left[\mathfrak{B}_{\mu}, \mathfrak{O}_{\nu}\right]^{A}{ }_{B}+\frac{3}{4} \mathscr{A}_{[\mu} A C D E \mathcal{A}_{\nu] B C D E}=0$,
$\partial_{\mu} \not \mathscr{A}_{\nu A B C D}+2 \mathcal{B a}_{\mu[A}{ }_{\mu} \mathcal{A}_{\nu B C D] E}-(\mu \leftrightarrow \nu)=0$.
These are just the Cartan-Maurer equations of E_{7}. Consewuently \mathscr{B}_{μ} and \mathscr{A}_{μ} can be solved in terms of the "sechsundfunfzigbeın" $\mathcal{V}(x)$ accordıng to
$\partial_{\mu} \mathcal{V}(x)=\left(\begin{array}{ll}\mathscr{B}_{\mu}(x) & \mathscr{A}_{\mu}(x) \\ \mathscr{A}_{\mu}^{*}(x) & \mathscr{B}_{\mu}^{*}(x)\end{array}\right) \mathcal{V}(x)=0$,
where $\mathcal{V}(x)$ is a matrix in the 56 -dimensional representation of E_{7} (a similar argument has been used in ref. [9]). Eq. (35) may be compared to (22) and (23) which have a similar structure but are valid without any truncation (see also (24)). Obviously the group E_{7} has a role to play irrespective of the compactification that one is considering. It is already known from gauged $N=8$ supergravity [10] that E_{7} is not always realized (nonlinearly) as a symmetry of the field equations, although the scalars in that theory are still parametrized by the $\mathrm{E}_{7} / \mathrm{SU}(8)$ cosets. Whether or not this coset structure is relevant for all four-dimensional compactifications of $d=11$ supergravity remains an intriguing question

As a byproduct of our results, the consistency to all orders of the truncation of $d=11$ supergravity compact1fied on $S^{7}[11]$ to its massless sector [11,12] is now almost manfest The resulting theory is generally believed to comcide with gauged $N=8$ supergravity [10], but so far this clam has only been partally verified [11,12,4,13-15]. In particular, the most difficult sector containing the spin- 0 fields has so far defied treatment To see how these difficulties are resolved with comparative ease in the present framework, we give just two examples, deferring further detalls to ref [5] First we consider the complexified siebenbein (9) which, in the \mathbf{S}^{7} truncation and a convenient $\mathrm{SU}(8)$ gauge, is given by the simple formula (this result was used in refs $[4,14]$, its consistency was investigated in ref. [15]
$e_{A B}{ }^{m}=4 \sqrt{2} \stackrel{\circ}{K}^{m I J}\left(u^{I J}{ }_{A B}+v_{I J A B}\right)$.
Here, $\stackrel{\circ}{K}^{m I J}(y)$ are the (normalized) Killing vectors on the round S^{7} and
$u^{I J}{ }_{A B}(x, y)+v_{I J A B}(x, y) \equiv\left[u^{I J}{ }_{l j}(x)+v_{I J_{l j}}(x)\right] \eta_{A}^{l}(y) \eta_{B}(y)$,
where $u(x)$ and $v(x)$ are the 28×28 submatrices of the 56 -bein $\mathcal{V}(x)$ in $(35)[2,10]$ and $\eta_{A}^{l}(y)$ are the (normalized) Killing spinors on S^{7} [11]. Substituting (36) into (29) one readily verifies the compatibility of (29) with the supersymmetry variation of the scalars of $N=8$ supergravity (cf eq. (3.1) of ref [10]. By means of (36) it is also not difficult to see that (22) coincides with a linear combination of (4.33) and (434) of ref. [10] in the S^{7}-truncation. Secondly we note that in this truncation (23) is solved by
$\left[\begin{array}{ll}\widetilde{\mathscr{O}}_{m} & \widetilde{\mathscr{A}}_{m} \\ \widetilde{\mathscr{A}}_{m}^{*} & \widetilde{\mathfrak{B}}_{m}^{*}\end{array}\right]=\mathcal{V}(x) X_{m} \mathcal{V}^{-1}(x)$,
where X_{m} takes (y-dependent) values in the E_{7} Lie algebra
$X_{m}(y)=\left[\begin{array}{ll}a \delta_{[I}^{[K} \stackrel{\circ}{K}_{m}^{L]}{ }_{J]} & b \stackrel{\circ}{\mathrm{D}}_{m} \stackrel{\circ}{K}_{n}^{[I J}{ }_{K}^{\circ}{ }^{n K L]} \\ b \stackrel{\circ}{\mathrm{D}}_{m} \stackrel{\circ}{K}_{n}^{[I J}{ }^{\circ}{ }^{n K L]} & a \delta_{[I}^{\left[\AA_{K}^{\circ}\right.}{ }_{m}{ }^{L]}{ }_{J]}\end{array}\right]$,
with a and b real coefficients, which depend on one free parameters, and D_{m} the S^{7} covariant derivative The notation $\widetilde{\mathscr{B}}_{m}$ and $\widetilde{\mathscr{A}}_{m}$ is used to indicate that these quantities pertain only to the S^{7} background we have also absorbed certain normalization factors for convenence Furthermore $\widetilde{\mathscr{ß}}_{m}$ contans an extra constant term, which arises because of the Killıng condition on the spmors in (37), and we have converted A, B, indices into i, j, . indices by means of the Kılling spınors. The emergence of the so-called T-tensor in gauged $N=8$ supergravity can be understood on the basıs of (38) and (39).
[1] E Cremmer, B Julia and J. Scherk, Phys. Lett. 76B (1978) 409
[2] E Cremmer and B. Juha, Phys. Lett. 80B (1978) 48; Nucl. Phys B159 (1979) 141.
[3] P.G.O. Freund and M A. Rubin, Phys Lett 97B (1980) 233.
[4] B de Wit and H. Nicola1, Nucl. Phys. B243 (1984) 91
[5] B de Wit and H. Nicolat, in preparation.
[6] B Julia, in. Superspace and supergravity, eds. S.W Hawking and M. Rǒ̌ek (Cambridge U P , London, 1980), in Group theoretical methods in Physics, Lecture Notes in Physics 180 (Springer, Berlin, 1983); in. Frontiers in particle physics '83, eds.
D. Šijačkı, N. Bılić, B. Dragović and D. Popovıć (World Scientfic, Sıngapore, 1984),
R. D'Auria, P. Fré and P van Nieuwenhuizen, Phys. Lett. 122B (1983) 225;
[7] S. Weinberg, Phys. Lett 138B (1984) 47.
[8] B de Wit, P van Nieuwenhuzen and A. van Proeyen, Phys. Lett. 104B (1981) 27
[9] L. Brink and P. Howe, Phys. Lett. 88B (1979) 268.
[10] B de Wit and H. Nicolai, Phys. Lett. 108B (1981) 285, Nucl Phys. B208 (1982) 323.
[11] M.J. Duff and C.N Pope, in Supergravity '82, eds S. Ferrara, J.G Taylor and P van Nieuwenhuzen (World Scientific, Singapore)
[12] B Biran, B. de Wit, F. Englert and H. Nicolat, Phys. Lett. 124B (1983) 45, 128B (1983) 461E.
[13] M J Duff, in Proc Third M Grossmann Meeting on General relativity, ed Hu Ning (Science Press, and North-Holland, Amsterdam 1983),
M J Duff, C N Pope and N P Warner, Phys Lett 130B (1983) 254,
B de Wit and H Nicola, Nucl Phys B231 (1984) 506,
M Awada, BE W N1lssen and C N Pope, Phys. Rev. D29 (1984) 334,
B Bıran and Ph Spındel, Phys Lett 141B (1984) 181,
B de Wit and H Nicolai, Phys Lett 148B (1984) 60,
M J. Duff, B E W Nilssen, C N Pope and N P Warner, Phys Lett 149B (1984) 90;
C.N. Pope and N P Warner, Phys Lett 150B (1985) 352,

M J. Duff and C N Pope, Santa Barbara preprint NSF/ITP/84/166
[14] B de Wit, H. Nicolai and N.P Warner, preprint CERN-TH 4052 (1984), Nucl Phys B, to be published.
[15] B C W Nilsson, Goteborg preprint 84-52 (1984)

