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The one-loop effective potential for a minimal SU(5) theory is calculated on a curved 
DeSitter background spacetime. The stability of its extrema in the following subgroups is 
investigated: SU(4)x U(l), SU(3)x SU(2)x U( 1) SU(3) x U(l)x U(l), SU(2) xSU(2)x 
U( 1) x U( 1). A combination of analytic and numerical methods is used to obtain phase 
diagrams for the model. In the inflationary universe, the curvature effects do not prevent a 
slide into the SU(4) x U( 1) extremum. #t , I985 Academic Press, lnc 

1. INTRODUCTION 

This is the second of two papers about vacuum energy in DeSitter space. The first 
paper [ 1] showed how the vacuum energy could be explicitly calculated for any 
gauge theory in DeSitter space, and illustrated the method with a simple U( 1) 
gauge theory. In this paper, the methods of the lirst paper are applied to a more 
complicated and realistic theory, the %7(5) gauge theory. 

The inflationary model of the early universe [2] predicts that the stars and all 
the matter about us resulted from a phase transition soon after the big bang. Dur- 
ing this phase transition, real observable matter was formed from latent vacuum 
energy, and the equation of state of the universe changed. Also, and most relevant 
to this paper, a symmetry that existed between different types of elementary par- 
ticles disappeared. 

A phase transition probably took place in the very early universe, because a com- 
mon feature of gauge models of the fundamental interactions is that they have sim- 
ple high energy behavior. At low temperatures these theories describe a veritable 
catalog of different particles and interactions. However, at high temperatures, the 
more fundamental underlying symmetries appear. These fundamental symmetries 
are described by a gauge group. The process in which these fundamental sym- 
metries disappear as the energy scale decreases is called spontaneous symmetry 
breaking. If the early universe was very hot, then symmetry breaking must have 
taken place as it cooled. 

Suppose that we are given a model of the fundamental interactions in which sym- 
metry breaking can take place in several ways. We can assume that the universe 
began in the most symmetric (high-temperature) phase. If the model of the fun- 
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damental interactions contains free parameters (i.e., coupling constants, masses, 
etc.) then for different choices of these parameters, the universe will evolve to dif- 
ferent broken-symmetry phases as it cools and expands. In short, it is possible to 
determine the phase to which the universe eventually evolves if all the parameters 
are specified. 

The simple way to study this question is with a potential function. The different 
broken-symmetry phases of a gauge theory are characterized by different values of 
the fields in that theory. The potential is a function of the fields, which associates to 
each broken-symmetry phase an energy density (energy/3-volume). Typically, each 
broken-symmetry phase corresponds to a local minimum of the potential function. 
The problem is just like the mechanical problem of a ball rolling on a hill. We start 
the universe off in one phase, and find out where it ends up. 

An interesting study of this sort has been carried out by Breit, Gupta and 
Zaks [3]. They discovered that the Coleman-Weinberg SU(5) theory, on which the 
new inflationary universe models are based, had a serious flaw. The universe always 
evolved from the SU(5) symmetric phase toward the wrong broken-symmetry 
phase, the SU(4) x U( 1) phase. This is because the potential function has a ridge 
that separates the SU(4) x U( 1) phase from the desired SU(3) x SU(2) x U(1) 
phase. This ridge means that the universe can only evolve into the SU(3) x 
SU(2) x U( 1) phase by tunnelling into it. This would produce a very inhomogeneous 
universe today, and can be ruled out. 

Their analysis used the potential function for a Coleman-Weinberg ,SU(5) 
theory, calculated in flat Minkowski spacetime. However, this potential function is 
not self-consistent, because the vacuum energy gives the spacetime a constant 
positive curvature. The self-consistent calculation of the SU(5) potential in this con- 
stant curvature DeSitter space is the subject of this paper. It is possible to carry out 
the analysis of Breit, Gupta and Zaks with this curved-space potential. However, 
such a study would involve the introduction of two additional parameters, and we 
will argue later that is is likely to give results similar to their flat-space analysis. 

The minimal ,SU(5) theory that we study is described in the second section. 
Unfortunately this theory has recently been ruled out because the proton lifetime is 
so long [4]. However, the methods of this paper can be used to calculate the effec- 
tive potential for any other non-Abehan gauge theory, like S0(10). In the second 
section, after giving the Lagrangian of the SU(5) theory and its gauge-transfor- 
mation properties, the one-loop effective potential is calculated symbolically, in 
terms of functional determinants. The potential depends upon the background 
Higgs fields via a mass matrix. This mass matrix has a simple physical inter- 
pretation in the various broken-symmetry phases. 

In the third section, we discuss the broken-symmetry phases of SU(5). Without 
loss of generality, the background Higgs held is diagonalized, reducing the number 
of degrees of freedom from 24 to 4. We then choose tive phases, or directions in 
group space, to focus attention on. These live phases correspond to the following 
subgroups of unbroken symmetries: SU(5 1, N(4) x U( 1 ), SU(3) x SU(2) x U(l), 
SU(2) x SU(2) x U( 1) x U( 1) and S'U( 3) x U( 1) x U( 1). In order to facilitate our 
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later discussions, a notation is introduced which clearly indicates the relative 
stability or metastabihty of these live phases. 

In the fourth section the curved-space potential, given in terms of symbolic 
functional determinants, is explicitly evaluated. The results of the first paper [ 1 ] are 
used to express the symbolic determinants in terms of a special function called A(Z). 
Starting in this section, we treat only the Coleman-Weinberg sector of the theory 
[5]. This is the sector in which the contribution to the potential from closed-scalar 
Higgs-field loops can be neglected in comparison to the contribution from closed- 
vector gauge-field loops. 

The fifth section contains the most potentially confusing aspect of the paper. The 
potential up to this point contains an undetermined mass parameter, which was 
introduced in the path-integral measure. We show how the value of this parameter 
in curved space is unambiguously fixed by taking the flat-space limit of the 
calculation. This procedure is essential to Coleman-Weinberg theory, in which a 
dimensionless parameter is replaced by a dimensional one. To simplify the later sec- 
tions, we replace the old coupling constants by new linear combinations of them. 
The new coupling constants are chosen so that the mass introduced by dimensional 
transmutation is the physical mass A4y of the vector gauge fields in the sU(3) x 
XJ(2) x U( 1) broken-symmetry phase in flat space. 

In the sixth section, by calculating the Higgs fields’ masses, we examine the 
stability of the live broken-symmetry phases. As we said earlier, each of these live 
phases corresponds to an extremum of the potential function. Now the potential is 
a function of four variables, and consequently an extremum can be either a 
minimum, a maximum, or a saddle point. The Higgs fields’ masses at an extremum 
can be used to determine which of these it is. Fortunately, the formula for the Higgs 
masses have simple flat-space limits. In the case of the symmetric sU(5) phase, all 
the Higgs lields’ masses are the same, and can be expressed in a simple closed form. 

In the seventh section, the results of the previous sections are used to generate 
several phase diagrams which summarize some important information about the 
nature of symmetry breaking in curved space. Because all of the formula in the 
preceding sections involved special functions, the results in this last section have 
been obtained numerically. However, there are several simple results concerning the 
stability of certain phases which can be obtained analytically. 

Throughout this paper, we use units where #r = c = 1, so that mass = (length) ~ ‘. 
The gravitational constant, when used, is defined through the Planck mass 
M 

P 
= G - m. 

2. THE MINIMAL XJ(5) MODEL, AND ITS EFFECTIVE POTENTIAL 

The sU(5) theory was discovered by Georgi and Glashow [6]. It is a 
Yang-Mills gauge model which incorporates strong, weak and electromagnetic for- 
ces. One beautiful feature of the theory [7] is that the running gauge-coupling con- 
stants of these three fundamental forces all converge to a single value z l/42 at an 
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energy MGU.r z 10” GeV. This is the energy scale at which the underlying gauge 
symmetry of the theory is spontaneously restored. 

Experimentally, the SU(5) model has not been entirely successful. It correctly 
predicts the Weinberg-Salam electroweak mixing angle 19,~ to within experimental 
accuracy [4]. However, it also predicts that the proton can decay, with a charac- 
teristic lifetime of m 103’ years. A number of recent experiments have failed to 
observe such decay, so that the theory has now fallen into disfavor. 

In this paper, we only study one sector of the complete SU(5) model. Our 
interest is high-energy behavior, just before and after the breaking of fundamental 
SU(5) symmetry. For this reason our model is incomplete. It does not incorporate 
the 5 of Higgs scalar tields which break electroweak symmetry at much lower 
energies or fermionic matter fields which become quarks in the low-energy theory. 
Consequently our SU(5) Lagrangian takes a very simple form. 

We give the Lagrangian in its Euclidean form, detined on a spacetime whose 
metric gfi,, has positive signature ( +, +, +, + ). In field theory it is usually 
necessary to calculate quantities on an imaginary time manifold, and analytically 
continue the results back to real Lorentzian time. Since the effective potential 
function is time independent, we can obtain it directly from a Euclidean calculation. 
The Euclidean Lagrangian is 

L. = + trace(FbvFGv) + 4 trace(DPq)(Pq) + vo(~) (2.1) 

real and positive semi-definite. 
There are two tields: a gauge vector field ,4P and a Higgs scalar held 9, both in 

the adjoint representation of SU(5). They will be represented as traceless 
5 x 5 matrices, which can be expanded in terms of an SU(5) Lie algebra basis. We 
will denote the 24 basis elements by &. We use Latin letters as SU(5) group indices 
running from 1 to 24 and Greek letters as spacetime indices running from 0 to 3. 
The & are a linearly independent set of 24 traceless 5 x 5 matrices, which are self- 
adjoint, so 1: = &, and orthonormal, so trace (&,&) = $I?~~. The Hermitian adjoint 
operation t is complex-conjugation followed by matrix transposition. The matrices 
form a real adjoint representation of SU(5), and the gauge held and Higgs field can 
be expanded in terms of them 

Al(x) = A;(x) Aa, v(x) = (P&l L 0.2) 

Throughout this paper, the summation convention applies to group-space indices 
as well as spacetime ones. The component fields APO(x) and ~Jx) are real, so that 
vt=q and AL=A 

The Euclidean Lagrangian is real, because the tield tensor Ffiv and gauge- 
covariant derivative DP q are both self-adjoint, 
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The dimensionless coupling constant g must be real, since each commutator is anti- 
self-adjoint, for example, [AP, ~17 = - [Au, ~1. The tree potential P’Jp) must also 
be real. In general it can be a quartic polynomial of the form 

VO(q) = Q trace q* + /J trace q3 + AJtrace v*)~ 

+ A4 trace q4. (2.5) 

There are no terms of the form (trace q)* or (trace q) trace p3, because trace q z 0. 
The subscript in V0 indicates that it is the “zero-loop” or “tree” potential. 

In this paper, we use two potential functions, the tree potential VO(q) and the 
one-loop effective potential. The one-loop effective potential incorporates lowest- 
order quantum fluctuation effects. For the sake of economy, we will refer to it 
simply as “the potential” and denote it by V(q). 

Before proceeding, we are going to restrict the form (2.5) of the tree potential. In 
order that the action be invariant under q -+ -q, we set /3 = 0, so that L(AP, q) = 
L(A”, - q). We are also going to restrict the form of a. In general, it is of the form 
u = +(m2 + (R), where m’ is the mass* of the Higgs held in flat-space in the ,Su(5) 
symmetric phase, [ is a number and R is the scalar curvature of the spacetime 
manifold. In order to permit the Coleman-Weinberg mechanism to operate, we set 
m* z 0. The Lagrangian now contains no dimensional parameters. The masses of 
the Higgs held and gauge held will be spontaneously generated by radiative correc- 
tions, which are the source of symmetry breaking. 

In flat space, where R = 0, the u trace p’ term in the tree potential vanishes. One 
might suppose that the choice of < = 0 is natural, since it appears to remove any 
direct coupling between the Higgs field and the gravitational held. However, it will 
turn out that this term is generated by one-loop corrections. Even if one sets t = 0 
in the tree potential, we will see that a nonzero value of < is induced by one-loop 
effects. This means that this term must be included in the bare Lagrangian, if one is 
to have a sensible renormalizable theory. 

The Lagrangian is invariant under the action of local ,SU(5) transformations. 
Suppose that P(X) is a 5 x 5 matrix which satislies Q’(X) p(x) = Z so that it is an 
element of SU(5). Under the action of p, the lields are transformed to 

~‘A~=pA~p~‘-~g~‘(vpp)p-’ (2.6) 

pv=PqP-’ (2.7) 

and it is straightforward to show that L(“Ap, Oq) = L(Ap, q). The unitary condition 
on p ensures that the fields remain self-adjoint. 

In the remainder of this section, we are gong to derive a symbolic expression for 
the one-loop effective potential (hereafter called “the potential”). The method is 
identical to the one used for a simpler tY( 1) gauge theory in the lirst paper [ 11. We 
use a four-sphere of radius Q as the Euclidean background spacetime manifold. This 
space of constant positive curvature (R = 12/u*) replaces flat Minkowski space 
(R = 0) in the presence of a constant background energy density. Of course, in the 
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limit as the potential P’ + 0, the radius u -+ co and the curvature R --P 0. However, 
we will ignore the relationship between the potential and the curvature, and simply 
regard the curvature as an independent parameter. 

To calculate the potential to one-loop order, we expand the action around a con- 
stant background Higgs field q0 

(P=%+4 (2.8 1 

and keep only the terms quadratic in the fluctuating fields I$ and Ap. To this order, 
the Lagrangian is 

The fourth term is especially important to us, because it is the mass term for the 
gauge fields. The mass-matrix M$, is a function of the background Higgs field qO. 

Mktvd = -2 tr=IL RJCL el (2.10) 

It is a symmetric 24 x 24 matrix, with real nonnegative eigenvalues m$, which are 
the masses’ of the gauge fields A/‘. 

Now we have to choose a gauge for our calculation. T’hooft’s background lield 
gauge provides a convenient gauge-lixing term. It is 

L wuw =i E trace (VpAp-ig~~‘[~o, ~1)~ (2.11) 

where x is a positive real number. The crossterm in (2.11) cancels the third term in 
the one-loop Lagrangian (2.9). The resulting total Lagrangian L,o,a, = L + Lgauge is 

La,, =; A?lI~<,A -gk,,, CI + &it,) + gpvWJ A$’ 

The gauge held has been decomposed into transverse and longitudinal parts 

A@=Af+A$. (2.13) 

They satisfy VP A$ = 0 and A: = Px, where x is some scalar function. The transverse 
part A$- is the irreducible spin-l “physical part” of the gauge field, whereas the 
longitudinal component .A: is a spin-0 artifact. 
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The one-loop Lagrangian includes only terms quadratic in the fields. The con- 
stant term v,Jq,,), and the linear term @J~~O/~~~)l~O have both been dropped 
from (2.12). The constant term can be restored later. This is because the potential is 
the sum of the tree potential and the one-loop contribution, which we will calculate 
from (2.12). The linear term is cancelled by introducing a current Ja = -dVo/&po, 
which couples to the scalar field. This current allows us to “hold” the Higgs field 
fixed at nonequilibrium values of qO. The action density then equals the potential, 
because there is no kinetic energy due to a changing field. 

The gauge-fixing term (2.11) introduces a factor which is called the Fadeev- 
Popov ghost. This factor A must be included in the path integral in order to make 
the measure independent of our choice of a gauge-lixing term. Fortunately there is a 
simple procedure [8] for linding A. 

The gauge-fixing term ,CgaUge “damps out” the path integral unless it is nearly 
zero. We are going to examine the effects of gauge transformations about this point. 
To begin, define a 5 x 5 matrix Q with components Q0 

and choose fields Ap, q for which Q = 0. Now suppose a small gauge transfor- 
mation p = 1+ ~~2~ acts on the lields. Then to first order in the small parameter s, 

(2.15) 

where the matrices X$, and Yab are 

X$ = ig trace [&, Aa]Ap (2.16) 

(2.17) 

Because the trace of Q’ is the gauge-fixing term, it turns out that the 
Fadeev-Popov factor A is the determinant of the second-order operator in (2.15). 

In the one-loop approximation X$ does not contribute, and Yab reduces to the 
mass matrix M&, defined in (2.10). The ghost factor becomes 

The first factor is a symbolic functional determinant on scalars, and the hat 
indicates that its zero-mode is to be omitted. The second factor comes from these 
zero-modes. In an earlier paper [ 1 ] we showed that the bounded integration over 
the zero-mode of the gauge group yields an error function, because the Euclidean 
manifold S4 is compact. This second determinant is just an ordinary product of 24 
eigenvalues @!/Erf(mz). The regularization mass p comes from the measure of the 
integration over all gauge transformations. 
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Putting together the quadratic parts of the Lagrangian (2.12) and the 
Fadeev-Popov Jacobian A (2.18) we arrive at the following expression for the 
potential. 

V( qo) = Vo( cp,,) - ii? ~ ’ log Det 
a - wp - q45 

Erf(a - ‘12g - ia2Mzb) 1 
+Q-’ $logDet~-2S~+~logDet~-2S~ 

+~logDet~A2S~-logDet~-2S~ 
1 

(2.19) 

where Q = (8/3) rc2u4 is the spacetime 4-volume. The second-order differential 
operators which appear in the determinants are 

Higgs 

Ghost SG = a’[*( --dab I3 + a - ‘A4zb). 

These operators act on representations which are adjoints of SU(5) and scalars or 
vectors of SO(5). 

We now specialize to Landau gauge by sending a + co. Because of its linearity 
for smail x, Erf(x)w2r -‘j2x + 0(x2), the ordinary determinant in (2.19) becomes 
(g ~ ‘u~P~)‘~. Several of the mass terms in (2.20) vanish, and the ghost determinant 
cancels the longitudinal one. The linal result is that the potential is 

(2.21) 

Terms like a -’ log( g- 1a2p2)24 which do not depend upon q,, have been dropped. 
These terms contribute to the conformal anomaly, and hence determine the value of 
V(qO) when q0 z 0. However, they do not affect the phase structure of the potential, 
which we will be studying. 

Basically the final result is straightforward- The one-loop SU(5) potential is 
simply the sum of 24 one-loop potentials for scalar electrodynamics. The gauge- 
field’s masses are determined by the 24 eigenvalues $ of M$,(& and the Higgs 
held’s masses are determined by the 24 eigenvalues of (d2V,,/&pa&pb)~q . In later 
sections, we will explicitly evaluate this symbolic expression for the p&ential in 
DeSitter space, and study some of its properties. 

S95/16l/l-I, 
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3. BROKEN-SYMMETRY PHASES OF ,SU(5) 

If the vacuum energy density V(q) is minimized by a nonvanishing Higgs lield CP, 
then the field can remain stable at that value. (For clarity from this point on, we 
will denote the classical background Higgs held by CP rather than by q,,.) In 
general, such a Higgs held will break some, but not all, of the SU(5) symmetry. 
This means that under the action of a general local ,SU(5) gauge transformation, 
the Higgs held will be changed. However, there will be a subgroup of gauge trans- 
formations, contained in SU(5), for which the Higgs held is invariant, so Pq = CJL 
Each such distinct subgroup will be referred to as a broken-symmetry phase of the 
XJ(5) theory. As we will see, the macroscopic physical properties of the theory, like 
the number of massive lields, depend upon which phase one is in. 

To classify some of the different phases, we will begin by examining the mass 
matrix (2.10). The potential (2.21) depends upon CJI through (I) the mass matrix 
MzJq) and (2) the tree-potential I’O(q). We will show shortly that the tree poten- 
tial I’O(q) can be expressed as a function of the mass matrix Mzb. This means that 
the potential depends upon the Higgs held only through the mass matrix. In fact it 
is often convenient to regard the potential as a function of the mass matrix and not 
as a function of the Higgs field. 

In general, the Higgs held q is a traceless Hermitian 5 x 5 matrix. This means 
that we can always find an SU(5) gauge transformation p which makes pq 
diagonal, traceless and real. This transformation does not change the tree potential 
since VO(q) = V,,(pq). It also does not change the eigenvalues of Mzb. So, without 
loss of generality, we can assume that q is diagonal, 

and traceless q, + q2 + CJQ + p4 + q5 = 0. The potential is really a function of four 
independent variables, not 24. 

The mass matrix can be expressed in terms of the new variables vi (in this sec- 
tion, let i, j, k ,..., run from 1 to 5). We are only interested in finding the eigenvalues 
of M$,(q) since they are the physical masses2 of the 24 gauge lields AP. To calculate 
the eigenvalues, it is convenient to use an ,SU(5) basis ,Ja which diagonahzes M$. 
In this basis, four of the &,‘s are real, diagonal and traceless. Ten of the &‘s are 
completely zero, except for two real, equal, off-diagonal entries. The remaining ten 
1”‘s are completely zero, except for two imaginary, opposite, off-diagonal entries. In 
this basis, A4zb is diagonal, and its eigenvalues turn out to be 

Eigenvalues of M$( q) = rni = +g2( vi - qj)2 (3.2) 

where i and j range independently from 1 to 5. It is clear from (3.2) that of the 24 
eigenvalues, at least four are exactly zero, This is because any choice of qi leaves 
unbroken a residual U( 1) x U( 1) x U( 1) x U( 1) symmetry. 
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Let us express the tree potential VO(q) in terms of the mass matrix. The trick is 
to do it in the basis for which M’$, is diagonal. The result can then be written in a 
basis-independent way. For instance, the trace of A4zb in our diagonal basis is 

(3.3) 
= i g2( 10 trace q2 - 2(trace q)‘) = 5g2 trace q* 

since trace q = 0. In a similar fashion, the trace of A4$, = A4&h!f:b is 

=i g4(5 trace q4 + 3(trace v~)~). (3.4) 

Since the tree potential (2.5) is a function only of trace q2 and trace q4, it can be 
expressed as a function of these traces of the mass matrix. 

Where are the extrema of the potential? This problem has been analyzed by 
Kim [9-121, who studied the most general possible gauge-invariant potentials 
which were quartic polynomials in the fields. In DeSitter space, the one-loop correc- 
tions render the potential nonpolynomial. However, some of Kim’s results still 
apply, since the potential is gauge invariant. 

Kim’s analysis is based on the following insight. The orbits of CP under the action 
of the group can be specilied by four orbit parameters: a modulus 11 q 11 = trace q2 
and three “angles” 0i = trace q3//i CJ 11 ‘12, e2= trace q4/ll PII’ and dj = 
trace $/[I CJJ 11 ‘12. It turns out that, for a given modulus, the orbit space (0,, /32, Q3) E 
g3 is compact. It looks like a solid tetrahedron with inward-sagging faces and 
inward-sloping edges. The cusps at the vertices are stationary points under the 
action of the maximal little groups of 5’U(5), and the faces are stationary points 
under the action of the maxi-maximal little groups of SU(5). When the potential is 
a quartic polynomial, one can show that its extrema lie on the boundary of the 
orbit-space. For that case, the potential is monotonic as one moves outward in 
orbit space, and hence the extrema lie on the vertices. 

For this reason, we will concentrate our attention on four special directions in 
group space. They are the two maximal little groups, and the two maxi-maximal 
little groups of sU(5). Bocharev et al. [ 13-151 have studied the most general 
possible potential which is a function of the mass matrix M$,, and discovered that 
it must have extrema in these four directions. It is clear from Kim’s analysis why 
this is so. The potential is a function of the orbit parameters, and they are 
extremized in these four directions. While we have no guarantee that all the 
extrema must lie on the boundary of the orbit space, there is no evidence that any 
other extrema exist. 

595061,l.II* 
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TABLE I 

The Five Phases of XI(S) Which We Studied 

Phase Invariant subgroup Dimension Higgs direction q 

1 Sc43) x x42) x U(1) 12 (2.2.2, -3, -3) 
2 SU(4) x U(l) 16 (1. 1. 1, 1, -4) 
3 ScI(3)x U(l)x cJ(1) 10 to,o,o, 1, -11 
4 w(2)xw(2)x~(l)x~(l) 8 (1, 1, -1, -1.0) 
5 SrY5) 24 (0, (x0> QOJ 

Nore. The tive phases of SU(S) correspond to maximal and maxi-maximal little groups of Su(5). The 
dimension of a subgroup is the number of unbroken symmetries. The Higgs direction preseves only the 
fisted subgroup of symmetries. 

Shown in Table I are the phases of sU(5) which we will focus on. They will be 
called phases 1, 2, 3,4 and 5. Phase 5 is the unbroken symmetry sU(5) phase. 
Phases 1 and 2 are maximal little groups and phases 3 and 4 are maxi-maximal 
little groups. Also shown is the diagonal Higgs field direction, which extremizes the 
potential in each phase. For notational convenience, we will often use A = I,..., 5 to 
denote one of these phases. 

In each phase, the number of gauge fields which become massive equals the num- 
ber of broken symmetries. The number of distinct masses can be determined from 
the eigenvalues of the mass-matrix Mih. 

For later use, we are going to deline a set of integer constants C’t which contain 
information about the different phases. There are six constants (K = l,..., 6) for each 
phase (A = l,..., 5). They are shown in Table II. In each phase, C, is the trace of q2 
and C2 is the trace of p4, for the c~ given in Table I. The remaining constants per- 
tain to the eigenvalues of the mass-matrix M:,,. C4 and Cb are the nonzero values of 
(qi - p.,)‘, and C3 and C6 are their respective degeneracies. For example, in the 
third row, the values of Cj to Cb tell you that the third phase has 12 “light” gauge 

TABLE II 

A Set of Six Integer Constants CI 

C; X=1 2 3 4 5 6 

A=1 30 210 12 25 0 
2 20 260 8 25 0 - 

3 2 2 12 1 2 4 
4 4 4 8 1 8 4 
5 0 0 0 0 

No/e. A denotes one of the tive broken symmetry phases. C, and Cz are trace q2 and trace q4. The 
mass-matrix has Cj degenerate eigenvalues Cd and Cs degenerate eigenvalues C,,. The factor of 4 $ in 
the masses and the overall dimensions have been left out. 
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fields with mass2 = 1, and 2 “heavy” gauge lields with mass* = 4. These constants 
will enable us to treat all the phases in a similar way. 

Of the six constants, only four are independent. The relations (3.3) and (3.4) 
between trace q2, trace q4 and the eigenvalues of the mass matrix imply similar 
relations among the C:. For a given phase ,4, they are 

for the trace of q2, and 

loc~+6(c~)2=c~(c~)2+c~(c~)2 (3.6) 

for the trace of q4. These relations will be used later. 
The potential function has extrema in all five of the group space directions listed 

in Table I. At these extrema, the potential function can be a maximum, minimum or 
saddle point. In order for a phase to be stable, the extremum corresponding to it 
must be a local minimum. In general, some but not all of the phases will be stable. 

Of the stable phases, some will lie lower on the potential hill than others. For 
convenience in discussing such matters, we are going to introduce “stability codes,” 
which provide a convenient notation for discussing such matters. A simple example 
shows how they work. Suppose that phases 1, 3 and 5 are minima, and that the 
other two phases are unstable saddle points. Also suppose that the potential hill is 
highest at phase 1 and lowest at phase 5. 

V(phase 5) < V(phase 3) < V(phase 1) 

phases 2 and 4 not local minima. 
(3.7) 

Then the stability code corresponding to this conliguration is 531. Each digit in the 
code corresponds to a stable phase: the leftmost digit is the lowest minimum, and 
the rightmost digit is the highest minimum. The order of the digits corresponds to 
an increasing value of the potential. In the example, phase 3 is called metastable 
because it can decay via tunnelling or barrier penetration to phase 5. The lowest 
extrema is called the stable phase, and the other local minima are called metastable 
phases. 

4. THE EFFECTIVE POTENTIAL IN DESITTER SPACE 

In this section, we will obtain an explicit form for the potential. In the second 
section, it was expressed symbolically, as a functional determinant. These functional 
determinants can be defined on S4 by using generalized zeta functions. Our lirst 
paper [ 1] evaluated these determinants in terms of the psi function $(z) = 
(d/dz) log ZJZ). Those same results can be applied here. 

The potential (2.21) is the sum of three terms. The lirst term is the tree potential, 
and the last terms are the one-loop contributions to the vacuum energy. The second 
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term comes from closed gauge-field loops, and the third term comes from closed 
scalar-held loops. 

It is now well established that a viable inflationary universe model [2] can only 
result from a potential which is unnaturally flat at q = 0. For this reason we will 
concentrate on the Coleman-Weinberg sector of SU(5), where this is the case. In 
this sector, g4 is of the same order as AZ and A4, which means that the one-loop 
contribution of the scalar-field can be neglected in comparison to the one-loop con- 
tribution of the gauge-field [5]. 

To express the remaining determinant we introduce a special function 
A(z) = (‘(1, i-z) - [‘( 1, $) delined in the notation of [l]. In terms of the psi 
function, it is 

1 
3/2-(1/4-~)‘,~ - t(r - +)(t - 3) $(l) dt. (4.1 
I 

We will also make use of the tirst two derivatives of ,4(z) 

A’(z)= -~(z+2)[~(;+(+)1’*)+~(~-(‘+z)1’*)]+&+~ (4.2) 

~“(z)=~-~[~(~+(~-z)l’*)+~(~-(~-z)l’2)] 

+~(+-“*(z+2)[$‘(;+(~-z)“~)-~‘(~-(+z)~’~)] (4.3) 

where $‘(z) = (d/dz) $(z) is the trigamma function. The following expressions are 
valid, for large Z. 

A(Z) g - (iz2 + z + g) log z + $z2 + z + constant + O(z ~ ‘) (4.4) 

A’(z) E - gz + 2) log Z + + + O(Z - ’ ) (4.5) 

AU(z) z -;logz+o(Z+). (4.6) 

The values at the origin will be useful later. They are A(0) = 0, A’(0) = 27 -z and 
,4”(O) = y - 1, where y = 0 ’ 5772 is Euler’s constant. 

The symbolic determinant can be neatly expressed in terms of this special 
function ,4(z) and the polynomial P(Z) = $z2 + Z, as a sum over the 24 eigenvalues 
rnz of the mass matrix A4$. 

= - f [A(u2m~)+P(u2m~) log(p2a2)]. 
e= I 

For use in the next section, when we study the renormalization of the potential, let 
us derive the flat-space form of this determinant. To obtain this limit, we send the 
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radius a of the four-sphere to a. As the volume Q = (S/3) 2a4 becomes inlinite, the 
asymptotic form (4.4) can be used for A(z), in (4.7) 

(4.8) 

This result is of precisely the same form as the known [7] flat-space results for 
these determinants. 

5. RENORMALIZATION, DIMENSIONAL TRANSMUTATION 
AND PHYSICAL PARAMETERS 

We began with a theory containing no dimensional parameters in flat space. Yet 
at one-loop a mass p had to be introduced in order to define a measure for the path 
integral, This mass is unavoidable-it is present even in flat space (4.7). We started 
without a dimensional parameter, yet, like a magician pulling a rabbit from his hat, 
it appeared “from thin air.” This remarkable surprise is at the heart of this section. 

The phenomenon is known as dimensional transmutation [7]. It will be familiar 
to some readers. However, since it is so unusual, we are going to forego several 
conceptual “shortcuts” and treat it in detail. The most prolitable way to begin is by 
examining the behavior of the potential in flat space. 

First of all, regard ,D as some definite, lixed, positive mass. We can express the 
ffat-space potentia1 in terms of the 24 eigenvalues rnj! of the mass-matrix M$,(q). 

What properties does this potential have? Consider phase 1, the ,SU(3) x XJ2) x 
U( 1) phase. In this phase, the mass-matrix has 12 equal eigenvalues. Suppose the 
eigenvalues are rnz =m* (for e= l,..., 12) and m:=O (for e= 13,..., 24). Then the 
potential is 

Urn21 =j$ m4 log 
L 

E+ 2 $+*g-q12+;A4)-;] 
P2 

(5.2) 
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and it has its minimum value when the eigenvalues are 

fii2=Mz=ff2exp 1 -$rr2gP4 
L 

(&+$A4)]. (5.3) 

It is in this way that the physical masses in the model are “generated” by the 
regularization mass p. 

The 12 massive gauge lields in phase 1 are called the “X-bosons,” so we 
have denoted their mass by M.Y. From now on, the nonphysical parameter 
,u’ which appeared in the curved-space potential will be replaced by p* = M: 
exp[(256/25)n2g-4(A2 + (7/30) A4) - 11. This expresses the potential in terms of a 
physical quantity: the mass M.y of the gauge fields in the XJ(3) x sU(2) x U(1) 
phase in flat space. 

What about the extrema of the other phases in flat space? Although these 
extrema may be unstable, they allow us to formally define a flat-space gauge-field 
mass in each phase. We can carry out the same calculation as we have just done, 
with one small difference. Since phases 3 and 4 have two distinct eigenvalues rnz, 
deline M: to be the smder eigenvalue in phase A. Then the llat-space gauge held 
mass in phase A is related to the flat-space gauge field mass in phase 1, by 

lo& 14( Cf)’ - 6OC; ~ - 32C; log 2 

x 15(Cf)‘+ 25C; C’; + 16C;’ (5.4) 

We have made use of the fact that Ct can always be set to 4. This formula must 
imply that M.x = M,, and it does, since 14(Ci)2 - 6OCl= 0 and C’i = 0. 

The quantity LI is a dimensionless quartic coupling constant, which is a linear 
combination of the old quartic coupling constants A2 and A4. 

(5.5) 

It will soon become clear that the curved-space potential depends only upon this 
particular linear combination of AZ and A4. In the classical theory, one has the two 
quartic couplings (AZ, A4) but in the quantum theory they are replaced by (A, M.x). 
We have traded one dimensionless parameter for a dimensional one. This is the 
reason behind the name “dimensional transmutation,” 

It will turn out in Section 6 that only phase 1 or phase 2 can be stable in flat 
space. The llat-space potential has the value -3(Ct + 16C<) M~/12g7rz at each 
extremum, which in phases 1 and 2 is 

(5.6) 
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Consequently phase 1 is a global minimum in flat space if A > -2 log 3, and 
phase 2 is a global minimum in flat space if A < -2 log $. If our universe is now in 
its true vacuum state, then we must restrict attention to ,4 > -2 log 2. 

Let us turn our attention back to the curved-space potential, and replace p2 by 
its value (5.3) in terms of the physical mass MY. We find that the potential is 

v= ~[Q+~(l-logu2~~)]~~~~~-~~ (xnz:)2 
e e 

3 
+- 

L 
%t+(l-log&f;) ~+&I 

64x2 5 1 - 4 1 A(&$) (5.7 
C’ C 

where the parameter Q can be regarded as a renormalized value of <. 

Because A(z) is not a simple function, we studied this potential using numerical 
techniques. For a given direction in group space, i.e., in each phase, the problem of 
finding the extrema of the potential (5.7) is one-dimensional. In each phase A we 
introduce a dimensionless ratio 

(5.9) 

of the gauge-field mass in curved space to its mass in flat space. It follows that the 
flat-space limit is lima+ ,~ T~(A, Q, u2Mt) z 1. 

To write the equation satisfied by rA, it is useful to introduce some notation for 
the derivatives of the potential function. Because the potential (5.7) is invariant 
under any relabeling of the eigenvalues rnz, we can use the notation (dV/t3M2) to 
denote its partial derivative with respect to any eigenvalue, with the others held 
fixed. The eigenvalue with respect to which the derivative is taken is either TAMS or 
STEM:, since there are at most two different masses in the phases which we studied. 
The derivative can be easily evaluated from (5.7) 

At an extremum, rA satisties the equation 

M2 = T,, M; 

(5.10) 

(5.11) 
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TABLE III 

Coupling Constants and Parameters of the Theory before and after the One-Loop Corrections 

Before After 
Curvature R , R= 12/a* 

Dimensionless g 
coupling t [I )F c?tg> A3 4 1 

Dimensionless 
coupling 

A2 JET> A23 41 constants 
constants & K Dimensional parameter 

Note. One of the dimensionless coupling constants “disappears” and is replaced by a dimensional one. 

So for a given set of parameters, this equation can be solved numerically to locate 
the extremum of each phase in group space. 

We have seen how the flat-space limit can be used to express this theory’s curved 
space behavior in terms of well-defined physical quantities. The original set of 
parameters has been replaced by a new set. This is shown schematically in 
Table III. The table shows how each of the new parameters depends upon the old 
set. 

The properties of the potential which we will go on to investigate depend only 
upon the three dimensionless parameters A, Q and R/M;. It will turn out that the 
theory’s stability properties are independent of the values of g or MX. To determine 
the stability of each phase, we need to investigate the nature of the extrema at rA. 
One way to do this is to calculate the Higgs held’s masses in the different phases. 

6. THE STABILITY OF THE EXTREMA AND THE HIGGS FIELD’S MASSES 

In this section, we investigate the nature of the extrema in the live broken sym- 
metry phases. We started with a potential which was a function of 24 variables, 
reduced it to four variables, and then to a single variable rA. This allowed us to find 
the extremum of the potential in each phase. However, this approach does not 
reveal if it is a minimum, maximum, saddle, or inflection point. To answer this 
question, we must return to the function of four variables. 

Let us consider the shape of the potential near an extremum CJX If we perturb q 
by a small traceless Hermitian matrix 8~ containing 24 independent infinitesimals 

q+&p= [ 1 ‘.. ;5] + [ ;;;; 1:: ;;I;] 

then there exists a gauge transformation p which diagonalizes q + 6~. 

P(q + 8~) = diag(qi + &j ,,..., q5 + &j5). 

(6.1) 

(6.2) 
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Here the diagonal perturbations Qi are linear combinations of the 6qV, which 
satisfy &jI + bG2 + 8qj + &jjd + &jj5 E 0. Near the extremum, the variation of the 
potential must be a quadratic form. 

where the &pj are hnear combinations of the 6@,. The four real numbers iY, are the 
Higgs fields (masses)2. 

In the vicinity of an extremum, the signs of the Hz tell you how many directions 
curve up, and how many curve down. Four positive H’s make the extremum a local 
minimum, and four negative Ws make it a local maximum. If some are positive, 
and some negative, it is a saddle, and if any Hi vanishes, then it is an inflection 
point. 

The Hi are the four eigenvalues of the symmetric 4 x 4 matrix of second 
derivatives [cY~V/&~ $1~1. If all four are positive, then they are the squares of the 
oscillation frequencies about the minimum, i.e., the Higgs field’s masses2. Since the 
number of massive Higgs fields is equal to the number of unbroken symmetries, 
some of the masses* are degenerate. An extremum is stable if, and only if, all of its 
Higgs masses2 are positive. 

To determine the Higgs masses in each group space direction, one needs to 
diagonalize a 4 x 4 matrix of second derivatives. This has been done in [ 13-151. As 
well as the first derivative (5.10) of the potential, we need two second derivatives. 
The first is taken with respect to the same element of the mass matrix, and the 
second is taken with respect to two distinct elements of the mass matrix (which may 
be equal). 

d2V 
33 A+ 

m=Tizi2 g-$1 -lo@2iw$-$ L4”(U2A4*) (6.4) 

aV -3 ~. 
akf~a~T%iQ 

Now, following [13-151, we define the following derivatives in each phase A. 

(6.6) 
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av 
(4.10) 

(6.11) 

(6.12) 

(6.13) 

The Higgs masses H, to Hd are linear combinations of these 8s e’s and j-‘s. 
However, since each one is obtained by diagonalizing different matrices, they have 
to be treated phase by phase. 

In phase 1, the SU(3) x W(3) x U( 1) phase, the Higgs held’s masses are 

H, = Hz = g2(3dl + 2el - 2fl) (6.14) 

H3=5g2(e,+lljI) (6.15) 

Hd = g’(2dl + 3e, - 3f,). (6.16.l 

In phase 2, the W(4) x U( 1) phase, the Higgs held’s masses are 

Hi = H2 = H3 =g2(4d2 + e2 -fz) 

H4 = 5g’(e2 + 7fz). 

(6.17) 

(6.18) 

In phase 3, the SU(3) x U( 1) x U( 1) phase, the Higgs Iield’s masses are 

H, = HI = g2( 3d3 + 2eJ - 2fJ + 2Jl) (6.19) 

HJ = 5g’(e3 -fx + di) (6.20) 

Hd = g2(24fg + 2f\ + 33f3 + 2ei + 3ej) (6.21) 

In phase 4, the SU(2) x SU(2) x U( 1) x U( 1) phase, the Higgs held’s masses are 

HI = H2 = g2(2di - 28: + ed -fd + 2ei - 2yd) (6.22) 

H3 = 5gz(ed -fd + dII) (6.23) 

Hd = g*( 32fz + 28fi + 7fd + 4ei, + ed). (6.24) 

In phase 5, the unbroken symmetry SU(5) phase, the Higgs field’s masses are all 
equal. 

Hl=H2=H3=Hd=5g2ds. (6.25) 
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Fortunately phase 5 is very interesting to us, because this expression can be easily 
calculated from (6.6) and (5.10) and the value of A(0). 

1 Q+;+;Ioga2M; 1 (6.26) 

In the flat-space limit, as u + CXJ, these masses2 approach zero, from the negative 
direction. Hence phase 5 is stable if and only if 

u2M: -c exp(3Q + i - 2~). (6.27) 

If u’Mt = exp( 3Q + $ - 2~) there is a second-order phase transition from the SU( 5) 
symmetric phase. 

The critical curvature R = 12Mt exp( - 3Q - 3 + 2~) is important, because the 
SU(5) phase becomes unstable when the curvature reaches this value. For larger 
curvatures, the Higgs field is trapped at 4 = 0 by a barrier, and can only exit the 
SU(5) phase via a first-order transition. 

It is instructive to examine the Higgs masses in flat space. The &s, e’s and j’s in 
(6.6) -+ (6.13) can be easily evaluated in this limit by letting CI -+ cxz and rA -+ 1, and 
using the asymptotic behavior (4.5), (4.6) of A’ and A”. One obtains the following 
flat-space masses, which are linear functions of A. 

Phase 1: 

H,=Hz= (6.28) 

Phase 2: 

(6.30) 

Phase 3: 

H4=g ‘M;. 
871~ ’ 

(6.32) 

H,= Hz=&g2M; -A+;-$log2 

&=$$g2M++fi-310g2) 
8 

(6.33) 

(6.34) 

(6.35) 
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Phase 4: 

51 7 
A----log2 

80 30 
(6.35) 

(6.38) 

Phase 5: 

H,=Hz=Hx=H4=0. (6.39) 

From these formulae, one can see that phases 3,4, and 5 are unstable in flat 
space, for any value of A. Only phases 1 and 2 can be stable in flat space. If A > -4 
then phase 1 is stable, and if A c 2 then phase 2 is stable. From (5.6) we know that 
the line A = -jj log 2 separates the regions in which phases 1 and 2 are the global 
minima. The resulting flat-space phase diagram is shown in Fig. 1. The regions of 
the phase diagram are labeled using the stability code notation introduced in 
Section 3. 

, 
2 

A 0 

-1 

FIG. 1. The phase diagram for a flat-space (u + co) Coleman-Weinberg potential. Since Q is a renor- 
malized t parameter, the diagram is independent of it. Shown are the four possible stability code regions. 
For example, when -4 log 3 c A < $, phase 1 is stable and phase 2 is metastable. 
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7. CURVED-SPACE PHASE DIAGRAMS 

For given values of LI, Q, and uM.~, one can solve (5.11) for rA to lmd the 
location of the extrema in each phase. The Higgs masses in each phase can then be 
determined. Finally, the values of the potential at the stable extrema can be com- 
pared, to obtain a stability code for the given values of A, Q and &VX. In this way 
we obtained some phase diagrams for this theory. 

We solved the equations on a computer with a Fortran program composed of 
several subroutines. The lowest-level subroutines evaluate A(z), A’(z) and .4”(z). 
Another subroutine fmds the location of the extremum in each phase, by solving 
(5.11) for rA, Another one evaluates the Higgs masses H, to H4 at each extremum, 
and another calculates the potential. The last subroutine examines the Higgs 
masses, and compares the values of the potential in each phase, to obtain a stability 
code. 

For any value of LI and Q, there is a critical curvature with the property that if 
the curvature is greater than that value, then the only stable or metastable phase is 
the SU(5) symmetric phase. This curvature is shown in Fig. 2. The contours show 
the critical values of log 0~44:. The phase diagram also shows what happens at this 

FIG. 2. The contours on this phase diagram show a critical value of log (a2M:). When the curvature 
is greater than this value, phase 5 is the only stable or metastable phase. At the critical curvature, there 
are four regions of parameter space with different stability codes. To the left of the boundary P, the 
phase transition is second order, and phase S becomes unstable. To the right of P, phase 5 remains 
stable. and phase 1 or 2 becomes metastable. 
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critical curvature, when phase 5 ceases to be the only stable or metastabie phase. 
The parameter space (A, Q) breaks up into four disjoint stability code regions. For 
example, in the top left corner of the diagram, at the critical curvature shown by 
the contour, the SU(3) x SU(2) x U( 1) phase becomes stable, and the SU(5) phase 
becomes unstable. However, in the top right corner, the S’(3) x SU(2) x U(1) 
phase becomes metastable, and the SU(5) phase remains the true stable minimum. 

It is not very interesting if another phase becomes metastable while the SU(5) 
phase remains stable. This is what happens to the right of the boundary P, shown 
in Fig. 2. To the left of P, there is a second-order phase transition when the SU(5) 
minimum disappears, at log (u*Mz) = 3Q + 3 - 2~. However, to the right of P, the 
universe would remain in phase 5, since the new local minimum is “higher up the 
hill.” 

Hence the next critical curvature: the one at which some minimum other than the 
SU(5) symmetric one becomes lower than the SU(5) minimum. The contours of 
this critical curvature are shown in Fig. 3. This critical curvature is slightly less than 
the one shown in Fig. 2, so the contours actually show the difference of their 
logarithms. It is clear that the metastable minima, which tirst develop at the cur- 
vature shown in Fig. 2, simply move down, and become lower than the SU(5) 
minimum in Fig. 3. 

log (a’Mc)- log toit@) 

FIG. 3. Phase diagram showing the critical curvature at which phase 5 ceases to be the minimum of 
lowest energy. The critical curvature is shown relative to the critical curvature in Fig. 2, denoted as 
log (u~kr~). By comparing the two diagrams, one can see that the metastabte minima simply “trade 
places” with phase 5, and become lower than it. 
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There is still a barrier between these new stable phases, and the now metastable 
sU( 5) phase. What happens when the XI(5) minimum finally becomes unstable, 
and the barrier disappears? This interesting question is amenable to exact treat- 
ment. 

When the sU(5) phase becomes unstable, at a critical curvature log a*Mz = 
3Q + $ - 2~, the Higgs field begins to slowly move away from 4 = 0. We want to 
know in what group-space direction it goes. Since 4 is small, all of the eigenvalues 
rn; of the mass matrix are small. Consequently, we can expand the potential (5.7) in 
a Taylor series. For small values of a2mz, A(a2m~)=A(0)+A'(O)u2m~+ 
~A"(0)u4m~+ ... where the values of A'(0) and A"(O) are given in Section 4. The 
potential becomes 

At the critical curvature, the coefficient of the xc rnz term vanishes. We can use 
(3.3) and (3.4) to express the potential in terms of the Higgs field 9, 

v=- 
32:~~~~ 

[X( trace T’)~ + Y trace q4] 

where the coefficients X and Y are 

(7.2) 

The polynomial potential (7.2) is a good approximation near Ed = 0, when the 
XJ( 5) phase becomes unstable. 

These polynomial potentials have been analysed by Li [16]. He found that if 
X> 0 and Y> 0, then the minimum moves in the direction of phase 1, and if X> 0 
and Y< 0, then it moves in the direction of phase 2. These conditions define two 
lines in the parameter space (A, Q). 

X>O~fl< 
-45 
xQ+!f 

(7.6) 

The lines intersect at A = 0, Q = $. They are shown as dotted lines on the phase 
diagram in Fig. 4. 
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-3 -I 

FIG. 4. Phase diagram showing the critical curvature at which the SU(5) phase becomes unstable, 
and the corresponding stability codes. As the critical curvature + CC, the stability code pattern 
approaches the flat-space one, previously shown in Fig. I. The two lines X = 0 and l’= 0 are the linear 
relations of equations (7.3) and (7.4). It is only when log (u’M~) 5 2 that the phase diagram is 
significantly different than the flat-space one. 

This last diagram shows the stability codes when the sU(5) minimum disappears. 
It clearly shows that, as the critical curvature becomes very small, the shape of the 
potential approaches the flat-space pattern shown in Fig. 1. The “trifurcation point” 
is located by the intersection of the two boundary lines. This diagram was obtained 
entirely from numerical computation, and its agreement with the analysis above is 
convincing proof of the computer program’s reliability. 

8. CONCLUSION 

In this paper we have demonstrated how the one-loop effective potential can be 
calculated for non-Abelian gauge theories in DeSitter space. Furthermore, this 
analysis shows that curved-space effects do not modify the conclusions of Breit et 
al. [3] that in the SU(5) theory, the universe is likely to end up in the SU(4) x U( 1) 
phase. The reason is that the curvature effects only make signilicant modifications 
to the flat-space potential when R 2 Mz. In the inflationary universe model, the 
curvature is smaller than this, by a factor (Mx/MP)‘w IO -‘. Consequently, the flat- 
space studies remain valid. 

For this reason, we see no need to undertake a dynamical study, using the 
curved-space potential. Such a study would require the introduction of two 
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additional parameters, one to measure the amount of radiative damping as the 
Higgs field evolved, and another to fix the ratio of Mx/MP. 

A surprising result of our computer study is that phases 3 and 4, the SU(2) x 
SU(2) x U( 1) x U( 1) and ,SU( 3) x U( 1) x U( 1) phases, are unstable for any values of 
the parameters A and Q. We searched through a large region of parameter space, 
but were unable to find any values of A, Q and R/M: for which phase 3 or 4 was 
either stable or metastable. 
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