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Abstract. We use properties of the Osp(2,4) algebra to determine the spectra of N = 2 
supersymmetric compactifications. The correspondence with the results obtained by har- 
monic expansions is established. 

1. Introduction 

Recently, considerable progress has been made in determining and classifying the 
spectra of spontaneous compactifications of d = 1 1 supergravity [ 11 (for recent reviews, 
see [2], which contains many further references). The ground states which arise in 
spontaneous compactification are usually characterised by a negative cosmological 
constant; if they are invariant under N residual supersymmetries, there is an additional 
SO( N )  invariance. The full symmetry group which includes the fermionic symmetries 
is therefore Osp(N, 4). The physical states of the theory then belong to irreducible 
representations of Osp( N, 4) (for recent reviews of group theory in anti-de Sitter space, 
see, e.g., [3] and [4]). This knowledge can be used to investigate the spectrum of 
supersymmetric compactifications since the restrictions on the energy eigenvalues, 
which arise in the group theoretic treatment, translate into analogous constraints on 
the mass eigenvalues found by harmonic analysis. To be sure, the group theoretic 
method has its limits since it obviously fails for non-supersymmetric compactifications 
but for supersymmetric compactifications it provides an independent check on the 
results obtained by harmonic expansions. 

In this paper, we present an analysis along these lines for N = 2  supersymmetric 
compactifications on Mp4' spaces [5] whose spectrum has recently been determined 
[6]-[8]. In § 2, we give a general analysis of N = 2 multiplets in anti-de Sitter space 
which is quite similar to previous analyses of the cases N = 1 [9] and N = 3 [lo]. We 
then proceed to fit the massive states into massive multiplets in the following section. 
The method is 'by exhaustion': we start from a given massive spin-2 state, compute 
its energy label from its mass; if the latter is not half integer (it is not even rational 
in general), it follows that this state belongs to an ordinary long multiplet whose lower 
spin states are subsequently identified. When all the spin-2 states have been used up, 
the remaining states must belong to multiplets with highest spin-s = $ massive multiplets 
after which we are left with states of spin-1, and 0 only. After the elimination of 
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spin- 1 fields, there may still be (massive or massless) hypermultiplets whose energy 
labels are related to their hypercharges by integer shifts; again, the multiplet shortening 
condition (2.13) corresponds to a similar restriction on the eigenvalues of the * d  and 
Lichnerowicz operators on MPqr. Although we have not fully analysed the hyper- 
multiplet structure of the theory, we find that, for any N = 2 supersymmetric compactifi- 
cation, there is always at least one hypermultiplet. 

2. Osp(2,4) multiplets 

In this section, we present the analysis of the Osp(2,4) multiplets that are needed for 
the classification of spectra. First, we briefly recall some basic features of the Osp(2,4) 
algebra and the construction of unitary irreducible representations. (We follow the 
notation and conventions of [4] and [lo] throughout.) The bosonic part of the Osp(2,4) 
algebra consists of the generators MAB of the S0(3,2)  algebra and the hypercharge 
Y The fermionic part is generated by two Majorana supercharges Qf ( i  = 1 . 2 )  whose 
anticommutator is given by 

{ Qf , Qb} = i8”l:; MA,  + i Y (2.1) 

where the matrices 1:; are given in [lo] and E ’ * =  - - E * ’  = 1, E “  = & * * = O .  In contrast 
to the PoincarC case, where Y would be a central charge, Y has non-trivial commutation 
relations with Qf, namely 

(2.2) [ Y, Qh] = i&”Q;. 

For the construction of unitary irreducible representations, it proves convenient to 
express the supercharge Qf as 

and to define the combinations 

6: G 2-”2(6; iz;) 

a:= ~ 2 - ” ~ ( a ; + i a ~ ) ;  6; = -a:. 

[Mod, d l  = -id, [MO& 6 3  =;a: 
[ J 3 ,  a 3  = -zfl,pa;, 1 3  

From the Osp(2,4) algebra, it then follows that 

I 3  [J,, 6 3  = + p , p n ;  

(2.3) 

(2.4j 

from which one reads off the energy and spin raising and lowering properties of the 
operators a: and 6:. Furthermore, 

[ y ,  6:]=*6; (2.7) 

so the operators ii: and 6,, respectively, raise and lower hypercharge by one unit. 
To construct unitary irreducible positive energy representations of Osp(2,4), we 

follow the well known procedure (which is summarised, e.g., in [4]) by introducing a 
set of vacuum states which are annihilated by the operators U:,  i.e., 

(2.8) atl(&, s, y)ErJsmy) = 0. 
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The numbers in round brackets label the representation whereas the remaining numbers 
label the states in this representation. An (infinite-dimensional) unitary representation 
is then built on these vacuum states by successive application of the raising operators 

and the boost operators of S0(3,2).  Since the unitary representations of S0(3 ,2 )  
are well known [l  11, one usually ignores the latter, which only generate ‘Regge 
trajectories’, and considers only states obtained by applying all antisymmetric combina- 
tions of raising operators to the vacuum (2.8). These operator combinations may 
be classified according to their spin and hypercharge content: 

ci: with hs =;, A Y  = *i 

&,pa, ap 

Eagaaap 

&,pa a ap 

with 

with 

As = 0, AY = 2 

As = 0, AY = 0 

-+ -+ 
(2.9) -+ _ -  

with As=O, AY=-2 _ -  _ -  

& ”a  ; , a; with A s  = 1, AY = O  (2.10) 

with hs = ;, AY = i i  (2.1 1 )  

with As = A y  = 0 (2.12) 

_* _ +  _ -  
& P y a  0 a P a Y 
& & a-a-a+a+ 

U P Y S  a P Y 

from which one can then obtain the N = 2  multiplets and their energy, spin and 
hyperchange assignments. If all of the operators in (2.9)-(2.12) create non-zero norm 
states, one speaks of an unshortened representation; in this case, unitarity requires 
that the representation labels satisfy 

(2.13) 

The proof of (2.13) is completely analogous to the derivation of the corresponding 
inequality for Osp(3,4) [lo]. 

There are only three different types of massive unshortened representations if one 
restricts oneself to particles of maximum spin-2 which are obtained by applying the 
operators (2.9)-(2.12) to vacuum states of spin 0, and 1, respectively. They are 
displayed in tables 1, 2 and 3 which correspond to maximum spin s,,, = 1,2 and 5,  
respectively. The correspondence with the harmonic eigenmodes to be discussed in 
the following section has already becn given. The parity assignments of a!l states are 
easily derived by noting that, under parity, ci; + 76; with 7 = +i. In addition to these 
unshortened representations, there are also short multiplets. The first kind of shortened 

E,  3 ly / + s + 1. 

Table 1. N = 2 vector multiplets and identification with D = 11 fields. 

No Spin Energy Hyp. Mass Name Mass Name 
~ 

1 1  E,+ 1 Y 16Eo(Eo- I )  
E,+$ y - l  - 4 4  
E,+$ y +  1 -4E, 
E,+f Y - 1  4E, - 4 
Eo+$ 4lZ-4 

0 E0+2 Y ’+’ 16E,(E,+lJ 
E,+ 1 Y - 2  16Eo(Eo- I )  

5 1; E,+I 16Eo(E,- I )  
Eo+ 1 ’+* Y 16E,(E0- 1) 

Y 16( Eo - 2 ) (  E, - EO 

16E,(E,- I )  
4 EO 
4 E,  

-4E0 i 4 
-4Eo+4 

16E,(E0+ 1 )  
16E0(E0-1J 
16EO(E,-l) 
16E0(E0- I )  
l6( &-2)(E, - 
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Table 2. N = 2 gravitino multiplets and identifications with the D = 1 I fields. 

No Spin Energy Hyp. Mass (+) S a m e  Mass(-)  S a m e  

1 f  E,+ 1 Y 
E,+$ Y - 1  
E,+$ Y+l  
E,+; Y - 1  
E,+$ Y + l  

I E,+2 Y 
E,+ 1 Y -2  
E,+ 1 1' 
Eo+ 1 Y + 2  
Eo+ 1 Y 
€0 Y 

0 E,+$ Y - 1  
E,+; y +  1 
E,+$ Y - 1  
E,+$ y +  1 

[ ;  

I: 
6 ;  i 

4 4  - 6 
16( €0 - $)( €0 +$) 
16( €0 - f ) (  €0 + f )  
16( €0 -$)( €0 - f )  
l6( €0 -$) (  €0 - f) 
4E0+2 

-4E,+2 
- 4 4  + 2 
- 4 4  + 2 
-4E,+2 

4E, - 6 
16( € 0  - f ) (  E, + f )  
16( €0 - f ) (  E, +$) 
16( €0 - f ) (  €0 -2) 
I6( E, - f ) (  €0 -2) 

- 4 4  - 2 
16( €0 - f ) (  €0  + i) 
16( E,  -f)(E,+i) 
16( Eo -$)( Eo - f )  
16(E, - $ ) ( E O  -;) 

-4E"-2 
-4E, - 2 

4E0-2 
4E0 - 2 
4E,-2 

-4E,+6 
16( E,  - f)( E, + f) 
16( €0 - f ) (  €0 +i) 
16( €0 - f ) (  €0 - $) 
l6( €0 -$)( € 0  - $) 

Table 3. N = 2 graviton multiplets and identification with the D = 1 I fields. 

S o  Spin Energy Hyp. Mass Name 

E,+ 1 Y 
E,+1 Y - 1  
E,+$ y + 1  
Eo+;  Y - 1  
E,+& Y + 1 
E0+2 Y 
E,+ 1 Y - 2  
Eo+ 1 y + 2  
E,+ 1 Y 
E,+ 1 Y 
€0  Y 
E,+$ Y - 1  
Eo+$ JJ + 1 
E,+& Y - 1  
E,+$ Y + l  
E,+ 1 Y 

16(Eoi- 1)(E0-2) h 
- 4 4  - 4 x ( - l  

-4E,-4 x" 
4E, - 8 x'+' 
4E"-8 x(+)  

16(E,+ l)Eo A/ w 
16(E,- I )€ ,  Z 
16(E0- 1)E, Z 
16(E,-1)E0 Z 
16(E0- l )Eo  Z 

4 E, A; 
4 E, A; 

-4E,+4 A, 
-4E,+4 A, 

16(Eo-l)Eo 6 

16(E0- 1)(E0-2) A/  W 

representations are the massless multiplets which have the same structure as in PoincarC 
supersymmetry and where all energy labels obey Eo= s +  1 for s 2 4  and Eo= 1 or 2 
for s = 0. The second kind has no analogue in PoincarC supersymmetry since it will 
contain massive particles in general. An analysis which is quite analogous to the 
analysis of shortened representations of Osp(3,4) [ 101 reveals that for ( y  E Z )  

Eo:=lyl>&, s = o  (2.14) 

several of the opcrators (2.9)-(2.12) create zero norm states, and that there are no s = 1 
representations. The (massive or massless) hypermultiplets are given by 

(2.15) 
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or 

(2.16) 

(see also table 4). From (2.15) and (2.16), we see that for lyl3 3, these multiplets are 
massive. For lyl= 2, there is one massless particle in an otherwise massive multiplet, 
and for 1 y /  = 1, the multiplet is massless. For completeness, we note that all representa- 
tions correspond to two degrees of freedom with y = 0 states which are inert under U( 1) .  

Finally, we note that there are further short multiplets besides the ones already 
mentioned which have no analogue in N = 2 PoincarC supergravity. These are obtained 
by saturating the unitarity bound (2.13), i.e., by putting 

Eo = I y 1 + s + 1, s arbitrary. (2.17) 

However, these multiplets do not seem to be relevant for our analysis and we therefore 
will not discuss them here. 

Table 4. Hypermultiplets and identification with the D = 1 I fields. 

No Spin Energy Hyp. Mass Name Mass Name 
~ ~~ ~~ ~~ ~ ~ 

I f E,+& y - 1  4Eo-4 A L/T -4E,+4 A LIT 

0 & + I  y - 2  16E,(Eo-1) 77 16Eo(E,-I) 4, S I X  
y 'o  0 E,  Y 16(€,-1)(E0-2) 4, S / X  l6(Eo-1)(€,-2) 77 

1 $ E,+$ y + l  4 4 - 4  AL,T -4E0+4 A L i T  

0 E,+1 y + 2  16E,(E0-1) ?T 16E0(E0-1) 4, SIX 
EO Y l6(E"-l)(E,-2) 4, S/I: 16(E,- l ) ( & - 2 )  7~ 

Y<o 2 

3. Filling of the N = 2 supermultiplets with the eigenstates of the mass operators on 
the internal manifold M, 

In the previous section, the structure of Osp(2,4) supermultiplets has been discussed. 
In this section, we combine the above information supplied by group theory with the 
information provided by harmonic analysis on the internal manifold M,. Specifically, 
we aim at answering the following questions 

(i) what is the correspondence between the eigenmodes of the various differential 
operators on M ,  and the particles appearing in the supermultiplets? 

(i i)  which series of representations of the gauge group S' (commuting with the 
supergroup Osp(2/4)) the various supermultiplets have to be assigned to? 

(iii) given a supermultiplet in a given S' representation, what are the values of Eo 
and y ?  
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The essential tool we shall utilise in order to answer question (i) is provided by 
the universal relations holding among the spectra of bosonic and fermionic differential 
operators El [ A  on coset manifolds with Killing spinors, which have been derived 
in [8] to which we refer for further details. They yield a set of mass relations among 
those x-space fields which communicate via supersymmetry transformations. On the 
other hand, from the previous section we know how the energy labels of fields in the 
same supermultiplet are linked to each other. Hence we just need the formulae which 
express the mass m(,) of a spin-S field in terms of its energy label E , , ) .  We are then 
in a position to compare the results of the previous section with those of [8] and to 
decide how the supermultiplets are filled with eigenmodes of the [ A  l A 2 A 3 1  operators. 

In the case of hypermultiplets, namely sm,,=i, we have the important further 
information given by (2.14). This implies that the eigenvalue MLAIA2Al, ofthe appropriate 
m [ A , A 2 A , ]  operator has a certain expression in terms of the hypercharge Y. This is the 
signature of hypermultiplets and the spectrum of these latter can be obtained by looking 
at the properties of one of the operators O[A,AZA31 contributing to either spin-: or spin-0 
particles. 

We now give the details of this programme and show how it works in the example 
of the S U 3 0 S U 2 0 U I  space Mil1 possessing two Killing spinors. For this space, the 
spectrum of the following invariant operators has been calculated in [6] and [7] 

(a) (o)) = Laplacian, 
(b) El(l,213 =@= Dirac operator, 
(c) 
We shall demonstrate how from these spectra we can basically obtain all the needed 

(l-i3 = * d  operator on 3-forms. 

information. Let us begin with the following formulaet: 

4 2 ,  = 1642)(42)  -3). (3.le) 

The mass-energy relation for particles of spin s * $ is only determined up to an additive 
constant, which we have fixed in order to agree with the normalisations of [6]-[8]. 

These formulae are understood by recalling that in the conventions of [5,6,7], the 
curvature of anti-de Sitter space is 

RabCd = 16e2aabCd (3.2) 

where e is the Freund-Rubin parameter. We note that in the fermionic case, we have 
two different relations depending on whether the mass is positive or negative. This is 
so because the sign can be flipped by a y5 transformation. On the other hand, if we 
have a spin-: field which satisfies the following field equation: 

(0-475)Xa = (9 14Y5)Xa = - m ( 3 / 2 ) ? 5 x a  (3.3) 

i These equations differ from the normalisations of [4] by a factor 2 ( p 2  =amz) .  
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by setting 

xh = iY5XCl (3.4) 

m{3/2) = -m(3/2) - 8e (3.5) 

we obtain a new field which satisfies (3.2) with a new mass 

which is now positive. 

the different supermultiplets. 
The shift (3.5) explains the second formula in ( 3 . l d ) .  We are now able to discuss 

3.1. The graviton supermultiplets (table 3) 

The graviton supermultiplet is composed of one spin-2 state, four spin-:, six spin-1 
and four spin-0. Utilising formulae (3.1), we can write all the masses of the various 
particles in terms of the parameter Eo that characterises the multiplet: in this case the 
Clifford vacuum has been chosen to coincide with one of the vector states. The universal 
mass relations, worked out in [ 5 ] ,  can be used to solve the mass-sign ambiguity 
concerning the spin-; and spin-: cases: furthermore, they enable us to identify the 
particular kind of particles: we point out that there are no pseudoscalars and that all 
the spin-; fields come from the transverse representation series. The parities of the 
bosonic states which we obtain via this procedure are in agreement with the following 
rule we found in § 1 : Bose particles whose energy labels differ by one unit have opposite 
parities. 

Now we treat the example of the MI" space: from (3.23i) of [8], we learn that 

mE= 1 6 ( E o + 1 ) ( E o + 1 - 3 ) = M ~ 0 ~ 3  (3.6) 

where M(o13 is the eigenvalue of the Laplacian operator, whose spectrum was deter- 
mined in [7].  The available S U 3 0 S U 2 0 U l  representations are 

MI = 1, M2 = I+ 3k ,  J = 1 kl + n, Y = 2 k  

la0 n z O  k 2 - [ f l ]  (3.7) 

where k,  1 and n are integers. 
The corresponding eigenvalue M(())3 is given in (3.14) of [7]  and reads 

M(,)3 = 64[f( MI + M2+ MiM2) +iJ(J+ 1) +&(M2 - (3.8) 

Hence, combining the information of (3.5) and (3.7),  we obtain the value of the labels 
Eo and y characterising the ground state of the graviton supermultiplet belonging 
to the representation (2.15). We get 

E, = a12 +{36 + 64[f(M1 + M2+ M1M2) + ; J ( J +  1) +jk(M2 - Mi)2]}'/21] ( 3 . 9 ~ )  

y = f ( M2 - MI ) * (3.9b) 

It is evident from (3 .8a) ,  that Eo is not a rational number in general and is therefore 
not related to the hypercharge by a half-integer shift. In view of the multiplet shortening 
conditions discussed in the foregoing section, this means that the corresponding 
multiplet will be a long one in general. There are indeed a few cases where the square 
root in ( 3 . 8 ~ )  becomes an integer, but of all the cases we have analysed only the one 
corresponding to MI = M2 = J = 0 resembles the shortened multiplet, namely the mass- 
less N = 2 graviton multiplet (other possibilities are M i  = M2 = 1, J = 0 and MI = 3,  
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M2 = 0, J = 1 and MI = Mz = 0, J = 1). Analogous comments apply to the gravitino 
and the spin-1 multiplets to be discussed shortly. 

Following the procedure outlined at the beginning of this section, we are now 
interested in identifying which of the available spin-: particles sit in the graviton 
multiplet in order to subtract them from the counting of spin-; multiplets. At this 
point, we have exhausted the spin-2 states and we consider the spectrum of the spin-; 
particles in order to decide which go into the graviton multiplets and which are left 
over for the gravitino multiplets. 

According to [6], the eigenmodes of the E d ( I l 2 ) 3  operator on MIi1 fall in the series 
of S U 3 0  S U 2 0  U,  irreducible representations listed below. 

3.1.1. Regular series ‘ 1  +2’ 

M I  = 3 k +  1, M2 = 1 + 1, J =  lk+ l I+n,  Y = - ( 2 k + 1 )  

1 2 0 ,  k 3 -[f( 1 + l)], n 2 0 if (2k + 1) > 0 

n z l  i f ( 2 k + 1 ) < 0 .  (3.10) 

For this group of representations the operator ! X l ( 1 / 2 ) 3  is a 4 x 4  matrix, which has two 
pairs of eigenvalues 

(3.11) 

3.1.2. Regular series ‘ 3  + 4’ 

M l = 3 k ,  M2 = 0, J =  l k f  lI+ n, Y = - ( 2 k +  l) ,  

k > 0 ,  n 2 0. (3.12) 

In this case, the operator H(Il2)3 becomes a 2 x 2  matrix with the following eigenvalues 

(3.13) M(1/2)3 = A l , 2  = 1 +2[2 Y( Y -4) + 8 J ( J +  1) +3]”2. 

3.1.3. Exceptional series ‘ 1’ 

MI = 3k I +  1, M2= 1+ 1, J = J k +  11, Y =  -(2k+ 1) 

1 3 2 ,  0 2 k 3 -[i(l+ 1 )]. (3.14) 

Again, we have that 0 ( 1 / 2 ) 3  becomes a 2 x 2  matrix with eigenvalues 

M(l/2)3 = A I , >  = - 1 +4[ Y2+$M,(2+ (3.15) 

3. I .4. Exceptional series ‘2’ 

M ,  = I +  1, M z = I + l - 3 ( k + l ) ,  J =  Ik+ 11, Y = - ( 2 k +  1) 

1 3 0 ,  k s inf(0, [f( 1 - 2)]). 

€3 (11213 is still a 2 x 2  matrix and now we have 

M(1,2)3 = A = 1 i 2[4 Y( Y + 1)  +$MI (2 + M 2 )  + 1]1’2. 

(3.16) 

(3.17) 
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3.1.5. Exceptional series ‘4’ 

MI = 0, M2=-3(k+1),  J = Ik+ 11, Y = - ( 2 k + l ) ,  
k G  -1. (3.18) 

In this case, EI(I/z)3 reduces to a 1 x 1 matrix and consequently we have only 

M ( l / 2 ) 3 = A  = 4 Y + 3 .  (3.19) 
The spin-; partners of the graviton have to be chosen among the states classified above: 
they must be in the same S’ = SU30SU2 representation, they must have hypercharge 
y3/2 = y f 1 and, according to table 3, their energy label E3/2 must be equal to either 
Eo+; or Eo+;. The set of S’ representations (3.7) contributing to the graviton spectrum 
contains all these series except the ‘exceptional 1’. We find that the needed gravitini 
which fulfil the above requirements are provided by the eigenmodes corresponding to 
either the first pair of eigenvalues in (3.11) or those in (3.13) or (3.18) or (3.19); the 
correct number of states is reached by considering also the conjugate of each of these 
representations. The structure of the graviton multiplets we have discussed is sum- 
marised in table 3. Relying on this information, we can now go over to the discussion 
of spin-5 multiplets. 

3.2. The gravitino supermultiplets (table 2) 

The gravitino supermultiplet is composed of one spin-4 particle, four vectors, six spinors 
and four scalars. Once we have written all the masses in terms of E,, which in this 
case corresponds to one of the spin-; states, we can proceed to the identification of 
the various fields: two different multiplets are generated by the two possible choices 
of mass-energy relatim according to formula (3.1) and, in the bosonic sector, they are 
the mirror image of each other: scalars are interchanged with pseudoscalars, vectors 
with axial vectors. Only a small detail remains ambiguous, that is the possibility of 
having also one longitudinal spinor or all transverse ones. 

In the specific case of M ” ’  spaces, the gravitini left out from the spin-2 multiplets 
are those in the following S U 3 0 S U 2 0 U I  series: 

(a) Regular ‘1 +2’ limited to the second pair of eigenvalues (3.1 1 )  
(b) Exceptional ‘1’ 

We note in passing that the spinor spherical harmonics associated to these states are 
those orthogonal to the Killing 7 spinor: they cannot transform into spin-2 particles 
since the harmonic of this latter should be f E .  The E, and y labels are now easily 
calculated. 

3.2. I .  Regular series ‘ I  + 2’ 

MI = 3k + I +  1, M 2 = l + l ,  J = / k +  11 + n, Y = - ( 2 k + l ) ,  

1 2 0 ,  k 2 -[$( 1 + I)], n 2 0  if (2k+ 1 ) > 0  

n 2 l  i f ( 2 k + 1 ) < 0  

m3/2 > 0 EO = a[ - 2 4- (3 2 + k f ( o ) 3  i- 1 6 Y) ”’1 
m3/2 < 0 

y =  Y 

Eo = +[6 + (32 + M(o)3 + 16 Y)‘ l2 ]  

where we recall that M(013 is a shorthand notation for the expression of (3.8). 

(3.20) 
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3.2.2. Exceptional '1 ' 

MI = 3 k +  l+  1, M2=1+1, J = Ik + 11, Y =  -(2k+ l ) ,  

1 2 2 ,  0 2 k 2 - [ f (  1 + l ) ]  

m 3 / 2  ' Eo=-++[Y2+$M2(2+M1)]1'* (3.21) 

m3/2 < 0 Eo = $+ [ Y2+$M2(2+ 

y =  Y. 

3.3. Vector supermultiplets (table 1) 

The (long) vector supermultiplets contain one spin-1 field, four spin-; and five spin-0. 
In this case, there is a certain degree of ambiguity due to the fact that the mass 

relations do not provide enough information for the complete assignment of each state 
in the multiplet to the various fields of d = 11 supergravity. However, as in the previous 
cases, we can still utilise the parity constraints: if the Clifford vacuum, which this time 
has spin-0, is a scalar, then we will have one more scalar with energy Eo+2 and three 
more pseudoscalars with energy Eo+ 1; at the same time, the spin-1 field is an axial 
vector. We are not able to decide whether the spinor fields come from the transverse 
or longitudinal branch of the spectrum. On the other hand, when the Clifford vacuum 
is a pseudoscalar, the situation is completely determined: we have another pseudoscalar 
with energy Eo + 2 and we can identify from which family the three scalars with energy 
Eo + 1 come from; the spin- 1 particle is a proper vector and all the spinors are transverse. 
These results are collected in table 1. 

For these multiplets, we are not able to give explicit examples from the case of the 
space since the spectrum of the spin-1 fields was not computed explicitly. M l l l  

However, we recall that the hypermultiplet spectrum can be worked out without 
reference to other multiplets once the pseudoscalar mass matrix is known, which is 
indeed our case. Hence, we can conclude that the vector multiplets encompass all the 
states which have not been fitted in the other ones. 

3.4. Hypermultiplets (table 4)  

We already pointed out that they have a characteristic signature given by (2.14), which 
enables us to search for them in a systematic way by analysing whether the relevant 
mass matrices have suitable eigenvalues. 

We can address this problem by using the spectrum of the pseudoscalars: the 
alternative choices would be to utilise either the spinor or the scalar spectrum: this 
would be less convenient, because in both cases, we have two families of representations 
that correspond to two different classes of mass matrices we should struggle with. For 
the pseudoscalar, instead, we have only the mass matrix of the " d  operator which is 
also the only first-order bosonic differential operator. The relation between the masses 
of the pseudoscalars and the eigenvalues MC,)3 of the " d  operator is the following one: 

m: = 16(M,l,3-2)(M,l,3- 1). (3.22) 
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Combining this equation with (3.la),  we find that the energy label E,, of the pseudo- 
scalars is linked to M(1)3 in the following way: 

/ 
E,, = 

\ 

Two different possibilities may arise at this point: 
(i)  the pseudoscalar is the Clifford vacuum; then we have 

E, = Eo= IYI = I  YA 

and this leads to the condition 

I YTl 

3-lY,l 

/ 

\ 
M ( I ) ~ =  

(ii)  the scalar is the Cliford vacuum; then 

E,  = E,+ 1 

Eo = I YscaiarI 
moreover 

and from these relations, we obtain 

(3.23) 

(3.24) 

(3.25) 

( 3 . 2 6 ~ )  

(3.26b) 

(3.27) 

(3.28) 

Summarising, we find that the characteristic signature of the presence of a hyper- 
multiplet is the existence of one of the following four possible critical eigenvalues: 

M(i)3= * I  Y,l M(1i3 = 3 f I YW (3.29) 

for the * d  operator in a representation with hypercharge Y,. 

3.5. The singlet hypermultipIet (table 5) 

We note at this point that every N = 2 compactification of D = 1 1 supergravity possesses 
at least one hypermultiplet which appears in the singlet representation of the S’ gauge 
group. The reason is simple to be seen. Let 7’ and 72 be the two Majorana Killing 
spinors on the manifold M ,  and let us introduce the complex Killing spinor 

7 ) = 7 ) 1 + i 7 ) 2  (3.30) 
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Table 5. The singlet hypermultiplet of N = 2 compactifications. 

Spin Energy Hypercharge Mass Field type 

O+ E 0 = 4  y = 4  96 4 
5 2 y = 3  12 AT 

0- 5 y = 2  192 T 

I 9 

definition, has hypercharge Y = 1. The conjugate spinor 

T C  = 7 7 1  -i77* (3.31) 

will have hypercharge Y = - 1. Consider then the following 3-form: 

y,,, = iic7,,,77 (3.32) 

which has hypercharge Y, = $2 and it is a singlet of S'.  One easily verifies that Y,,, 
is an eigenstate of the * d  operator with eigenvalue 

M(113 = -2 (3.33) 

which fulfils the criterion (?.29). Utilising now the results summarised in table 1 of 
[8], we can construct a transverse spinor harmonic 

(3.34) 3 -a c -  - - 147app77 y,,, + 487,,77 Y a , v  + 7,"P77% y , ,  

which has hypercharge YA, = 3 and eigenvalue 

and a Lichnerowitz operator eigenmode 

(3.36) 

which has hypercharge Y+ = 4 and eigenvalue 

M(21(0)2 = 96. (3.37) 

Relying on  table 4 and on formulae (3.1), we conclude that on every N = 2 compactifica- 
tion, we have the singlet hypermultiplet shown in table 5. 

This hypermultiplet is somehow suggestive of the scalar multiplet belonging to the 
singlet of the gauge group which is customarily introduced in the hidden sector of 
phenomenological N = 1 SUGRA models. 

The study of the hypermultiplets on M"' compactifications could be carried through 
explicitly since the " d  operator matrix was worked out in [7]. However, due to the 
order of this matrix (15 ~ 1 5  or 10x10)  one should use numerical methods on a 
computer. We have not done it. 
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