CAPILLARY SURFACES OVER OBSTACLES

Gerhard Huisken

We consider the usual capillarity problem with the additional requirement that the capillary surface lies above some obstacle. This involves a variational inequality instead of a boundary value problem. We prove existence of a solution to the variational inequality and study the boundary regularity. In particular, global $C^{1,1}$-regularity is shown for a wider class of variational inequalities with conormal boundary condition.

Let $\Omega \subset \mathbf{R}^{n}, n \geq 2$, be a bounded domain with smooth boundary $\partial \Omega$ and let

$$
\begin{equation*}
A=-D_{i}\left(a^{i}(p)\right), a^{1} \quad a^{i}(p)=p_{i} \cdot\left(1+|p|^{2}\right)^{-1 / 2} \tag{0.1}
\end{equation*}
$$

be the minimal surface operator. Then we study the variational inequality

$$
\begin{gather*}
\langle A u+H(x, u), v-u\rangle \geq 0 \quad \forall v \in K, \tag{0.2}\\
K:=\left\{v \in H^{1, \infty} \mid v \geq \psi\right\}
\end{gather*}
$$

where

$$
\begin{equation*}
\langle A u, \eta\rangle=\int_{\Omega} a^{i}(D u) \cdot D_{i} \eta d x+\int_{\partial \Omega} \beta \eta d H_{n-1} . \tag{0.3}
\end{equation*}
$$

Here H describes a gravitational field, ψ is the obstacle and β is the cosine of the contact angle at the boundary. We make the assumption that

$$
\begin{equation*}
H=H(x, t) \in C^{0,1}\left(\mathbf{R}^{n} \times \mathbf{R}\right), \quad \beta \in C^{0,1}(\partial \Omega) \tag{0.4}
\end{equation*}
$$

satisfy the conditions

$$
\begin{equation*}
\frac{\partial H}{\partial t} \geq \kappa>0 \tag{0.5}
\end{equation*}
$$

and

$$
\begin{equation*}
|\beta| \leq 1-a, \quad a>0 . \tag{0.6}
\end{equation*}
$$

Under these assumptions Gerhardt [2] showed, that (0.2) admits a solution $u \in H^{2, p}(\Omega)$, if we impose on ψ the further condition

$$
\begin{equation*}
-a^{i}(D \psi) \cdot \gamma_{i} \geq \beta \quad \text { on } \partial \Omega \tag{0.7}
\end{equation*}
$$

[^0]where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ is the exterior normal to $\partial \Omega$. The main theorem which we shall prove, is the following:

Theorem 0.1. Let $\partial \Omega$ be of class C^{2}, let $\psi \in H^{2, \infty}(\Omega)$ and assume that H and β satisfy (0.4)-(0.6). Then the variational inequality (0.2) admits a solution

$$
u \in H^{1, \infty}(\Omega) \cap H^{2,2}(\Omega) \cap H_{\mathrm{loc}}^{2, \infty}(\Omega)
$$

with continuous tangential derivatives at the boundary. In the case $n=2$ we have $u \in C^{1}(\bar{\Omega})$. Furthermore, if we assume that $\partial \Omega$ is of class $C^{3, \alpha}$, $\beta \in C^{1,1}(\partial \Omega)$ and that ψ satisfies (0.7) then we have

$$
u \in H^{2, \infty}(\Omega)
$$

Remarks. (i) The physically interesting problem, where ψ is the bottom of a cylinder containing some liquid of prescribed volume, is also included in this setting: a solution of this problem fulfills (0.2), if we replace H by $(H+\lambda)$ with some Lagrange multiplier λ. (See Gerhardt [2, 3]).
(ii) The boundary regularity results in Theorem 0.1 are valid for solutions of a much wider class of variational inequalities with conormal boundary condition, see $\S \S 3$ and 4 below.

To prove the existence of a solution to (0.2) it is necessary to establish a priori estimates for the gradient of solutions to the corresponding boundary value problem:

$$
\begin{align*}
& A u+\tilde{H}(x, u)=0 \tag{0.8}\\
& \text { in } \Omega \tag{0.9}\\
&-a^{i}(D u) \cdot \gamma_{i}=\beta \\
& \text { on } \partial \Omega
\end{align*}
$$

Using ideas of Ural'ceva [12] and Gerhardt [2] we can find a bound for $|D u|_{\Omega}$ which does not explicitly depend on $|\tilde{H}(\cdot, u)|_{\Omega}$.

At this place the author wishes to thank Claus Gerhardt for many helpful discussions.

Notation. We shall denote by $|\cdot|_{\Omega}$ the supremum norm on Ω and by $\|\cdot\|_{p}$ the norms of the L^{p}-spaces. By $c=c(\cdots)$ we shall denote various constants whereas indices will be used, if a constant recurs at another place.

1. Existence. To get a Lipschitz solution to (0.2), we consider the following related boundary value problems:

$$
\begin{array}{rlrl}
A u_{\varepsilon}+H\left(x, u_{\varepsilon}\right)+\mu \Theta_{\varepsilon}\left(u_{\varepsilon}-\psi\right) & =0 & & \text { in } \Omega \\
-a^{i}\left(D u_{\varepsilon}\right) \cdot \gamma_{i}=\beta & & \text { on } \partial \Omega \tag{1.1}
\end{array}
$$

where $\mu>0$ is a parameter tending to infinity and Θ_{ε} is a sequence of smooth monotone functions approximating the maximal monotone graph Θ :

$$
\Theta(t)=\left(\begin{array}{ll}
0, & t>0, \tag{1.2}\\
{[-1,0],} & t=0, \\
-1, & t<0,
\end{array} \quad \Theta_{\varepsilon}(t)=\left(\begin{array}{ll}
0, & t \geq 0 \\
-1, & t \leq-\varepsilon
\end{array}\right.\right.
$$

We want to use the following existence result from ([2], Theorem 2.1):

Theorem 1.1. Let $\partial \Omega$ be of class $C^{2, \alpha}$ and suppose that H and β are $C^{1, \alpha}$-functions in their arguments. Then the boundary value problem (0.8), (0.9) has a unique solution $u \in C^{2, \lambda}(\bar{\Omega})$, where $\lambda, 0<\lambda<1$, is determined by the above quantities.

Assuming for a moment these sharper differentiability condition on $\partial \Omega, \beta$ and H, we get a unique regular solution u_{ε} of (1.1) for any ε, $0<\varepsilon<1$. In $\S 2$ we shall establish a priori estimates for u_{ε} :

Theorem 1.2. There is a large constant M, so that

$$
\begin{equation*}
\left|u_{\varepsilon}\right|_{\Omega}+\left|D u_{\varepsilon}\right|_{\Omega} \leq M \tag{1.3}
\end{equation*}
$$

uniformly in ε and μ. Furthermore, for each $\varepsilon, 0<\varepsilon<1$, we can choose μ as large that

$$
\begin{equation*}
u_{\varepsilon}-\psi \geq-3 \varepsilon \tag{1.4}
\end{equation*}
$$

Thus we conclude, that in the limit case a subsequence of the u_{ε} converges uniformly to some function $u \in H^{1, \infty}(\Omega)$, which satisfies (0.2).

Since the estimate (1.3) is independent of the sharper differentiability assumptions, an approximation argument shows, that the variational problem (0.2) has a solution $u \in H^{1, \infty}(\Omega)$ assuming only the weaker conditions.
2. A priori estimates for $|u|$ and $|D u|$. To derive an upper bound for u_{ε}, we multiply (1.1) with $\max \left(u_{\varepsilon}-k, 0\right)$ for an arbitrary $k \geq k_{0}=\sup _{\Omega} \psi$. Observing that the critical term

$$
\begin{equation*}
\int_{u_{\varepsilon}>k} \Theta_{\varepsilon}\left(u_{\varepsilon}-\psi\right)\left(u_{\varepsilon}-k\right) d x \tag{2.1}
\end{equation*}
$$

vanishes because of $k \geq \sup \psi$, we get an uniform upper bound in view of the strict monotonicity of H.

For proving the estimate (1.4), we multiply (1.1) with

$$
\begin{equation*}
w=\max \left(\psi-u_{\varepsilon}-\delta, 0\right) \tag{2.2}
\end{equation*}
$$

and denote by $A(\delta)$ the set $\left\{x \in \Omega \mid u_{\varepsilon}<\psi-\delta\right\}$. We get

$$
\begin{align*}
& \int_{A(\delta)} a^{i}\left(D u_{\varepsilon}\right) \cdot\left(D_{i} \psi-D_{i} u_{\varepsilon}\right) d x+\int_{\partial \Omega} \beta w d H_{n-1} \\
&+\int_{A(\delta)} H\left(x, u_{\varepsilon}\right)\left(\psi-u_{\varepsilon}-\delta\right) d x \tag{2.3}\\
&+\mu \cdot \int_{A(\delta)} \Theta_{\varepsilon}\left(u_{\varepsilon}-\psi\right)\left(\psi-u_{\varepsilon}-\delta\right) d x=0
\end{align*}
$$

On $A(\delta)$ we have $\Theta_{\varepsilon}\left(u_{\varepsilon}-\psi\right)=-1$ and $H\left(x, u_{\varepsilon}\right) \leq H(x, \psi)$ because of $\delta \geq \varepsilon$ and in view of the monotonicity of H. To estimate the boundary integral, we use (0.6) and the inequality
(2.4) $\int_{\partial \Omega} g d H_{n-1} \leq \int_{\Omega}|D g| d x+c(\Omega, n) \cdot \int_{\Omega}|g| d x, \quad g \in H^{1,1}$
which is proven in ([4], Lemma 1). We get

$$
\begin{align*}
a \cdot \int_{A(\delta)} \mid & D u_{\varepsilon} \mid d x+\mu \cdot \int_{A(\delta)} \psi-u_{\varepsilon}-\delta d x \tag{2.5}\\
\leq & \left(1+2|D \psi|_{\Omega}\right)|A(\delta)|+|H(\cdot, \psi)|_{\Omega} \cdot \int_{A(\delta)} \psi-u_{\varepsilon}-\delta d x \\
& +c \cdot \int_{A(\delta)} \psi-u_{\varepsilon}-\delta d x
\end{align*}
$$

or, better

$$
\begin{align*}
\int_{\Omega}|D w| d x+\mu \cdot \int_{\Omega} w d x \leq & c\left(a,|D \psi|_{\Omega}\right)|A(\delta)| \tag{2.6}\\
& +\left(c_{1}+|H(\cdot, \psi)|_{\Omega}\right) \cdot \int_{\Omega} w d x
\end{align*}
$$

Choosing now

$$
\begin{equation*}
\mu \geq \mu_{1}+|H(\cdot, \psi)|_{\Omega}+c_{1} \tag{2.7}
\end{equation*}
$$

we get by the Sobolev imbedding theorem

$$
\begin{equation*}
\|w\|_{n /(n-1)}+\mu_{1} \cdot \int_{\Omega} w d x \leq c|A(\delta)| \quad \forall \delta \geq \varepsilon \tag{2.8}
\end{equation*}
$$

From this we derive the inequalities

$$
\left(\delta_{1}-\delta_{2}\right)\left|A\left(\delta_{1}\right)\right| \leq c\left|A\left(\delta_{2}\right)\right|^{1+1 / n} \quad \forall \delta_{1}>\delta_{2} \geq \varepsilon
$$

From a lemma due to Stampacchia ([11], Lemma 4.1) we now deduce from the first inequality

$$
\begin{equation*}
u_{\varepsilon}-\psi \geq-2 \varepsilon-c\left(a,|D \psi|_{\Omega}\right)|A(2 \varepsilon)|^{1 / n} \tag{2.10}
\end{equation*}
$$

and then from the second

$$
\begin{equation*}
|A(2 \varepsilon)| \leq \mu_{1}^{-1} \cdot \varepsilon^{-1} \cdot c|A(\varepsilon)| . \tag{2.11}
\end{equation*}
$$

Thus, inequality (1.4) follows by choosing μ_{1} large enough, where μ_{1} depends on $\varepsilon, a,|D \psi|_{\Omega}, \Omega$.

The gradient bound will be established by a suitable modification of a proof in [2].

In view of the smoothness of $\partial \Omega$, we can extend β and γ into the whole domain Ω, so that $\beta \in C^{0,1}(\bar{\Omega})$ still satisfies (0.6) and so that the vectorfield γ is uniformly Lipschitz continuous in Ω and absolutely bounded by 1 . We denote by S the graph of u_{ε}

$$
\begin{equation*}
S=\left\{X=\left(x, x^{n+1}\right) \mid x^{n+1}=u_{\varepsilon}(x)\right\} \tag{2.12}
\end{equation*}
$$

and by $\delta=\left(\delta_{1}, \ldots, \delta_{n+1}\right)$ the differential operators on S, i.e.

$$
\begin{equation*}
\delta_{i} g=D_{i} g-\nu_{i} \cdot \sum_{k=1}^{n+1} \nu^{k} \cdot D_{k} g, \quad g \in C^{1}\left(\bar{\Omega}^{n+1}\right) \tag{2.13}
\end{equation*}
$$

where $\nu=\left(\nu_{1}, \ldots, \nu_{n+1}\right)$ is the exterior unit normal to S

$$
\begin{equation*}
\nu=\left(1+\left|D u_{\varepsilon}\right|^{2}\right)^{-1 / 2} \cdot\left(-D_{1} u_{\varepsilon}, \ldots,-D_{n} u_{\varepsilon}, 1\right) . \tag{2.14}
\end{equation*}
$$

As in [2] and [12] we want to prove that the function

$$
\begin{equation*}
v=\left(1+\left|D u_{\varepsilon}\right|^{2}\right)^{1 / 2}+\beta \cdot D_{k} u_{\varepsilon} \cdot \gamma^{k} \equiv W+\beta \cdot D_{k} u_{\varepsilon} \cdot \gamma^{k} \tag{2.15}
\end{equation*}
$$

is uniformly bounded in Ω. Notice, that

$$
\begin{equation*}
\left|D u_{\varepsilon}\right| \leq\left(1+\left|D u_{\varepsilon}\right|^{2}\right)^{1 / 2}=W \leq \frac{1}{a} \cdot v . \tag{2.16}
\end{equation*}
$$

During the proof we shall write u instead of u_{ε} and we set

$$
\begin{equation*}
\tilde{H}(x, u):=H(x, u)+\mu \cdot \Theta_{\varepsilon}(u-\psi) . \tag{2.17}
\end{equation*}
$$

We need the following lemmata:
Lemma 2.1. For any function $g \in C^{1}(\bar{\Omega})$ we have the inequality

$$
\begin{align*}
& \left(\int_{S}|g|^{n /(n-1)} d H_{n}\right)^{(n-1) / n} \tag{2.18}\\
& \quad \leq c_{2}(n) \cdot\left(\int_{S}|\delta g| d H_{n}+\int_{S}|\tilde{H}||g| d H_{n}+\int_{\partial \Omega}|g| \cdot W d H_{n-1}\right) .
\end{align*}
$$

For functions vanishing on the boundary, this inequality was first established in [9], whereas a proof of the general case can be found in [2].

Lemma 2.2. On the boundary $\partial \Omega$ we have the estimate

$$
\begin{equation*}
\left|\gamma^{i} \cdot a^{i j}\left(D_{j} v-D_{j}\left(\beta \gamma^{k}\right) \cdot D_{k} u\right)\right| \leq c_{3} \tag{2.19}
\end{equation*}
$$

where $c_{3}=c_{3}\left(\partial \Omega,|D \beta|_{\Omega}\right)$ and $a^{i j}=\partial a^{i} / \partial p_{j}$.
Lemma 2.3. For any positive function $\eta \in H^{1, \infty}(\Omega)$ we have the estimate

$$
\begin{equation*}
\int_{\partial \Omega} v \eta d H_{n-1} \leq \int_{S}|\delta \eta| d H_{n}+\int_{S}(|\tilde{H}|+|\delta \gamma|) \eta d H_{n} \tag{2.20}
\end{equation*}
$$

For a poof of these two lemmata see ([2], Lemma 1.2 and Lemma 1.4).
Furthermore, from the proof of Lemma 1.3 in [2] we get the following inequalities:

Lemma 2.4. In the whole domain Ω we have

$$
\begin{equation*}
a^{i j} D_{j} D_{k} u \cdot a^{k 1} D_{i} D_{1} u \geq \frac{1}{n}|\tilde{H}|^{2} \tag{2.21}
\end{equation*}
$$

$$
\begin{align*}
& \left|a^{i j} D_{j} D_{k} u \cdot D_{i}\left(\beta \gamma^{k}\right)\right| \tag{2.22}\\
& \quad \leq \eta \cdot a^{i j} D_{j} D_{k} u \cdot a^{k 1} D_{i} D_{1} u+c_{\eta} \cdot\left(1+\frac{|\delta v|}{W}\right)
\end{align*}
$$

where $0<\eta<1$ is arbitrary and $c_{\eta}=c_{\eta}(a, n,|D(\beta \gamma)|)$.
Now we are ready to bound the function v, or equivalently

$$
\begin{equation*}
w=\log v \tag{2.23}
\end{equation*}
$$

As in [2], we start with the integral identity

$$
\begin{equation*}
\int_{\Omega} D_{k} a^{i} D_{i} \chi d x=-\int_{\Omega} D_{k} D_{i} a^{i} \chi d x+\int_{\partial \Omega} \gamma^{i} \cdot D_{k} a^{i} \chi d H_{n-1} \tag{2.24}
\end{equation*}
$$

Choosing now $\chi=\left(a^{k}+\beta \gamma^{k}\right) \eta, 0 \leq \eta \in H^{1, \infty}(\Omega)$ with supp $\eta \subset\{w>$ $h\}$, where h is large, we obtain in view of (1.1)

$$
\begin{align*}
\int_{\Omega} a^{i j}\left[D_{j} v\right. & \left.-D_{j}\left(\beta \gamma^{k}\right) \cdot D_{k} u\right] D_{i} \eta+a^{i j} D_{k} D_{j} u \cdot a^{k 1} D_{1} D_{i} u \cdot \eta d x \tag{2.25}\\
& +\int_{\Omega} D_{k} \tilde{H} \cdot\left(a^{k}+\beta \gamma^{k}\right) \eta d x \\
= & -\int_{\Omega} a^{i j} D_{k} D_{j} u \cdot D_{i}\left(\beta \gamma^{k}\right) \eta d x \\
& +\int_{\partial \Omega} \gamma^{i} \cdot a^{i j}\left[D_{j} v-D_{j}\left(\beta \gamma^{k}\right) \cdot D_{k} u\right] \eta d H_{n-1}
\end{align*}
$$

Remark that

$$
\begin{equation*}
D_{j} v=\left(a^{k}+\beta \gamma^{k}\right) \cdot D_{k} D_{j} u+D_{j}\left(\beta \gamma^{k}\right) \cdot D_{k} u \tag{2.26}
\end{equation*}
$$

In the following we shall use the relations

$$
\begin{gather*}
\left|a^{i j} D_{i} g \cdot D_{j} \chi\right| \leq W^{-1} \cdot|\delta g||D \chi| \quad \forall \chi \in C^{1}(\bar{\Omega}) \tag{2.28}\\
a \cdot W \leq v \leq 2 \cdot W \tag{2.29}\\
a^{i j} p_{i} q_{j} \leq \frac{\varepsilon}{2} \cdot a^{i j} p_{i} p_{j}+\frac{1}{2 \varepsilon} \cdot a^{i j} q_{i} q_{j} \quad \forall \varepsilon>0
\end{gather*}
$$

Now observe that

$$
\begin{equation*}
D_{k} \tilde{H}=\frac{\partial H}{\partial x_{k}}+\frac{\partial H}{\partial t} \cdot D_{k} u+\mu \Theta_{\varepsilon}^{\prime} \cdot D_{k}(u-\psi) \tag{2.31}
\end{equation*}
$$

Then in view of the assumptions (0.5) and (0.6) and in view of the Lemmata 2.2 and 2.4 we can deduce from (2.25)

$$
\begin{array}{r}
\int_{\Omega} a^{i j}\left[D_{j} v-D_{j}\left(\beta \gamma^{k}\right) \cdot D_{k} u\right] D_{i} \eta d x+\int_{\Omega} \frac{1}{2 n}|\tilde{H}|^{2} \eta d x \\
\leq c_{3} \cdot \int_{\partial \Omega} \eta d H_{n-1}+c_{4} \cdot \int_{\Omega}\left(\frac{|\delta v|}{W}+1\right) \eta d x \tag{2.32}
\end{array}
$$

where $c_{4}=c_{4}\left(|\delta(\beta \gamma)|_{\Omega},|\partial / \partial x H(\cdot, u)|_{\Omega}\right)$. Here we used that supp $\eta \subset$ $\left\{w>h_{0}\right\}, h_{0}=h_{0}\left(a,|D \psi|_{\Omega}\right)$ large. We choose

$$
\begin{equation*}
\eta=v \cdot \max (w-k, 0) \equiv v \cdot z \tag{2.33}
\end{equation*}
$$

and set $A(k)=\{X \in S \mid w(x)>k\},|A(k)|=H_{n}(A(k))$. Taking the relations (2.27)-(2.30) into account, we obtain in view of $d H_{n}=W d x$ and in view of Lemma 2.3

$$
\begin{equation*}
\int_{A(k)}|\delta z|^{2} d H_{n}+\int_{A(k)} \frac{1}{n} \cdot|\tilde{H}|^{2} z d H_{n} \leq c \cdot|A(k)|+c \cdot \int_{A(k)} z d H_{n} \tag{2.34}
\end{equation*}
$$

where $c=c\left(a, n,|D \gamma|_{\Omega},|D \beta|_{\Omega},|(\partial / \partial x) H(\cdot, u)|_{\Omega}\right)$. To proceed further, we need the following Lemma:

Lemma 2.5. For any $\varepsilon>0$ the integral $\int_{A(k)} w-k d x$ can be estimated by

$$
\begin{equation*}
\varepsilon \cdot \int_{A(k)}|\delta z|^{2} d H_{n}+\varepsilon \cdot \int_{A(k)}|\tilde{H}|^{2} z d H_{n}+c \cdot \varepsilon^{-1}|A(k)| \tag{2.35}
\end{equation*}
$$

Proof of Lemma 2.5. We shall use the identity

$$
\begin{equation*}
\int_{\Omega} a^{i} D_{i} \eta d x+\int_{\Omega} \tilde{H} \eta d x+\int_{\partial \Omega} \beta \eta d H_{n-1}=0 \tag{2.36}
\end{equation*}
$$

with $\eta=u \cdot \max (w-k, 0)=u \cdot z$. The boundary integral can be estimates with the help of (2.4) and we obtain in view of (0.6)

$$
\begin{align*}
& a \cdot \int_{\{w>k\}} W \cdot z d x \leq \int_{\{w>k\}}|\tilde{H}||u| z d x+c \cdot \int_{\{w>k\}}|u||D w| d x \tag{2.37}\\
& \quad+c \cdot \int_{\{w>k\}}|u|_{z d x} \\
& \leq \\
& \quad \varepsilon \cdot \int_{\{w>k\}}|\tilde{H}|^{2} z d x+c \cdot \varepsilon^{-1} \cdot \int_{\{w>k\}} z d x \\
& \quad+\varepsilon \cdot \int_{\{w>k\}}|D w|^{2} W^{-1} d x+c \cdot \varepsilon^{-1} \cdot \int_{\{w>k\}} W d x \\
& \leq \\
& \quad \varepsilon \cdot \int_{\{w>k\}} W|\delta w|^{2} d x+\varepsilon \cdot \int_{\{w>k\}}|\tilde{H}|^{2} z d x \\
& \quad+c \cdot \varepsilon^{-1} \cdot \int_{\{w>k\}} W d x
\end{align*}
$$

Here we used that $z \leq W$ for $k \geq k_{0}$. The conclusion of the Lemma now immediately follows.

By Lemma 2.5 we deduce from (2.34) for $k \geq k_{0}$

$$
\begin{equation*}
\int_{A(k)}|\delta w|^{2} d H_{n}+\int_{A(k)} \frac{1}{n}|\tilde{H}|^{2} z d H_{n} \leq c \cdot|A(k)| \tag{2.38}
\end{equation*}
$$

Furthermore, from the Sobolev imbedding, Lemma 2.1 and from Lemma 2.3 we conclude

$$
\begin{align*}
& \left(\int_{S}|z|^{n /(n-1)} d H_{n}\right)^{(n-1) / n} \tag{2.39}\\
& \quad \leq c(n) \cdot\left(\int_{S}|\delta z| d H_{n}+\int_{S}|\tilde{H}| z d H_{n}+\int_{\Omega} W \cdot z d H_{n}\right) \\
& \quad \leq c \cdot\left(\left(\int_{S}|\delta z|^{2} d H_{n}\right)^{1 / 2}|A(k)|^{1 / 2}\right. \\
& \left.\quad+\varepsilon \cdot \int_{S}|\tilde{H}|^{2} \cdot z d H_{n}+c_{\varepsilon} \cdot \int_{S} z d H_{n}\right)
\end{align*}
$$

To estimate the first term on the righthand side we note that in view of (2.38) we have

$$
\begin{equation*}
\left(\int_{S}|\delta z|^{2} d H_{n}\right)^{1 / 2} \leq c|A(k)|^{1 / 2} \tag{2.40}
\end{equation*}
$$

Hence, we deduce from (2.38) and (2.39)

$$
\begin{gather*}
\left(\int_{S}|z|^{n /(n-1)} d H_{n}\right)^{(n-1) / n}+\int_{S}|\delta z|^{2} d H_{n}+\int_{S} \frac{1}{n}|\tilde{H}|^{2} z d H_{n} \tag{2.41}\\
\leq c|A(k)|+\varepsilon \cdot \int_{A(k)}|\tilde{H}|^{2} z d H_{n}+c_{\varepsilon} \cdot \int_{A(k)} z d H_{n} .
\end{gather*}
$$

Applying again Lemma 2.5 we conclude finally

$$
\begin{equation*}
\left(\int_{S}|z|^{n /(n-1)} d H_{n}\right)^{(n-1) / n} \leq c \cdot|A(k)| \quad \forall k \geq k_{0} \tag{2.42}
\end{equation*}
$$

The Hölder inequality yields

$$
\begin{equation*}
\int_{S} z d H_{n} \leq c|A(k)|^{1+1 / n} \quad \forall k \geq k_{0} \tag{2.43}
\end{equation*}
$$

and we are now in the same situation as in (2.8). It follows that

$$
\begin{equation*}
w=\log v \leq k_{0}+c \cdot\left|A\left(k_{0}\right)\right|^{1 / n} \tag{2.44}
\end{equation*}
$$

where $k_{0}=k_{0}\left(a,|D \psi|_{\Omega}, n\right)$ and $c=c\left(|(\partial / \partial x) H(\cdot, u)|_{\Omega}, a, n,|\delta \gamma|_{\Omega}\right.$, $\left.|D \beta|_{\Omega}, \Omega\right)$.

To complete the proof of the gradient bound, we have to establish an estimate for $|S|=\int_{\Omega} W d x$ independent of μ and ε. To accomplish this, we use (2.36) with $\eta=u-\psi$. We obtain

$$
\begin{align*}
& \int_{\Omega} a^{i}(D u) \cdot D_{\imath}(u-\psi) d x+\int_{\Omega} H(x, u)(u-\psi) d x \tag{2.45}\\
& \quad+\mu \cdot \int_{\Omega} \Theta_{\varepsilon}(u-\psi)(u-\psi) d x+\int_{\partial \Omega} \beta \cdot(u-\psi) d H_{n-1}=0
\end{align*}
$$

The critical term

$$
\begin{equation*}
\mu \cdot \int_{\Omega} \Theta_{\varepsilon}(u-\psi)(u-\psi) d x \tag{2.46}
\end{equation*}
$$

is positive in view of the monotonicity of Θ_{ε}. Using again (0.5), (0.6) and (2.4) we conclude
(2.47) $\quad a \cdot \int_{\Omega} W d x \leq c\left(|\Omega|,|u|_{\Omega},|\psi|_{\Omega},|H(\cdot, \psi)|_{\Omega},|D \psi|_{\Omega}, a, n\right)$.

This completes the proof of Theorem 1.2.

Remark. (i) As a consequence of (2.44) and (2.47) there is a gradient bound for solutions u of $(0.8),(0.9)$, which does not depend on $|\tilde{H}(\cdot, u)|_{\Omega}$, but only on $|\tilde{H}(\cdot, 0)|_{\Omega}$.
(ii) After having finished the present article the author became acquainted with a paper of Lieberman [8] who obtained a gradient bound for solutions to conormal derivative problems.
3. $\quad C^{1}$-Regularity. It is well known, that a solution of u of (0.2) satisfies

$$
\begin{equation*}
A u \in L^{\infty}(\Omega) \tag{3.1}
\end{equation*}
$$

and therefore is in $H_{\mathrm{loc}}^{2, p}(\Omega)$ for any finite p.
To prove regularity results up to the boundary, we transform a neighbourhood $\Omega_{\delta}=\Omega \cap B_{\delta}\left(x_{0}\right)$ of a point $x_{0} \in \partial \Omega$ with a C^{2}-diffeomorphism y into

$$
\begin{equation*}
B_{1}^{+}=\left\{x \in \mathbf{R}^{n}| | x \mid<1, x^{n}>0\right\} \tag{3.2}
\end{equation*}
$$

such that

$$
\begin{equation*}
\Gamma=y\left(\partial \Omega \cap B_{\delta}\left(x_{0}\right)\right)=\left\{x \in \mathbf{R}^{n}| | x \mid<1, x^{n}=0\right\} \tag{3.3}
\end{equation*}
$$

The transformed u satisfies in B_{1}^{+}a local variational inequality of the same type as (0.2), where the transformed a^{i} depend now on x too. Furthermore, the relations

$$
\begin{align*}
& a^{\rho}\left(\hat{p}, p^{n}\right)=a^{\rho}\left(\hat{p},-p^{n}\right), \quad 1 \leq \rho \leq n-1, \tag{3.4}\\
& a^{n}\left(\hat{p}, p^{n}\right)=-a^{n}\left(\hat{p},-p^{n}\right)
\end{align*}
$$

are not lost by the transformation.
In order to prove the continuity of the tangential derivatives of u, we shall use an approach due to Frehse [1]. We introduce the notations

$$
\begin{equation*}
[\xi]^{p}=|\xi|^{p-1} \cdot \xi, \quad \forall \xi \in \mathbf{R} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{i}^{ \pm h} g(x)= \pm h^{-1} \cdot\left\{g\left(x \pm h e_{t}\right)-g(x)\right\} \tag{3.6}
\end{equation*}
$$

where e_{i} denotes the i th unit vector.
By the same arguments as in ([1], Lemma 2.1) we have
Lemma 3.1. Let u be a solution to (0.2) and let $0 \leq \Phi \in H_{0}^{1, \infty}\left(B_{1}(0)\right)$, $\operatorname{supp} \Phi \subset B_{1}$. Then for each $\left.h \in\right] 0$, $\operatorname{dist}\left(\operatorname{supp} \Phi, \partial B_{1}\right)[$ and each $p \geq 1$, $c \in \mathbf{R}$ there is an $\varepsilon>0$ such that the functions

$$
\begin{equation*}
u_{\varepsilon}:=u+\varepsilon \cdot D_{j}^{-h}\left(\Phi \cdot D_{j}^{h}(u-\psi)\right), \quad j=1, \ldots, n-1 \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{\varepsilon}^{p}:=u+\varepsilon \cdot D_{j}^{-h}\left[\Phi \cdot D_{j}^{h}(u-\psi)-c\right]^{p}, \quad j=1, \ldots, n-1 \tag{3.8}
\end{equation*}
$$

lie in K.
Now we can show the following Lemma
Lemma 3.2. The solution u of the local variational inequality obtained from (0.2) lies in $H^{2,2}\left(B_{1 / 2}^{+}\right)$and satisfies

$$
\begin{equation*}
\int_{B_{1 / 2}^{+}}\left|D^{2} u\right|^{2} \cdot|x|^{2-n} d x<\infty \tag{3.9}
\end{equation*}
$$

Proof of Lemma 3.2. (i) We insert the function u_{ε} of Lemma 3.1 into the variational inequality and obtain

$$
\begin{align*}
-\int_{B_{1}^{+}} & D_{j}^{h}\left(a^{i}(x, D u)\right) D_{i}\left(\Phi D_{j}^{h}(u-\psi)\right) d x \tag{3.10}\\
& -\int_{\Gamma} D_{j}^{h} \beta \cdot \Phi D_{j}^{h}(u-\psi) d \hat{x} \\
& +\int_{B_{1}^{+}} H(x, u) \cdot D_{j}^{-h}\left(\Phi D_{j}^{h}(u-\psi)\right) d x \geq 0
\end{align*}
$$

in view of $1 \leq j \leq n-1$ and since $\Phi=\tau^{2}$ is a cut-off function in $C_{0}^{\infty}\left(B_{1}\right)$. The boundary integral can be estimated by

$$
\begin{equation*}
|D \beta|\left(\int_{B_{1}^{+}}\left|D\left(\tau^{2} D_{j}^{h}(u-\psi)\right)\right| d x+c \cdot \int_{B_{1}^{+}} \tau^{2}\left|D_{j}^{h}(u-\psi)\right| d x\right) \tag{3.11}
\end{equation*}
$$

Since $u \in H^{1, \infty}(\Omega)$, the $a^{i j}(x, D u(x))$ are uniformly elliptic and we obtain by standard arguments that $D_{j}^{h} D u$ is uniformly bounded in $L^{2}\left(B_{1 / 2}^{+}\right)$as $h \rightarrow 0$ and thus $D_{j} D u \in L^{2}\left(B_{1 / 2}^{+}\right)$. Now we deduce from this and from (3.1), that $D_{n} D u \in L^{2}\left(B_{1 / 2}^{+}\right)$.
(ii) Let $n \geq 3$. By Lemma 3.1 and by (i) we have the inequality

$$
\begin{equation*}
\left\langle A u+H(x, u), D_{j}\left(\Phi \cdot D_{j}(u-\psi)\right)\right\rangle \geq 0, \quad 1 \leq j \leq n-1 \tag{3.12}
\end{equation*}
$$

In order to find a suitable test function Φ, we define in $B_{1}(0)$

$$
b^{i j}\left(\hat{x}, x^{n}\right)=\left(\begin{array}{ll}
a^{i j}(x ; D \tilde{u}(x)), & x^{n}>0 \tag{3.13}\\
a^{i j}\left(\hat{x},-x^{n} ; D \tilde{u}(x)\right), & x^{n}<0
\end{array}\right.
$$

where

$$
\tilde{u}\left(\hat{x}, x^{n}\right)=\left(\begin{array}{ll}
u(x), & x^{n}>0 \tag{3.14}\\
u\left(\hat{x},-x^{n}\right), & x^{n}<0
\end{array}\right.
$$

The function $\tilde{\psi}$ is defined similarly.
Now let $\delta_{h} \in L^{\infty}\left(B_{1}(0)\right)$ satisfy $\delta_{h} \geq 0, \operatorname{supp} \delta_{h} \subset B_{1}(0)$ and

$$
\begin{equation*}
\int_{B_{1}} \delta_{h} d x=1, \quad \delta_{h}\left(\hat{x}, x^{n}\right)=\delta_{h}\left(\hat{x},-x^{n}\right) \tag{3.15}
\end{equation*}
$$

Since the $b^{i j}$ are elliptic in B_{1}, there is a function $G_{h} \in H_{0}^{1,2}\left(B_{1}\right)$ so that

$$
\begin{equation*}
\int_{B_{1}} b^{i k} D_{k} v \cdot D_{\imath} G_{h} d x=\int_{B_{1}} \delta_{h} v d x \quad \forall v \in H_{0}^{1,2}\left(B_{1}\right) \tag{3.16}
\end{equation*}
$$

It is known (see [1, 6]), that G_{h} is uniformly bounded in $H_{0}^{1, q}\left(B_{1}\right)$, $q<n /(n-1)$ and that $G_{h} \geq 0$. Furthermore, $G_{h} \rightarrow G$ in $H^{1, q}$, where G has the property

$$
\begin{equation*}
m|x|^{2-n} \leq G(x) \leq m^{-1}|x|^{2-n} \tag{3.17}
\end{equation*}
$$

with some constant $m>0$. The functions G_{h} satisfy

$$
\begin{equation*}
G_{h}\left(\hat{x}, x^{n}\right)=G_{h}\left(\hat{x},-x^{n}\right) \tag{3.18}
\end{equation*}
$$

To see this, we observe that $\hat{G}_{h}\left(\hat{x}, x^{n}\right)=G_{h}\left(\hat{x},-x^{n}\right)$ is also a solution of (3.16) in view of the symmetry properties of δ_{h} and $b^{i j}$. Then, (3.18) follows from the uniqueness of G_{h}.

Now we can use (3.12) with $\Phi=\tau^{2} G_{h}$, where $\tau \in C_{0}^{\infty}\left(B_{1}\right)$ satisfies $\tau \geq 0, \tau \equiv 1$ in $B_{1 / 2}$ and $\tau\left(\hat{x}, x^{n}\right)=\tau\left(\hat{x},-x^{n}\right)$. We get

$$
\begin{align*}
\int_{B_{1}^{+}} a^{i k} & D_{k} D_{j} u \cdot D_{\imath} D_{j} u \cdot \tau^{2} G_{h} d x \tag{3.19}\\
\leq & |D \beta| \int_{\Gamma}\left|D_{j}(u-\psi)\right| G_{h} \tau^{2} d \hat{x} \\
& +\int_{B_{1}^{+}} a^{\imath k} D_{k} D_{j} u \cdot D_{j}(\psi-u) \cdot D_{i} G_{h} \tau^{2} d x \\
& +\int_{B_{1}^{+}} a^{i k} D_{k} D_{j} u \cdot D_{i} D_{J} \psi \cdot \tau^{2} G_{h} d x \\
& -\int_{B_{1}^{+}} a^{i k} D_{k} D_{j} u D_{j}(u-\psi) G_{h} \tau \cdot 2 D_{\imath} \tau d x \\
& +\int_{B_{1}^{+}}\left(|H|+\left|\frac{\partial a^{i}}{\partial x_{k}}\right|\right)\left|D\left(G_{h} \tau^{2} \cdot D_{j}(u-\psi)\right)\right| d x
\end{align*}
$$

The critical term

$$
\begin{align*}
\int_{B_{1}^{+}} & a^{i k} D_{k} D_{j} u \cdot D_{j}(\psi-u) \cdot D_{l} G_{h} \tau^{2} d x \tag{3.20}\\
& =\frac{1}{2} \cdot \int_{B_{1}^{+}} a^{\imath k} D_{k}\left(\tau^{2}\left(D_{j}(u-\psi)\right)^{2}\right) \cdot D_{i} G_{h} d x+B
\end{align*}
$$

where B stands for lower order terms, can be rewritten as

$$
\begin{equation*}
\frac{1}{4} \cdot \int_{B_{1}} b^{i k} D_{k}\left(\tau^{2}\left(D_{j}(\tilde{u}-\tilde{\psi})\right)^{2}\right) \cdot D_{l} G_{h} d x+B \tag{3.21}
\end{equation*}
$$

This follows from the symmetry properties of $\tilde{u}, \tilde{\psi}, \tau, G_{h}$ and $b^{i j}$. But (3.21) equals

$$
\begin{equation*}
\frac{1}{4} \cdot \int_{B_{1}} \delta_{h} \cdot \tau^{2}\left(D_{j}(\tilde{u}-\tilde{\psi})\right)^{2} d x+B=B \tag{3.22}
\end{equation*}
$$

since $\tau^{2} \cdot\left(D_{j}(\tilde{u}-\tilde{\psi})\right)^{2}$ lies in $H_{0}^{1,2}\left(B_{1}\right), j=1, \ldots, n-1$. Thus we obtain from (3.19) -using ellipticity-that

$$
\begin{equation*}
\int_{B_{1}^{+}}\left|D_{k} D_{j} u\right|^{2} G_{h} \tau^{2} d x \leq \text { const. } \tag{3.23}
\end{equation*}
$$

for $h \rightarrow 0, j=1, \ldots, n-1 ; k=1, \ldots, n$.
For $j=1, \ldots, n-1$ the conclusion of the lemma now follows by a lower semicontinuity argument and by (3.17). For $j=n$ the conclusion follows from (3.1) and from the boundedness of

$$
\begin{equation*}
\int_{B_{1 / 2}^{+}}\left|D_{k} D_{j} u\right|^{2} G d x, \quad k=1, \ldots, n ; j=1, \ldots, n-1 \tag{3.24}
\end{equation*}
$$

Now we are ready to establish the main inequality, from which we can start an iteration process. Therefore we insert the function u_{ε}^{p} (see Lemma 3.1) into the variational inequality, where $\Phi=\tau^{2}$ is a cut-off function. Passing to the limit $h \rightarrow 0$ we obtain

$$
\begin{align*}
& -\int_{B_{1}^{+}} D_{j} a^{i}(x, D u) \cdot D_{l}[z-\hat{c}]^{p} \tau^{2} d x \\
& -\int_{\Gamma} D_{j} \beta \cdot \tau^{2}[z-\hat{c}]^{p} d \hat{x}+\int_{B_{1}^{+}} H(x, u)\left(D_{j}\left(\tau^{2}[z-\hat{c}]^{p}\right)\right) d x \tag{3.25}\\
& -\int_{B_{1}^{+}} D_{j} a^{i}(x, D u) \cdot D_{i} \tau \cdot 2 \tau[z-\hat{c}]^{p} d x \geq 0
\end{align*}
$$

where we set $z=D_{J} u-D_{J} \psi$.

Due to (2.4) we can estimate the boundary integral by

$$
\begin{align*}
& |D \beta| \cdot\left(\int_{B_{1}^{+}}|D \tau| \cdot 2 \tau[z-\hat{c}]^{p}\right) d x \tag{3.26}\\
& \quad+\int_{B_{1}^{+}} \tau^{2} \cdot p|z-\hat{c}|^{p-1}|D z| d x+c \cdot \int_{B_{1}^{+}} \tau^{2}|z-\hat{c}|^{p} d x
\end{align*}
$$

Using ellipticity and Hölder's inequality we deduce from (3.25) after some calculation the main inequality

$$
\begin{align*}
& \int_{B_{1}^{+}}\left|D\left(\tau[z-\hat{c}]^{(p+1) / 2}\right)\right|^{2} d x \tag{3.27}\\
& \quad \leq p^{2} \cdot c \cdot \int_{B_{1}^{+}}|z-\hat{c}|^{p-1}\left(|D \tau|^{2}+\chi_{\tau}\right) d x
\end{align*}
$$

where χ_{τ} is the characteristic function of supp τ and $c=c\left(|z|_{\Omega},|H(\cdot, u)|_{\Omega}\right.$, $\left|\partial a^{i} / \partial x_{k}\right|,|D \beta|,|D \gamma| \mid$. Here, we used that (3.27) will be only applied with $|\hat{c}| \leq|z|_{\Omega}$.

From inequality (3.27) we can start an iteration as in ([1], Lemma 1.3 and 1.4). We obtain for $R \leq \frac{1}{2}$

$$
\begin{align*}
& \operatorname{osc}\left\{z(x) \mid x \in B_{R}^{+}(0)\right\} \leq c \cdot\left(R^{2-n} \int_{* *}|D z|^{2} d x\right)^{1 / n}+c \cdot R^{\alpha} \tag{3.28}\\
& \text { for } n \geq 3 \text { and } \alpha=2 \cdot(n-2) \cdot n^{2},
\end{align*}
$$

and for $n=2$

$$
\begin{align*}
\operatorname{osc}\{z(x) \mid x & \left.\in B_{R}^{+}(0)\right\} \leq c \cdot\left(\int_{* *}|D z|^{2} d x\right)^{1 / 2-2 /(t+4)} \tag{3.29}\\
& +c \cdot R^{2(t+4)} \cdot\left(\int_{*}|D z|^{2} d x\right)^{1 / 2-2 /(t+4)} \quad \forall t>0
\end{align*}
$$

We used the notation $(* *)=B_{2 R}^{+}-B_{R}^{+}$and $(*)=B_{2 R}^{+}$.
Since $R^{2-n} \leq c \cdot|x|^{2-n}$ on (**), we obtain by Lemma 3.2 that

$$
\begin{equation*}
R^{2-n} \cdot \int_{* *}|D z|^{2} d x \leq c \cdot \int_{* *}|D z|^{2}|x|^{2-n} d x \tag{3.30}
\end{equation*}
$$

is small if R is small. Together with (3.28) and (3.29) this means the continuity of $z=D_{j} u-D_{j} \psi$.

Again following Frehse's proof in ([1], Chap. 3) we conclude that in the case $n=2 D_{n}(u-\psi)$ too is uniformly continuous.

Remark. Obviously this regularity result applies to any elliptic operator

$$
A=-D_{i}\left(a^{i}(x, D u)\right)
$$

if the a^{l} 's satisfy the symmetry condition (3.4). It is not clear, whether Lemma 3.2 can be established without this assumption.
4. Estimates in $H^{2, \infty}(\Omega)$. In the following we shall consider a slightly more general problem than considered in the introduction. Let u_{0} be a solution of the variational inequality

$$
\begin{gather*}
\left\langle A u_{0}+H u_{0}, v-u_{0}\right\rangle \geq 0 \quad \forall v \in K \tag{4.1}\\
K:=\left\{v \in H^{1, \infty}(\Omega) \mid v \geq \psi\right\}
\end{gather*}
$$

where A is an elliptic operator and

$$
\begin{gather*}
\langle A u, \eta\rangle=\int_{\Omega} a^{i} D_{i} \eta d x+\int_{\partial \Omega} \beta \eta d H_{n-1} \tag{4.2}\\
A u=-D_{i}\left(a^{i}(x, u, D u)\right), \quad H u=H(x, u, D u)
\end{gather*}
$$

It is well known, that u_{0} satisfies

$$
\begin{equation*}
A u_{0} \in L^{\infty}(\Omega) \tag{4.3}
\end{equation*}
$$

and therefore is of class $H_{\mathrm{loc}}^{2, p}(\Omega)$ for any finite p, if the coefficients are smooth enough. Furthermore, if we assume that

$$
\begin{equation*}
-a^{i}(x, \psi, D \psi) \cdot \gamma_{i} \geq \beta \quad \text { on } \partial \Omega \tag{4.4}
\end{equation*}
$$

holds we have (see [2]) $u_{0} \in H^{2, p}(\Omega)$ and u_{0} satisfies

$$
\begin{equation*}
-a^{i}\left(x, u_{0}, D u_{0}\right) \cdot \gamma_{i}=\beta \quad \text { on } \partial \Omega \tag{4.5}
\end{equation*}
$$

Recently, Gerhardt [5] showed that a solution of the corresponding Dirichlet problem lies in $H^{2, \infty}(\Omega)$, if the boundary data are of class C^{3}.

We shall prove the following
Theorem 4.1. Let $\partial \Omega$ be of class $C^{3, \alpha}, \beta \in C^{1,1}(\partial \Omega)$ and assume that $\psi \in H^{2, \infty}(\Omega)$ satisfies (4.4). Let the a^{i},s be of class C^{2} in x and u and of class C^{3} in the p-variable. Moreover, assume that H is of class $C^{0,1}$ in all its arguments. Then any solution of the variational inequality (4.1) is in $H^{2, \infty}(\Omega)$.

As in [5], we want to show uniform a priori estimates for the solutions of approximating problems. Since a solution u_{0} of (4.1) is of class $H^{2, p}$ in view of (4.4), there is a constant M with

$$
\begin{equation*}
1+\left|u_{0}\right|_{\Omega}+\left|D u_{0}\right|_{\Omega} \leq M \tag{4.6}
\end{equation*}
$$

Thus, we can replace A and H by operators \hat{A} and \hat{H} so that

$$
\begin{equation*}
\hat{A} u_{0}+\hat{H} u_{0}=A u_{0}+H u_{0} \tag{4.7}
\end{equation*}
$$

and so that the corresponding boundary value problems are always solvable (see [5] for details).

Furthermore, we can choose a constant γ so large that the operator

$$
\begin{equation*}
\hat{A} u+\hat{H} u+\gamma u \tag{4.8}
\end{equation*}
$$

is uniformly monotone, i.e.

$$
\begin{align*}
& \left\langle\hat{A} u_{1}+\hat{H} u_{1}+\gamma u_{1}-\hat{A} u_{2}-\hat{H} u_{2}-\gamma u_{2}, u_{1}-u_{2}\right\rangle \\
& \quad \geq c \cdot\left\|u_{1}-u_{2}\right\|_{1,2}^{2}, \quad c>0 \tag{4.9}
\end{align*}
$$

We shall write A and H instead of \hat{A} and \hat{H} in the following. Let us assume for the moment, that the a^{i} 's and H are of class C^{4} in their arguments. Then we consider the boundary value problems

$$
\begin{array}{ll}
A u+H u+\gamma u+\mu \Theta(u-\psi)=\gamma u_{0} & \text { in } \Omega \\
-a^{i}(x, u, D u) \cdot \gamma_{i}=\beta-\delta=\beta_{1} & \text { on } \partial \Omega \tag{4.10}
\end{array}
$$

where $\delta>0$ is small and where now

$$
\Theta(t)=\left(\begin{array}{ll}
0, & t>0 \tag{4.11}\\
-t^{2}, & t \leq 0
\end{array}\right.
$$

Again μ is a parameter tending to infinity. In view of our assumptions on A and H, the boundary value problem (4.10) has always a solution $u \in C^{3, \alpha}(\bar{\Omega})$. We want to show, that the second derivatives of u are bounded independent of μ and δ. In the limit case $\mu \rightarrow \infty, u$ tends to a solution \tilde{u}_{0} of (4.1), where β is replaced by β_{1}. On $\partial \Omega, \tilde{u}_{0}$ satisfies

$$
\begin{equation*}
-a^{i}\left(x, \tilde{u}_{0}, D \tilde{u}_{0}\right) \cdot \gamma_{i}=\beta_{1} \tag{4.12}
\end{equation*}
$$

Removing then the sharper differentiability assumptions and letting δ tend to zero we shall conclude, that \tilde{u}_{0} tends to u_{0} which therefore lies in $H^{2, \infty}(\Omega)$.

As a first step we need the following Lemma.
LEMMA 4.1. Let u be a solution of (4.10). Then $u-\psi \geq-c \cdot \mu^{-1 / 2}$ and

$$
\begin{equation*}
\mu \cdot|\Theta(u-\psi)| \leq c^{2} \tag{4.13}
\end{equation*}
$$

where

$$
\begin{equation*}
c^{2}=\sup _{\Omega}|A \psi+H \psi|, \quad c>0 \tag{4.14}
\end{equation*}
$$

Proof of Lemma 4.1. We multiply the inequality

$$
\begin{equation*}
A u-A \psi+H u-H \psi+\gamma(u-\psi)+\mu \Theta(u-\psi)+c^{2} \geq 0 \tag{4.15}
\end{equation*}
$$

by $v=\min \left(u-\psi+c \cdot \mu^{-1 / 2}, 0\right)$ and obtain

$$
\begin{align*}
& \int_{\Omega}(\left.a^{i}(x, u, D u)-a^{i}(x, \psi, D \psi)\right) \cdot D_{i} v d x \tag{4.16}\\
& \quad+\mu \int_{\Omega}\left(\Theta(u-\psi)+c^{2} \mu^{-1}\right) v d x \\
& \quad+\int_{\Omega}(H u-H \psi+\gamma(u-\psi)) v d x \\
& \quad+\int_{\partial \Omega}\left(a^{i}(x, \psi, D \psi) \cdot \gamma_{t}+\beta\right) v d H_{n-1} \leq 0
\end{align*}
$$

The conclusion now essentially follows from the boundary condition on $\psi(4.4)$.

We deduce from this Lemma that

$$
\begin{equation*}
A u \in L^{\infty}(\Omega) \tag{4.17}
\end{equation*}
$$

with an uniform bound and

$$
\begin{equation*}
\|u\|_{2, p} \leq c, \quad \forall 1 \leq p<\infty \tag{4.18}
\end{equation*}
$$ where the constant depends on $p,\|\psi\|_{2, \infty}, \partial \Omega$ and other known quantities.

We shall denote by f^{l} any vectorfield such that

$$
\begin{equation*}
\left\|f^{i}\right\|_{p} \leq c\left(1+\|u\|_{2, p}\right)^{m} \tag{4.19}
\end{equation*}
$$

for any $1 \leq p \leq \infty$, where c and m are arbitrary constants depending on p. Furthermore, f denotes any function which can be estimated as in (4.19).

As in $\S 3$ we assume the equation (4.10) to hold in $B_{1}^{+}=\{x \in$ $\left.B_{1}(0) \mid x^{n}>0\right\}$. Then the boundary condition takes the form

$$
\begin{equation*}
-a^{n}=\beta_{2}(x) \quad \text { on } \Gamma=\left\{x \in B_{1} \mid x^{n}=0\right\} \tag{4.20}
\end{equation*}
$$

where β_{2} is related to β_{1} by some positive factor depending on the transformation.

Lemma 4.2. The solution \tilde{u}_{0} of

$$
\begin{equation*}
\left\langle A \tilde{u}_{0}+H \tilde{u}_{0}+\gamma\left(\tilde{u}_{0}-u_{0}\right), v-\tilde{u}_{0}\right\rangle \geq 0, \quad \forall v \in K \tag{4.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle A \tilde{u}_{0}, \eta\right\rangle=\int_{\Omega} a^{l} D_{i} \eta d x+\int_{\partial \Omega} \beta_{1} \eta d H_{n-1} \tag{4.22}
\end{equation*}
$$

satisfies the strict inequality

$$
\begin{equation*}
\tilde{u}_{0}>\psi \quad \text { on } \partial \Omega \tag{4.23}
\end{equation*}
$$

Proof of Lemma 4.2. In view of (4.12) and (4.4) we have

$$
\begin{equation*}
-a^{i}\left(x, \tilde{u}_{0}, D \tilde{u}_{0}\right) \cdot \gamma_{i}<-a^{i}(x, \psi, D \psi) \cdot \gamma_{t} \quad \text { on } \partial \Omega \tag{4.24}
\end{equation*}
$$ or equivalently

$$
\begin{equation*}
-a^{n}\left(x, \tilde{u}_{0}, D \tilde{u}_{0}\right)<-a^{n}(x, \psi, D \psi) \text { on } \Gamma . \tag{4.25}
\end{equation*}
$$

Now assume that there is $x_{0} \in \partial \Omega$ such that

$$
\begin{equation*}
\tilde{u}_{0}\left(x_{0}\right)=\psi\left(x_{0}\right) \tag{4.26}
\end{equation*}
$$

It follows that $D_{j}\left(\tilde{u}_{0}-\psi\right)\left(x_{0}\right)=0, \forall 1 \leq j \leq n-1$. Thus, we obtain from (4.25)

$$
\begin{array}{r}
0<\int_{0}^{1} a^{n j}\left(x_{0}, t \tilde{u}_{0}+(1-t) \psi, t D \tilde{u}_{0}+(1-t) D \psi\right) \tag{4.27}\\
\times\left(D_{j}\left(\tilde{u}_{0}-\psi\right)\left(x_{0}\right)\right) d t \\
+\int_{0}^{1} \frac{\partial a^{n}}{\partial u}\left(x_{0}, t \tilde{u}_{0}+(1-t) \psi, t D \tilde{u}_{0}+(1-t) D \psi\right) \\
\times\left(\left(\tilde{u}_{0}-\psi\right)\left(x_{0}\right)\right) d t \\
=\int_{0}^{1} a^{n n}(\cdots) \cdot D_{n}\left(\tilde{u}_{0}-\psi\right)\left(x_{0}\right) d t
\end{array}
$$

But in view of $\tilde{u}_{0} \geq \psi$ we have

$$
\begin{equation*}
D_{n}\left(\tilde{u}_{0}-\psi\right) \leq 0 \quad \text { at } x_{0} . \tag{4.28}
\end{equation*}
$$

Thus, the contradiction is a consequence of ellipticity.
Since we already know that in the case $\mu \rightarrow \infty$ the solutions u of the approximating problems (4.10) tend to \tilde{u}_{0} uniformly, we can assume in the following that μ is so large that

$$
\begin{equation*}
u>\psi \quad \text { on } \partial \Omega \tag{4.29}
\end{equation*}
$$

In particular we have

$$
\begin{equation*}
\Theta(u-\psi)=\Theta^{\prime}(u-\psi)=0 \quad \text { on } \partial \Omega \tag{4.30}
\end{equation*}
$$

Now we are ready to estimate the second tangential derivatives of u.
Lemma 4.3. The second tangential derivatives of u can be estimated by

$$
\begin{equation*}
\sup _{B_{1 / 2}^{+}}\left|D_{\rho} D_{\sigma} u\right| \leq c \cdot\left(1+\|u\|_{2, \infty}\right)^{\varepsilon} \tag{4.31}
\end{equation*}
$$

for any $\varepsilon, 0<\varepsilon<1$, where c depends on $\varepsilon,\|u\|_{2, p}$ and known quantities.
Proof of Lemma 4.3. Following ideas in [5] and [7] we shall estimate the quantity

$$
\begin{equation*}
\lambda \cdot a^{k l} D_{k} D_{l} u \pm D_{\sigma} D_{\rho} u, \quad 1 \leq \rho, \sigma \leq n-1 \tag{4.32}
\end{equation*}
$$

from below. As in [5] we derive the differential inequality

$$
\begin{equation*}
-D_{i}\left(a^{i j} D_{j} w\right)+\gamma w+\mu \Theta^{\prime}(w-\bar{w}) \geq f+D_{i} f^{i} \tag{4.33}
\end{equation*}
$$

where

$$
\begin{array}{ll}
w=\lambda \cdot a^{k l} D_{k} D_{l} u \pm D_{r} D_{s} u, \tag{4.34}\\
\bar{w}=\lambda \cdot a^{k l} D_{k} D_{l} \psi \pm D_{r} D_{s} \psi, & 1 \leq r, s \leq n
\end{array}
$$

and λ is large.
We set $r=\rho, s=\sigma$ and multiply (4.33) with

$$
\begin{equation*}
w_{k} \cdot \eta^{2}=\min \left(w \cdot \eta^{2}+k, 0\right) \cdot \eta^{2} \tag{4.35}
\end{equation*}
$$

where $\eta \equiv 1$ in $B_{1 / 2}$ and supp $\eta \subset B_{1}$ and

$$
\begin{equation*}
k \geq k_{0}=\sup _{\Omega}|\bar{w}| \tag{4.36}
\end{equation*}
$$

Using ellipticity and (4.19) we obtain

$$
\begin{align*}
\int_{B_{1}^{+}}|D w|^{2} & \eta^{4} d x+\gamma \cdot \int_{B_{1}^{+}} w_{k}^{2} d x \tag{4.37}\\
\leq & c \cdot\left(1+\|u\|_{2, \infty}\right)^{m}|A(k)| \\
& +\int_{\Gamma}\left|f^{n} \cdot w_{k}\right| d \hat{x}+\int_{\Gamma}\left|a^{n j} D_{j} w \cdot \eta^{2} \cdot w_{k}\right| d \hat{x}
\end{align*}
$$

where $A(k)$ is the set $\left\{x \in B_{1}^{+} \mid w \cdot \eta^{2}<-k\right\}$. The first boundary integral can be estimated by
(4.38) $\|f\|_{\infty} \cdot\left(\int_{B_{1}^{+}}\left|D w_{k}\right| d x+c \cdot \int_{B_{1}^{+}} w_{k} d x\right)$

$$
\leq \varepsilon \cdot \int_{B_{1}^{+}}|D w|^{2} \eta^{4} d x+c \cdot\left(1+\|u\|_{2, \infty}\right)^{m}|A(k)| .
$$

To estimate the second boundary integral, we conclude from the equation in view of (4.30) that

$$
\begin{equation*}
D_{j} w=D_{j} F+D_{j} D_{\rho} D_{\sigma} u \tag{4.39}
\end{equation*}
$$

where $D_{j} F=f$. In order to estimate the critical term

$$
\begin{equation*}
a^{n j} D_{k} D_{\rho} D_{\sigma} u \tag{4.40}
\end{equation*}
$$

we differentiate the boundary condition (4.20) and obtain

$$
\begin{equation*}
-a^{n j} D_{j} D_{\sigma} u=D_{\sigma} \beta_{2}+\frac{\partial a^{n}}{\partial u} \cdot D_{\sigma} u+\frac{\partial a^{n}}{\partial x_{\sigma}} \tag{4.41}
\end{equation*}
$$

and

$$
\begin{align*}
-a^{n j} D_{j} D_{\sigma} D_{\rho} u= & D_{\sigma} D_{\rho} \beta_{2}+D_{\rho}\left(\frac{\partial a^{n}}{\partial u} \cdot D_{\sigma} u+\frac{\partial a^{n}}{\partial x_{\sigma}}\right) \tag{4.42}\\
& +D_{\rho}\left(a^{n j}\right) \cdot D_{j} D_{\sigma} u
\end{align*}
$$

But this equals f and so we have

$$
\begin{equation*}
\int_{\Gamma}\left|a^{n j} D_{j} w \cdot \eta^{2} \cdot w_{k}\right| d \hat{x} \leq \int_{\Gamma}\left|f \cdot w_{k}\right| d \hat{x} \tag{4.43}
\end{equation*}
$$

which can be estimated as in (4.38). Finally, we conclude

$$
\begin{equation*}
\int_{B_{1}^{+}}\left|D w_{k}\right|^{2} d x+\gamma \cdot \int_{B_{1}^{+}} w_{k}^{2} d x \leq c \cdot\left(1+\|u\|_{2, \infty}\right)^{m} \cdot|A(k)| \tag{4.44}
\end{equation*}
$$

for any $k \geq k_{0}$. Now the conclusion of the Lemma follows from the same arguments as in ([5], Theorem 2.2).

To get a similar bound for the mixed derivatives $D_{n} D_{\sigma} u$, we remark that due to (4.41)

$$
\begin{equation*}
-a^{n n} D_{n} D_{\sigma} u=g+a^{n \rho} D_{\rho} D_{\sigma} u \quad \text { on } \Gamma \tag{4.45}
\end{equation*}
$$

with some bounded function g and so-again using $a^{n n}>0$-we deduce that

$$
\begin{equation*}
\left|D_{n} D_{\sigma} u\right| \leq c\left(1+\left|D_{\sigma} D_{\rho} u\right|\right) \leq \hat{c}_{\varepsilon} \cdot\left(1+\|u\|_{2, \infty}\right)^{\varepsilon} \tag{4.46}
\end{equation*}
$$

holds on Γ. Repeating now the proof of Lemma 4.3 with $w=\lambda$. $a^{k l} D_{k} D_{l} u \pm D_{n} D_{\sigma} u$ and $k \geq \hat{k}_{0}=k_{0}+\hat{c}_{\varepsilon}\left(1+\|u\|_{2, \infty}\right)^{\varepsilon}$, we conclude that (4.46) holds in $B_{1 / 2}^{+}$since no boundary integrals occur.

Finally, using the equation we can estimate $D_{n} D_{n} u$ in terms of $D_{\sigma} D_{\rho} u$ and $D_{n} D_{\sigma} u$. Thus, we obtain

$$
\begin{equation*}
\|u\|_{2, \infty, B_{1 / 2}^{+}} \leq c_{\varepsilon} \cdot\left(1+\|u\|_{2, \infty}\right)^{\varepsilon} \tag{4.47}
\end{equation*}
$$

for any $\varepsilon, 0<\varepsilon<1$.
As $\partial \Omega$ is compact, this estimate holds in a boundary neighbourhood. In the interior of Ω the estimate can be derived by a version of the proof of Lemma 4.3. Thus, we have an a priori estimate for $\|u\|_{2, \infty, \Omega}$ depending only on known quantities, but not on μ and δ.

Letting now μ tend to infinity, u tends to the (unique) solution \tilde{u}_{0} of (4.21). Then, letting δ tend to zero, we arrive at a function $\hat{u} \in H^{2, \infty}(\Omega)$ solving the variational inequality

$$
\begin{gather*}
\left\langle A \hat{u}+H \hat{u}+\gamma\left(\hat{u}-u_{0}\right), v-\hat{u}\right\rangle \geq 0, \quad \forall v \in K \\
\langle A \hat{u}, \eta\rangle=\int_{\Omega} a^{i} D_{i} \eta d x+\int_{\partial \Omega} \beta \eta d H_{n-1} \tag{4.48}
\end{gather*}
$$

where A and H satisfy the sharper differentiability assumptions. By an approximation argument we conclude, that (4.48) admits a solution $\hat{u} \in$ $H^{2, \infty}(\Omega)$ assuming only the weaker conditions, since the estimates are independent of the sharper assumptions. The conclusion

$$
\begin{equation*}
\hat{u}=u_{0} \tag{4.49}
\end{equation*}
$$

now follows from the uniqueness of a solution of (4.48).

References

[1] J. Frehse, On Signorini's problem and variational problems with thin obstacles, Ann. Sc. Norm. Sup. Pisa, S IV, 4 (1977), 343-362.
[2] C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Sc. Norm. Sup. Pisa, S IV, 3 (1976), 157-175.
[3] , On the capillarity problem with constant volume, Ann. Sci. Norm. Sup. Pisa, S IV, 2 (1975), 304-320.
[4] , Existence and regularity of capillary surfaces, Boll. U.M.I., 10 (1974), 317-335.
[5] , Global $C^{1,1}$-regularity for solutions to quasi-linear variational inequalities, Preprint, to appear in 'Arch. Rat. Mech.'.
[6] M. Gruter and K. O. Widman, The Green function for uniformly elliptic equations, Manusc. Math., 37 (1982), 303-342.
[7] R. Jensen, Boundary regularity for variational inequalities, Indiana Univ. Math. J., 29 (1980), 495-504.
[8] G. M. Lieberman, The conormal derivative problem for elliptic equations of variational type, J. Differential Equations, 49, No. 2 (1983), 218-257.
[9] J. H. Michael and L. M. Simon, Sobolev and mean value inequalities on generalized submanifolds of \mathbf{R}^{n}, Comm. Pure Appl. Math., 26 (1973), 361-379.
[10] J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl., 28 (1975), 189-200.
[11] G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinus, Montréal, Les Presses de l'Université, 1966.
[12] N. N. Ural'ceva, The solvability of the capillarity problem, Vestnik Leningrad Univ. No. 19 Mat. Meh. Astronom. Vyp., 4 (1973), 54-64, Russian.

Received February 2, 1983.

[^0]: ${ }^{1}$ Here and in the following we sum over repeated indices.

