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We compute one-loop radiative corrections, including contributions from virtual gravitons and
gravitinos, to the scalar potential in N =1 supergravity with an arbitrary superpotential. We show
that, in a large class of locally supersymmetric grand unified theories, these corrections do not upset

the tree-level gauge hierarchy.
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It is now well known that supersymmetry provides a
framework for solving the gauge hierarchy problem.!
A key ingredient is the ‘‘no renormalization’ the-
orem? of global supersymmetry which tells us that a
particle which is massless at the tree level remains
massless to all orders in perturbation theory. This can
explain why the Higgs scalars of the standard elec-
troweak model are so light compared to the scale of
grand unification or gravity. In a grand unified theory,
the color-triplet partners of the electroweak Higgs
scalars can be rendered superheavy by careful choice
of the scalar potential.>* Thus global supersymmetry
possesses all the features needed for a successful reso-
lution of the hierarchy problem.

However, an acceptable pattern of spontaneous su-
persymmetry breaking is difficult to arrange in globally
supersymmetric models. Here local supersymmetry
—supergravity—has proved to be much more suitable
(for reviews, see Barbieri er al.®). All superpartners of
ordinary particles can easily get masses of order of the
gravitino mass in these theories; thus a gravitino mass
in the range of a few tens to a few hundreds of
gigaelectronvolts provides for an appealing model with
no hierarchy problem.

The introduction of gravity, however, forces us to

reexamine the ‘‘no renormalization’’ theorem, a _

cornerstone in the effort to solve the hierarchy prob-
lem. It is not clear a priori that a particle which is
massless at the tree level remains massless after gravi-
tational radiative corrections are taken into account. If
these corrections were to give a large mass (i.e., of the
order of the grand unified or Planck scale) to the elec-
troweak Higgs scalars, the whole framework of local
supersymmetry might prove unsuitable as a solution to
the hierarchy problem.

In this paper we show that, at the one-loop level,
this disaster does not occur in at least one large class*
of grand unified theories. We compute the one-loop
radiative corrections, including graviton and gravitino
loops, in an arbitrary N =1 supergravity model with
minimal kinetic terms (flat Kahler metric). We show
that the resulting scalar potential does not give a mass
larger than the gravitino mass to the electroweak Higgs
scalars in this class of models.

This question was previously investigated by Bar-
bieri and Cecotti,® who computed the quadratically
divergent, one-loop corrections to the scalar potential.
We verify their results and extend them to include the
complete one-loop correction. This is necessary in or-
der to draw any conclusions about whether or not light
particles remain light.

We begin with the Lagrangian of N =1 supergravity

with minimal coupling”:

7L =R - 8,004 — V — Te ™ ¥ P, ysy, D,

— X DX il o P, — s -y GXy — XOMgpX P+ .. (1)

where e is the determinant of the metric,
V=e"9GG,~3), p=e" 2
My =u(G,Gy— Gap), Go=0G/dd4,
G =0G/dd,;. G=—¢%;—logl W(d)|?,
F=Re(F) + iysim(F),

(2)

and we have set M = Mpna/(87)72=1. The vacu-
um expectation value of u is mj/,, the gravitino mass.
The index a ranges from 1 to N, where N is the
number of scalar multiplets. The ellipses in Eq. (1)

stand for four-fermion and other interaction terms (of

dimension greater than four) containing covariant

derivatives of boson fields.®

To compute the one-loop effective action we expand
the action around a constant background scalar field
¢, and a background metric e satisyfing the zeroth-
order Einstein equation’ R(eZ)=4V(d,). tadpole
terms are omitted.'® Thus we have

Sef(= S()+ lngDCD(X)GXp[SQ($a,?:' Db (x) )] (3)

where 52(8,,,?;’, ®(x)) consists of only the quadratic
terms in the action, and ®(x) stands for the fluctua-
tions in all fields around their background values. Im-
posing the gauge condition y¢=0 (where  is the
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gravitino) eliminates the interference term between the matter fermions and the gravitino in the Lagrangian of
Eq. (1), and we can write

Seri— So= Serr(graviton and matter scalars) + Se(gravitino) + S.(matter fermions). (4)

The last two terms were given in Ref. 6: |

y stant (see Ref. 6). Also,
S.s(gravitino)

Serr(matter fermions) = log det/2(D + M ), 6)

(5) with the fermion mass matrix M as given in Eq. (2).
The remaining term has contributions from the
spin-2 part of the metric fluctuations (including a
gauge fixing term), from the vector ghost field, and
from an interference term between the spin-0 part of
the metric fluctuations and the matter scalars. The

| first two contributions are given by'!

| detl/z(DRs+M)
=10, ,
8 4et/2(D + 2u)det2(— 05+ u?)

where Dgg is the Rarita-Schwinger operator containing
spin and space-time connections, and O,/ is the spin-
+ d’Alembertian. In deriving Eq. (5) we assumed that
the space is Einstein, i.e., 4R, =g,,R, with R con-

Serr(spin 2 and ghost) =logidet[A(1,1) +2Vdet™2[A($,3) + 211}, @)
where A (1, 1) is the operator which governs small perturbations of the Einstein equation:
A(l,1 )h“,,= —Ohu+ R phP + Ry hP—2R 0 hP7, (8)

and A (+,+) is the Maxwell operator,

The evaluation of the determinants has been dis-
cussed extensively in the literature (see, e.g.,
Christensen and Duff!® and Hawking!4) so that we
merely give pertinent formulas and state the results.
Let

A=—-VHrV, +E=-0+E; (12)

A(§,5)A,= —0A,+R,,A4". 9)

Finally, the part in S arising from the spin-0 part of
the metric fluctuations and the matter scalars, includ-
ing an interference term, is given by

Serr(matter scalars) =logdet™Y2( — O+ m?), (10)

here ¥V, is some covariant derivative operator and E
some remaining term. In our case, £ will always con-

where we have defined the matrix

ya, yed jpe tain mass matrices and terms linear in the curvature R.
mi= |V, Vi, iV, |, (11) Let us define W,,:
iV, ivd =2 W,d=I[V, V,]d=R, 5,0, (13)

and introduced V,=8V/969 and V=9 V/8d*. In where 3,4 are the SO(4) generators in the representa-
a a:

deriving Eq. (10) we have integrated over purely tion generated by the field ®. Now we can write

imaginary traces of the metric fluctuations since their log detA
contribution to kinetic energy enters with the wrong . s 5 ,
sign. This procedure was suggested by Gibbons, =fd xelzA%o+A%a; +log(A?)a,+. . .1, (14)

Hawking, and Perry.!? . .
£ y ] where A is a momentum cutoff and the a, are given by

(4m)2ag=1tr(1), (4m)?a,=tr(+R—F),
2 1 1 1 1 1 2 1 1 1 (15)
(4m)a;=tr( 355 R pupo R*P7 — 355 R R¥Y + +R*— +ER+ +E*+ 5 W, W —<+0E+ 50R).
The traces in Eq. (15) are to be taken over spin and internal indices. With the help of these formulas the deter-
minants can be readily evaluated and we get
e ' Lor=14m) T HA (N = Du?+2(N=3)V+ L+ (5-N)R]I

+1og(AD) [ — 5 (N+41)R,, o R*P7 — = (N +43)R2+ L VR

nvpao
+2Ru2+ LR u (MM + m?) —4v2—14u*

— S tr(m®) + tr(MM*MM") + 2V, V) + finite terms. (16)

The traces over space-time and spinor indices have been performed; the traces in Eq. (16) are over internal indices
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only. We have defined

Vac Va
d] an

2=
m Vbc de .

We have used the relation OR =0, which is valid for
Einstein spaces, and the relation

tr(m?) —2tr(MM")
=2(N=1)(V+u?) —4u?, (18)

which is valid for our Lagrangian, Eq. (1). There are
no quartic divergences since the number of bosonic
and fermionic degrees of freedom is the same. Gauge
invariance has been discussed in Ref. 6, where the
quadratically divergent terms were previously comput-
ed.

We are now ready to check whether the one-loop
contributions to the effective potential generate a mass
for the Higgs doublet if it was massless at the tree level
by an appropriate choice of the superpotential W.
Such mass terms can clearly come from the last three
terms in Eq. (16). We begin by looking at models in
which each term in W contains at most one Higgs
doublet, H.* If we set all other fields equal to their
vacuum expectation values, and assume that we are
still in a minimum with zero cosmological constant and
unbroken SU(2) ® U(1) at the Planck and grand uni-
fication scales, then W must be of order mjy,, the
gravitino mass (we are still using units in which
M =1). This is because, in such a minimum, the vac-
uum expectation value of Wis a measure of the gravi-
tino mass. Also, d W/9H vanishes, since it transforms
as an SU(2) doublet, while d W/3¢, ¢=H, is also a
measure of the gravitino mass and so is of order mj,.
Thus any term in .# ¢ containing W or a first deriva-
tive of W comes with at least one factor of ms,;. We
have calculated the scalar and fermion mass matrices
in terms of W and its derivatives; an inspection shows
that any term which contains W or its first derivative
with respect to any field does not give a mass larger
than mj/, to Higgs doublets in the models of Ref. 4.
This leaves terms composed of only second derivatives
of W, these, however, cancel in the expression
tr[m*—2(MM")?2]. The finite terms in .%o which
might generate Higgs doublets masses are of the forms
tr[m2"— (2MM*)"]. Here, also, the only contribu-
tions which cannot be ruled out by the previous argu-
ments cancel.l’

Models such as those of Ref. 3 also yield Higgs
doublets which are massless at the tree level. In these
models, the doublets appear quadratically in some
terms of W. In this case, 8 W/3¢ can be of order H?
rather than m/;{z, and we cannot rule out a mass of or-
der (m3/21ll)1 being generated by the loop correction.

In conclusion, we have shown that one-loop correc-
tions, including contributions from gravity, do not
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" spoil the tree-level mass hierarchy in at least one large

class of grand unified models with zero mass for the
Higgs doublets at tree level.
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