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We investigate several aspects of the embedding of gauged N = 8 supergravity into d = 11 
s~pcrgravity and give the full nonlinear metric ansatz for this-embedding. This allows us to 
rederive the solutions with SO(7) ÷ and SU(4) symmetry directly from the critical points of the 
d = 4 theory as well as a new solution with G 2 invariance and N = 1 supcrsymmetry. We discuss 
the geometrical aspects of our results and their implications for the interpretation of spontaneously 
broken solutions. 

1. Introduction 

Simple  supergravi ty  in eleven dimensions [1] is an at t ract ive candida te  theory for 

the u l t imate  unif ica t ion of  fundamenta l  interactions.  Owing to the presence of a 

three- index an t i symmet r ic  tensor gauge field in that theory, spontaneous  compact i f i -  

ca t ion  to four  d imensions  occurs natural ly [2] and leads to effective d =  4 field 

theories  with or wi thout  residual supersymmetries  (recent developments  of  the 

subject  have  been reviewed in ref. [3]). The effective d =  4 theory consists of  a 

" m a s s l e s s "  sector coupled to infinite towers of massive fields which are usually 

ident i f ied  with  the coefficient  funct ions in a suitable ha rmonic  expansion about  the 

g round-s t a t e  solution.  For  the calculat ion of mass spectra and their group theoretical  

c lassif icat ion,  it is sufficient to carry this expansion to lowest non-tr ivial  order.  On 

the o ther  hand,  it has been realized recently that an analysis of the non- l inear  effects 
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is required if one is to gain a better understanding of how the effective "low-energy" 

theory emerges from the higher-dimensional theory. In particular, this concerns the 

relation of d = 11 supergravity to gauged N = 8 supergravity in four dimensions [4] 

and the question of its embedding into d = 11 supergravity. The latter has a solution 

where seven internal dimensions are compactified to the sphere S 7, and this solution 

has N = 8 supersymmetry and SO(8) internal symmetry [5]. Gauged N = 8 super- 

gravity possesses a solution with the same features, and this suggests that the S v 

compactification corresponds to gauged N = 8 supergravity after a truncation of the 

full d =  11 theory to its massless sector. If true, this correspondence should then 
extend to other solutions of gauged N = 8 supergravity [6] in the sense that, for each 

critical point of the N = 8 potential, there should exist a solution of the d =  11 

theory with the same properties (the converse is, of course, false). So far this 
correspondence has been established for the round S 7 [5], the "parallelized" S v [7], 

the SO(7) + [8] and SU(4) [9] invariant solutions. On the other hand, one should 

realize that the actual proof of correspondence between d = 4 and d = 11 solutions 

cannot be based on the mere existence of solutions with the same symmetry but 

requires a more detailed analysis of the embedding of gauged N = 8 supergravity 

into d = 11 supergravity. 

In this paper, we go a step further towards solving this problem by giving the full 

non-linear metric ansatz in terms of the quantities appearing in the four-dimensional 

theory. This will permit us to compute the d = 11 solutions directly from the scalar 
and pseudoscalar expectation values at the various critical points of the N = 8 

potential. In this way, we are able to recover the known solutions of d =  11 

supergravity and a new one with G 2 invariance which corresponds to the G 2- 
invariant critical point of N = 8 supergravity [6]. This new solution is discussed in 

some detail in this paper because it has several interesting features which distinguish 

it from the solutions found so far. It is the first solution with N -- 1 supersymmetry 
and a non-vanishing field strength in the internal dimensions. As a consequence, its 

Killing spinor cannot be written as a direct product of a four-dimensional and a 
seven-dimensional spinor as has been the case for all solutions with residual 
supersymmetries found so far; for a discussion of these matters, see also ref. [10]. 

Our starting point is the analysis of the d =  11 supersymmetry transformation 
rules performed in [11]. It was already pointed out in [12] that a straightforward 
substitution of the massless ans~tze into the transformation rules leads to apparent 

inconsistencies due to a mismatch of the dependence on the internal coordinates. 
However, a consistent truncation of the theory to a suitably defined "massless" 

sector is only possible if the dependence on the internal coordinates precisely 
matches in the transformation laws, since otherwise the massive modes, which have 
been discarded in the truncation, reappear through the supersymmetry transforma- 
tions. The strategy adopted in [11] was to bring the transformation rules of the 
d = 11 theory into a form that resembled the d = 4 transformation rules as closely as 
possible by suitable redefinitions which followed a standard pattern [13]. It was then 
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argued that the only possible further redefinition to achieve consistency had to be a 

field-dependent chiral SU(8) rotation, which therefore depends on all eleven coordi- 

nates, and for the SO(7)- solution of [7] it was explicitly demonstrated how to 
achieve consistency in this way [11] (the necessary redefinition of the supersymmetry 
t ransformation parameter  to lowest non-trivial order had already been worked out in 

[14]). This calculation rigorously proved that the Englert solution [7] indeed corre- 
sponds to the SO(7) invariant stationary point of N = 8 supergravity confirming 
the earlier conjecture in [15]. 

The consistency requirement explained above correctly identifies the embedding 
of the N = 8 supergravity fields into the d = 11 fields. The latter depend in general 
on the extra coordinates, and the N = 8 fields will appear as coefficient functions of 
four-dimensional space-time (since we are interested here in translationally invariant 
solutions, these functions will just be constant parameters). One may wonder how to 
define the notion of consistency in the absence of supersymmetry transformations. 
One possibility would be to study the consistency of bosonic symmetry transfor- 
mations [16]. Alternatively, one could require that the truncation satisfy the 
higher-dimensional field equations [17]. However, the requirement of consistency of 

supersymmetry  transformations necessarily implies consistency of both the field 
equations and the bosonic symmetries because the commutator  of two supersymme- 
tries generates the field equations and the bosonic transformations. Consequently, if 
we have supersymmetry,  its consistency encompasses the other possibilities. 

One of the "s tandard"  redefinitions introduced in [11] is a field-dependent Weyl 
rescaling. This implies that, in order to reconstruct the d = 11 solutions from the 
d = 4 theory, one must assume that the elfbein takes the form [11, 18, 19] 

EMA(X' Y)= [ A1/2(y)O~(x)O e,,U(Y)O ] ,  (1.1) 

where ku"(x) is the vierbein associated with the maximally symmetric four-dimen- 
sional space-time and e,,fl(y) the siebenbein on the compact internal manifold. We 
follow the notation and conventions of our previous papers; so, x and y are the 
coordinates on d = 4 space-time and the d = 7 internal manifold, respectively, and 
m, n . . . .  and a, b . . . .  refer to d = 7 and /~, u . . . .  and a,/3 . . . .  to d = 4 world and 
tangent space indices, respectively. The ansatz (1.1) is more general than the ones 
considered in the context of Freund-Rubin solutions [2] because of the y-dependent 
factor A-1 /2 (y ) .  For arbitrary functions A 1/2 (1.1) constitutes the most general 

ansatz if one insists that the d = 11 isometry group be a direct product of the d = 4 
and d = 7 isometry groups [19]. On the other hand, the analysis of [11] not only 
shows that the factor A-1/2(y)  must be included for all field configurations within 
N = 8 supergravity but also determines it unambiguously. For the SO(7) and 
SU(4) solutions, the function A 1/2(y) is a constant and so is apt to be over- 
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looked. However, its presence is crucial in accounting for the different relative scales 
of the d = 11 solutions corresponding to the appropriate N = 8 critical points. 

The organization of this paper is as follows. Sects. 2 and 3 are devoted to a 

detailed discussion of the G 2 solution and its properties. The connection with the 
more geometric formulation of [18] is established in sect. 4. Sect. 5 contains our 
central result, namely the full non-linear ansatz for the metric deformations which 
explicitly describes the embedding of N = 8 supergravity into d = 11 supergravity. In 
this section we apply our ansatz and recover the metric of the relevant d =  11 
solutions and their geometrical interpretation. The implications of our results are 
discussed in the final section. Since this paper  concentrates mainly on the G2 
solution, the discussion of the SU(4) solution appears in an appendix. 

2. Derivation of the G2-invariant metric ansatz 

For the class of solutions considered in this paper the deviation of the siebenbein 
from the round S 7 background is parametrized by 

e , , , " ( y ) = b , , , h ( y ) S f ( y ) ,  (2.1) 

where b,,~(y) denotes the siebenbein on the round S v of inverse radius m 7- The form 
of the function that multiplies the vierbein bu~(x) in (1.1) is determined by requiring 
consistency of the supersymmetry transformation rules upon truncation to the fields 
corresponding to N = 8 supergravity. This leads to the identification [11] 

A ( y )  = d e t S  t ' ( y ) .  (2.2) 

To construct the various solutions one must now give ans~tze for the metric 
deviations which are invariant under SO(7) + o r  G 2. These ans~itze are motivated by 
our knowledge of the small massless fluctuations [5, 20] about S 7 which correspond 
to the scalars and pseudoscalars of N = 8 supergravity, combined with the con- 
sistency requirement. We recall that the SO(7) ~ and SO(7) invariant values of these 
scalar and pseudoscalar fields are proportional to the self-dual and anti-self-dual 
SO(8) tensors, C*+ JKL and C H K ~  respectively, which satisfy the relations [6,12] 

cIJMN(~MNKL__ 128K~J + at,'~IJKL 

C*JMNcMNK*'= 1 2 8 ~ J -  4C*JK*-. (2.3) 

A G2-invariant configuration is obtained if both the scalars and the pseudoscalars 
acquire a non-zero value, as  G 2 is the common subgroup of SO(7) ~ and S O ( 7 ) .  The 
potential  of gauged N = 8 supergravity has four stationary points with at least O 2 

invariance [6]. The fully supersymmetric solution where scalars and pseudoscalars 
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vanish  has  SO(8) symmetry .  If  the scalars are propor t iona l  to ~+c~ls~z, there is an 

SO(7) + invar iant  solution with no supersymmetry .  Likewise, if the pseudoscalars  are 
p ropor t i ona l  to C tJ~:l, there is a (degenerate)  SO(7) invariant  solution with no 
supe r symmet ry .  Finally if both  the scalar and pseudoscalar  vacuum expectat ions are 
switched on and are propor t ional  to ~+t'~IJKL and C IJKL, respectively, there is a 

G2- invar ian t  (degenerate)  solution with residual ( N  = 1) supersymmetry .  
In  order  to construct  the corresponding solutions of d = 11 supergravity,  we must  

def ine SO(7) + and SO(7) invariant  quantities, which depend on the extra coordi-  
nates  y " ,  in terms of which we can parametr ize  the d =  11 fields. An SO(7)* 
invar iant  quan t i ty  is given by the vector  [8] 

~a ~- 1 .~ . I , IKL  117 J - K  r~h L (2.4) 

where F,.  F,a ,, etc.. are the usual / ' -matr ices  in seven dimensions,  and ~/1(y) are the 
covar ian t ly  cons tan t  spinors of S 7 that obey 

( D , , + ½ i m v F m ) T l ' ( y ) = O  ( 1 = 1  . . . . .  8).  (2.5) 

T h r o u g h o u t  this paper,  quanti t ies with ° refer to the round  S v background;  thus, /),,, 
is the covar ian t  derivative on the round S 7 background and F,,, = O,,aF, (4: F,,, = 

e, , ,"F,) .  The  vector  ~ vanishes at the north and south poles and the equator  of S v 
and  its modu lus  is related to the quant i ty  ~ ( y )  which is defined as follows: 

I ~ l J K l . - - I r  J - - K r "  1. 
t~ + ~ 1,~1 ~1 l h~l , 

~ ( y )  - 6 " h ( . b ( y ) .  (2.6) 

By Fierz re-order ing of d =  7 (commuting)  spinors and (2.5) one may  prove the 
re la t ions 

~a~, = (21 + ~)(3 - ~) ,  

~.~b - 8,~b~ = 6(~ - 3)(~,, b + 38,~h), 

= 3 8 . h m 7 ~ , . -  ~mv~(,,6b),. , 

ba~h = my(  3 _ ~)8,,b _ 1 m 7 ~ - ~ u ~ , .  (2.7) 

It is of ten convenient  to re-express the relations (2.7) in terms of just  ~ and the unit 
vector  ~,,  a l though the latter is not defined at the poles and the equator  of  S v. One 
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obtains 

f~b = -~(3 + ~)3, ,  h - 61(21 + f ) & & ,  

/ ) ~  = 2rn v~/(21 + ~)(3 - ~) {~, 

(2.8) 

Note  the appearance of the transversal projection operator in the last equation, 
which projects out the components orthogonal to ~,. The decomposition into 
transversal and longitudinal vectors is important in order to recognize the geometri- 
cal meaning of the solutions that we are about to derive. We will return to the 
geometrical aspects in sect. 4. Note that the first equation (2.7) implies that 
-21-%< (-%< 3. At the north and south poles we have ~ =  - 2 1  and at the equator 

= 3. To see this, one may calculate (2.6) in the usual polar coordinates on S 7. One 

finds 

= - 21 + 24 sin20, (2.9) 

where 0 -%< 0 ~< ~ is the latitude on S 7 (see sect. 5 for details). 
In analogy with (2.4), the SO(7) invariant background is characterized in terms 

of the tensor C .  This must now be contracted with an a n t i - s e l f - d u a l  combination of 

four Killing spinors (2.5), i.e. 

S a b  c ~ ~ 6 i c I J K L ~ 1 1 ~ [ a b ~ J ~ K  [ ' c ]~  L . (2.10) 

Note  that there are two sets of Killing spinors on S v, which are related by a change 
of sign in m 7. In order to make contact with N = 8 supergravity we must, however, 
choose the s a m e  type of Killing spinors in (2.4) and (2.10). 

Eq. (2.10) defines a Cartan-Schouten torsion tensor, which satisfies the equations 

l '~aSbc d - -  ! w ,  o ~ e f g  - -  6 , , ~ 7 ~ a b c d e f g ~  , 

s [ a b { s d ] e f  = - -  l e a b c d I e g h s f ] g h  ' 

s a l b ( s d e ] f  = - -  l ~ b c d e ( a g h S f ) g h  ' 

s a b e ~  ab I - a h  ¢~efg 
We, de = 2 8 c d  - -  g e  ¢.defg~.} . (2.11) 

Further  identities have been listed in [12]. G2-invariant backgrounds can now be 
constructed in terms of the quantities ~, & and Sub,.. 
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In order to remain within the context of N = 8 supergravity, the dependence of 
the metric g, , , , (y )  on ~ and 4 is not arbitrary. To establish the consistency of the 
metric upon truncation to N = 8 supergravity, we follow the procedure outlined in 
[11]. For our purpose it suffices to analyze only the transformation rules of the 
spin-1 field B g ( x , y  ). We recall that after the appropriate redefinitions B~," 
transforms under supersymmetry as 

m - A B C  3B~, = i ~ / 2 r f f ; A  '/2(2~-~A~/,# + ec'Y~,X ) + h.c. (2.12) 

(Y, =- ~,"7,~; we refer the reader to [11] for further explanations.) We know that the 
y-dependence of the massless mode in B Z is that of the S 7 Killing vectors, because 
with that ansatz these modes transform irreducibly under the action of the SO(8) 
isometries of S 7. However, the right-hand side of (2.12) has a different y-dependence 
in general, so that (2.12) does not admit a consistent truncation as it stands. One of 
the central observations of [11] was that the only way to achieve consistent 
supersymmetry transformations in (2.12) is by means of a local SU(8) rotation 
U(x,  y )  which acts in all fermionic quantities (including the supersymmetry trans- 
formation parameters). This then leads to the requirement that g11Xdl J must be an 
S 7 Killing vector for arbitrary Killing spinors ~/1 and ~J, where the complex matrices 
X,, are given by 

~ a = i ~  1 / 2 S a b I ( U T ~ b U  ) . (2.13) 

Note that X~ is an antisymmetric matrix in the d = 7 spinor indices. The Killing 
condition now implies 

4oz , + r ,o ,z , , , ]  = o. (2.14) 

Subsequently we make the most general ansatz for X. in terms of ~, ~a and S.b , and 
implement the condition (2.14). The general solution of (2.14) then reads 

= (a  + b4) iF ,  - ib(21 + 4 ) ~ j b r  h + b((21 + 4)(3 - 4) ~bF,,, 

+ (c - e~)S~h ,Fb '+  i ( d -  2e)((21 + 4)(3 - ( )  S,,h,~hF ~ 

- d ( 2 1  + ~)S~h,~"~aI'~a+ e(21 + ~)~.S, , , , ,~"[ "'J 

eahcde fg , ,  a o - -  , (2.15) 
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with arbitrary complex parameters a, b, c, d, e. For the round S 7 background, we 
have a 4: 0, b = c . . . . .  e = 0, whereas for an SO(7)* invariant background we 
have to take a, b4 :0 ,  c = d = e = 0 .  

In principle, one can now proceed to derive both the siebenbein deviations S, t  , 
and the SU(8) rotation U from (2.15). This is rather tedious in this case because the 
general parametrization of an SU(8) matrix in terms of ~ and S,b ` is not easy to 
derive. Fortunately we do not have to solve (2.15), because we are interested only in 
the metric ansatz and there is a simple trick to determine g .... directly from (2.15). 
One just takes the trace of the product of X~ with its adjoint XII and symmetrizes in 
the indices a and b. This gives 

A l ( S  1S 1T)ah=  ~ Tr[~(a~a:~)] .  (2.16) 

Note  that it is crucial that U is an element of SU(8); otherwise it would not drop out 
on the left-hand side of (2.16). Multiplying (2.16) with the S 7 siebenbeine leads to an 
equation for the full d = 7 metric as a result of (2.1). Hence, 

1 o r~lo n ] A-lg  .... = we. eh Tr[X(.Xh)] . (2.17) 

The right-hand side of (2.17) can be calculated directly from (2.15) by F-matrix 
algebra and the relations (2.11). Obviously the result is proportional to either ~ .... or 
to ~"~" (where ~ ' =  bm,~ ~ etc.) multiplied by real functions of ~. From the form of 
(2.15) one can easily deduce that the functions must be second-order polynomials in 
4. However,  in the explicit evaluation of (2.17) miraculous cancellations occur. One 
of them is easy to see, since one observes that 

{"X~ = ( a + 21b ) i { " F ,  + ( c + 21e ) ~ S ~ h , F  t'~ (2.18) 

involves no second-order polynomials in ~ but just constant coefficients. Therefore 

~,,~nA 1gin, =,{1/2 ,  (2.19) 

where `{ is a positive constant. 
Slightly lengthier calculations show that the remaining function is only a first-order 

polynomial  in ~, so that (2.17) can be expressed in terms of three arbitrary real 
parameters,  i.e. 

A lgrnn = `{1/2 [(0~ ..~ / ~ ) ( ~  . . . .  ~m~n)  + ~m~n]. (2 .20)  
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The metric and its inverse are now easily computed from (2.20); they are 

where 

37 

(2.21) 

f ( ~ )  =-y 1/9(a + fl~) 1/3 

H ( ~ ) = ( a + / 3 ~ )  1/2, A(~)=~,  7/18(c~+fl~)-z/3. (2.22) 

In order for the metric to be real, 3' and a + B~ must be positive, which implies 

a ,3 ,>  0, - _ ~  < / 3  < 2, a -  ( 2 . 2 3 )  

The ansatz (2.2l) thus gives the most general SO(7) + invariant metric that is 
compatible with N =  8 supergravity. The round S 7 background corresponds to 
a = 1, /~ = 0, whereas the solutions parametrized in [8] which were found by 
explicitly calculating the SU(8) transformations in an SO(7) + invariant background 
correspond to (2.21), (2.22) via the substitutions 

a = (1 + 63r2)(1 + 21¢) -2 , 

fl = - 2 ¢ ( 1  + 9r)(1 + 21r) 2, 

V = (1 + 21r) +4 (2.24) 

The SU(8) matrices in the SO(7) + and SO(7) " invariant backgrounds are given by 
[21, 11], respectively, 

H 
U?(~, r )  = 1 + 21r ((1 - r~)~ + ir~/(21 + ~)(3 - ~) }, 

U(S, r )  = ~(e 7,~ + 7 e " )  + 41~i(e -7i" - -  e " ~ F  obey (2.25) 
] ~ a b c  " 

We conclude this section by giving the various components of the curvature tensor in 
eleven dimensions for the metric that follows from (1.1) with an internal part given 
by (2.21); the formulas below are valid for arbitrary functions f (~)  and H(~). They 
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are 

2 - l [ [ p q  q_ Rm,Pq= 2 m v f  ~ m n [ - 1  2 ( 3 -  ~ ) H 2 f ' f  ~ 

H 2 , - 1  > (::)2] 

+~im{IPB,qll [ -2 (21  + ~ ) H 2 f ' f  1 ..{_ 4(3 -- ~ ) H ' H  

48 (1 - H 2) +2-T  

+2(21 + ~)(3 - ~ ) H 2 ( 2 f " f  x _ 3 H e ( f  ,f--1) 2 

+ 2 H ' H  l f , f  1)]} ,  (2 .26)  

R+,,,, "? = - m 2 8 ; ( 3  - ~) (21  + ~ ) H 2 f  1 

1 1 ~ S p ( l + ( 2 1 + ~ ) f ,  f 1)(7f, f I _ 2 H , H  1) 
× 2 21+ 

1 1 ~4~f'f ' + ~ H H  +~,,~? 7f ' f  1 - -  2 H ' H - ' )  2 3 - 

112_2... . (22 > 

R , ,  °°=3~7(  H + l ) f v / 2 { 2 m ]  + ½ m z ( 3 - ~ ) ( 2 1 +  ~) (7 f ' f  I _ 2 H , H  112H3f-9/2},  

(2.28t 

where m 4 is the inverse anti-de Sitter radius of the four-dimensional space-time. 
Note the appearance of the "off-diagonal" term (2.27) which originates from the 
Weyl rescaling factor A -1/2 in (1.1). Consequently the Ricci tensors in eleven 
dimensions do not coincide with the pure d = 4 and d = 7 Ricci tensors that follow 
from (2.26) and (2.28), because 

R~," = R~,ff  + R~,., "m , 

R.," = R, , , ' "  + R . , p  "t" . (2.29) 
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Thus, it is plausible that the solutions studied in this paper  describe d = 7 spaces 
that are not Einstein spaces in general. This observation is in accord with a 
well-known mathematical  theorem that there are no $0(7) invariant seven-dimen- 
sional Einstein spaces other than the round S 7 (see for instance [18]). The Ricci 
tensors (2.29) can now be computed directly from (2.26) (2.28). Using the ansatze 
(2.22), the results take the form 

Rm n = 2m}T1/9H16/3{Sn m [ -  3H 6 + 4fl~ H 2 + 3B(~ + 1 ) n  -4 + ~/~2(3 - ~)(21 + ~)] 

+~,, ,~"[2flH 2 ( ~ _ 9 ) + 6 0 f l H  4]},  (2.30) 

R~,~=./1/gHI6/38~{ 3 m ] T - 1 / 2  H 4 

_ 7m 7 4  2[/~ H 2 + f l 2 ( 3 _ , ~ ) ( 2 1 + , ~ ) ] }  (2.31) 

3 .  S o l u t i o n s  w i t h  a t  l e a s t  G 2 i n v a r i a n c e  

In this section we construct solutions of d = 11 supergravity based on the ans~tze 
of the previous section. The bosonic field equations of d = 11 supergravity are 

1 2 _ ! r  ~- pOR ( 3 . 1 )  
R MN = 7 2 g M N F p Q R S  6 "  MPQR ~ N , 

E - I O M ( E F M N P Q ) =  i IV~,nNPQRSTUVWXY p 1J (3.2) 
1 1 5 2 " v  ~ ' 1  • R S T U - - V W X Y  ' 

where FMNPQ is the fourth-rank antisymmetric field strength, E = det(EM A) and 
~M, - M. the fully antisymrnetric invariant Levi-Civita tensor in eleven dimensions. In 

compactif ications where the d =  4 space-time is maximally symmetric, the only 

components  of F M N P Q  that differ from zero are F~,~o o and F.,.pq. For F..po one has 
the Freund-Rubin  parametrization 

F~,~p o = i f  T)~,~p o , (3.3) 

where ~ p o  is the d =  4 Levi-Civita symbol. Because F,m,, p must be zero, the 
Bianchi identities on FMNPO imply that f must be a constant. However, when we 
switch to d = 11 flat indices (3.3) becomes y-dependent, and one finds 

F~#ra = i fA2ec ,#v6 .  (3.4) 

Inserting (3.3) into the Einstein equation (3.1), one obtains the relevant equations in 
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four  and seven dimensions,  respectively, 

p u 1 2 Rt~ = ~  ( 2 f 2 A 4  + 72F£tnpq),  

n __ L p  F n p q  r A- (~rrt, [ 1 2 1 264  
a m =  6"mpqr--  -- ~ F p q , , - - 3 f  ] .  

(3.5) 

(3.6) 

It is now easy to show that for 

R m  m + 54RpP" = f 2 A 4 .  ( 3 . 7 )  

Subst i tu t ion  of (2.3) and (2.31) using (2.22) shows that  

a = 1 + 21/3, (3.8) 

which satisfies the restrictions (2.23) provided that  /3 > - 2~4 . Using (2.9), we find 
tha t  the funct ion  H reduces to (1 + 24/3 sin20) -1/2 (where 0 is the lat i tude on $7). 

In  sect. 5, we will show that  this implies that  the metric  (2.21) describes an ellipsoid. 
One  then distinguishes two classes of solutions. In the first class there is no 

~-dependence  in the metric, so that  

/3 = 0, 15m]y  1 /2  _f23 ,  5/3 _ 42m 2 = 0. (3.9) 

Obvious ly  the metric  corresponds to the round sphere, and only differs by a scale 
fac tor  f rom the original S 7 background,  i.e. g .... = y  1/9~,,,,. The  two solutions in 

this class are the round [5] and the parallelized [7] S 7, which are known to satisfy 
(3.9). In the second class of solutions, /3 4: 0, and the ~-dependence of (3.7) allows 
one to solve for m 2 and f2. The result is 

m ] = ~ ( 4 4 +  720/3)m~y 1/2 , 

f2  = 2(1 + 24/3) m~3, 5/3, 

Us ing  (3.8) it is s t ra ightforward to evaluate (2.30), and one finds 

n 2 ~ 2 .,, 1 / 9 / 4 1 6 / 3  J/" 1 2 n R , ,  = - 3 " , 7 ,  -- t~" + 24/3+ 8(1 + 3 0 f i ) H  )3,, 

+6 (1  + 3 0 f l ) H  2 ( H  2 - -  l ) ( ~ n  ^ ^n )} 

' ( 3 . 1 3 )  / 3 - -  3(I 

(3.10) 

(3.11) 

(3.12) 

A l inear  combina t ion  of these equations is independent  of  the field strengths Fmnpq , 

so it is convenient  to solve it first. This equat ion reads 



B. de Wit et at / N = 8 supergravi O' 41 

we have a solut ion of the field equations with F,,,,,pq = 0. This is just  the SO(7) + 
invar iant  solut ion presented in [8]. 

For  the G2-invar iant  solution we must introduce a non-zero F,,,w q which satisfies 
bo th  the Maxwel l  equat ion (3.2) and the Bianchi identity. To  write these equat ions 
we first note  that  

E = e4(x, y)ev(y ) = e4(x)e7(y)A l(y), (3.14) 

and  that  the d = 7 Levi-Civita tensor with respect to the full metric and the round S 7 

metr ic  are related by 

~mnpqrst  = A l~mnpqrst .  

Subst i tu t ing this into (3.2) one derives the following equation:  

° - 1 mnpq 1 [~-~'o mnpqr~tr" Dq(A F ) = 24vzJ~l vqr~,, 

(3.15) 

(3.16) 

where the indices on the left-hand side are to be raised with the metric (2.20). 
F u r t h e r m o r e  F,,,,pq must  satisfy the Bianchi identity 

bf , ,  = 0. (3.17) 

In order  to find a G2-invariant  solution we make  an ansatz for F,,,,wq in terms of ~, 
~" and  S ,m,  i.e. 

Fmnp  q = 16 f l / 2ho  { l t io  ~,rst 3 . 1 ~ m n p q r s t  0 + 4( H -  H 1 ^ ° ^r°s tu  3hi )~[mBnpq]rstu~ S 

+ 24H-1h2( (21  + ~)(3 - ~)-SI-,,,e~ul}, 

F ""pq = ~f -7 /2Hho{  hl~mnpqrS~s t + (1  - -  3hl)~m"Pqr't~rSs,,~" 

+ 24h2~/(21 + ~)(3 - ~) ~[m,,p~q]}, (3.18) 

where  f and H parametr ize  the metric, and h 0, h I and h 2 a r e  arbi t rary  real 
funct ions  of  ~. No te  that indices on Sm,,p and ~m are always raised by means  of the 
round  S 7 metr ic  ,~,,,,. Using (2.11) it is s t ra ightforward to show that 

F m p q r F n p q r = f  3h2{4H2(6n-~m~')  

+ 1 2 ( h ~  + (21 + ~)(3 - ~)h ~ )(8", + ~ , , ~ " ) ) .  (3.19) 

It  is now easy  to see f rom (3.11), (3.12) and (3.19) that the Einstein equat ion (3.6) is 
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satisfied if 
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h 2 = ~-~(1 + 30/3)'/ 2/9H4/3, (3.20) 

- = 5H2~ (3.21) h2 + ( 2 1 +  ~)(3 ~)h 2 2AaH2(1 + ~ , .  

In addition, the functions h0, h~ and h 3 must satisfy the Maxwell equation (3.16). 
This implies the conditions 

h, + ( 3  - ~)h 2 = q- ~!/1 + 24/3H 4, (3.22) 

1 1 ( ] hi (3.23) h 'l = ( ½ -T- ~fi  + 2 4 /3 H 2 ) h 2 -~ 2 2 1 + ~  " 2 S - H 2 " 2 1 + , ~ '  

ha 
h~ = - (½g V/1 + 24fl-H 2) (21 + ~j)(3 - ~5) 

1 1 ( 5 _ _ 9 2 +  9q" ~) t/2 (3.24, 
2 ( 2 1 + f ) ( 3 - ~ )  ~ 2 1 + ~ '  

where we have allowed an arbitrary sign in the Freund-Rubin parameter, i.e. 

f =  -+ ~-mv@/6V/1 + 24/3. (3.25) 

It turns out that the Bianchi identity (3.17) implies no independent conditions, so we 
face the task of solving (3.21)-(3.24). The most convenient way to do this is to 
differentiate (3.21), and use (3.23) and (3.24) to find a linear equation for h a and h 2- 
Combining this equation with (3.22) uniquely solves h a and h2: 

h a = ~444H4[(3-~)(1 + H  2)_+(21 + ~ ) l f i ~ - 2 ~ - ]  , 

h 2 =  ~ H 4 [  - 1 -- H 2 _+ ~ / ~ f l  ] . (3.26) 

Subsequently one verifies that all equations (3.21) (3.24) are satisfied provided we 
choose 

1 (3.27) /3 ~ 36 " 

Hence we have now identified solutions of d = 11 supergravity with SO(8), SO(7) + 
and G 2 invariance, which are all consistent with, or have been derived from, N = 8 
supergravity in four dimensions. We have summarized these solutions in table 1. In 
sect. 5 we will further elaborate on the relationship between d =  11 and d =  4 
supergravity, and give the embedding of the scalar and pseudoscalar fields of the 
latter into the seven-dimensional components of the d = 11 metric. Here we should 
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TABLE 1 
Solutions of d = 11 supergravity with at least G 2 invariance, that correspond to stationary points 

of the N = 8 supergravity potential 
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so(8) 
N = 8 S U S Y  

S O ( 7 )  

N = 0 S U S Y  

SO(7) + 
N = 0 S U S Y  

G2 

N = 1 SUSY 

m ~ = 4 m 7 Y  ' / 2 ` f =  + 3 ~ 2 m v y  5/6, H = I  

h o = h  1 = h 2 = 0  

m42 = 1 °  2 1/2 2 1 / ~ m v y 5 / 6 ,  5 mvy , f =  f l  = 1 
]70 36V/~'0mvy 1/9, h 1 1 h , = 0 ,  2 25 = = ~ ,  _ P = i 4 4  

2 __ 4 2 l /2  ~ D/7"/5~6, t l  = [~0(9 -- ~)] 1/2 m4--3m7T , f =  +~/T 
h o = h I = h e = 0 

2 8 2 1/2 !}/~2-FtlvT , I I = 6 ( 1 5  ~) 1/2 m 4  = 5 m 7 T  , f =  ; s/6 

5 hO = 3~ ~2 '0m7 y 1/9H2/3,  , °2 = t68 

1 
< - - ( 1 ( 3 0 ( 5 1  O + _ 3 ~ ( 2 1 + ~ ) ) ,  

( t s - O  ~ 

1 1 (51  ~) + 3~/3 ) t,_, 0520i( -  

As described in the text, ,/ is an arbitrary scale parameter. Note that changing the sign of the 
parameter '0 corresponds to an overall change of sign of the field strength F,, ,v  q, which in the d =  4 
theory is effected by a parity transformation. 

e m p h a s i z e  tha t  the G 2 so lu t ion  p resen ted  in  this sect ion mus t  exhib i t  N = 1 

s u p e r s y m m e t r y ,  j u s t  as the G 2 - i n v a r i a n t  s t a t i ona ry  po in t  of  the N = 8 po ten t ia l .  In  

the  r e m a i n d e r  of  this sect ion we will (par t ia l ly)  verify this result .  

I n  o rde r  to wr i te  d o w n  the s u p e r s y m m e t r y  t r a n s f o r m a t i o n s  one  mus t  first de- 

t e r m i n e  the  s i e b e n b e i n e  e,fl  c o r r e s p o n d i n g  to (2.21). In  a special  SO(7) gauge em ~ 

takes  the  f o r m  

o a 1 ^ ^ a  e m U ( y ) = f l / 2 [ ( e . ,  - ~ m ~ ) +  H ,~.,,f; ] ,  (3.28)  

or  e q u i v a l e n t l y  

(3.29)  

N o t e  tha t  we cou ld  have ass igned an  overal l  m i n u s  sign to (3.28)-(3.29) ,  b u t  as it 

t u r n s  ou t  this  s ign does no t  affect the ca l cu la t ion  that  we are a b o u t  to present .  W i t h  

the  a b o v e  d e f i n i t i o n  the field s t rength  (3.18) can  be  eva lua ted  for flat  indices.  The  

r e l e v a n t  q u a n t i t y  is 

f abc 1 defg  m n n q r  ~ , E a b  c e d e e e f  t, e g  P m n p q  

= f  3 / 2 h o { h l S . b c + ( H _  3 h l ) ~ l . S h d a U  + ! h  ~ c d e f ~ g  ~"2W, h,de/g~ ~ } .  (3 .30)  
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In order to have supersymmetry, the following condition must hold [11]: 

3 . a - l b  ! l - , a b c F  b ,e++~l ,  l v ~ A - ' / 2 { f z ~ z + z v / 2 , r S  ~ A-'bbZ~+12-- .,b,.}e = 0 .  (3.31) 

Here __/), and "],, are the derivative and y-matrix in the AdS background, and E+ (e ) 
are the positive (negative) chirality components of the supersymmetry transforma- 
tion parameter. From (3.31) one proves an integrability condition, which after using 
(3.10), (3.11), (3.20)-(3.27), takes the form 

{C+,G~" %r~,+ i[DS~t,c + E~aSbc~U + Fe,,,c~4gS"~@]F ~'c } e+ = 0 ,  (3.32) 

where 

C --~ 2 ° H 4  - ~ n  2 - 2 3 ,  

D = 2 H - l h 1  - 1 2 i p H - l h 2 ( 3  - ~)(1 -- n 2 ) ,  

E = 7 6 + ~ H 2 - 6 H  lhl + 36ipH l h 2 ( 3 - ~ ) ( 1 - H 2 ) ,  

I • I F = _~H l h  2 - 18tpHhlV(21 + ~)(3 - ~) , 

= T- 201/1 + 2413 ~ H 2 ( H  2 -  1), G p2= 55_ (3.33) I08 - 

The _+ factor refers to the sign choice made for the Freund-Rubin parameter f,  
which has been exhibited in table 1. 

Subsequently we make the following ansatz for ~+: 

+ , ~  ro)~,  e+ = (A " ^~ (3.34) 

where A and B are complex functions of ~ and the spinor qp(x, y) is the direct 
product of the positive chirality component of an AdS Killing spinor and an S 7 
Killing spinor, i.e. 

(Om - t im7Fm)ep(x ,  y)  = 0 (3.35) 

(note the sign difference with (2.5)), which is chosen such that the parallelizing 
torsion S,h c reads 

S,b c = i~ F, hce# . (3.36) 

With this choice there is a large number of identities for products of S,h ,. and % 
which have been given in ref. [12]. Using these identities, (3.32) reduces to a simple 
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form, and is satisfied provided the following relation holds: 
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(144F) 2 -  G 2 = (C + 6 (E  + 7D))(C + 6 ( E -  D ) ) .  (3.37) 

Substituting the values (3.33) for these coefficients and using again (3.21) it turns out 
that (3.37) is indeed satisfied. This shows that there is one residual supersymmetry 
left. Further evaluation of (3.32) fixes the ratio B / A  in the ansatz (3.34), so that the 
supersymmetry parameter e+ is determined up to an unknown function of ~: 

e+cc [C - 6D + 6E - ( 1 4 4 F  + G ) i g " F , ]  ~2. (3.38) 

A full verification of supersymmetry now requires solving a second first-order 
differential equation but now with respect to the extra coordinates y ' .  This 
consistency check, which will not be performed here, fixes the y-dependence of the 
proportionali ty function in (3.38). 

4. Differential geometry and the G~ solution 

Our purpose here is to obtain the G 2 solution in terms of the structures 
introduced in [18], and derive explicit expressions for the fields in terms of the more 
usual polar coordinates of S 7. It was shown in [18] that the most general G 2 

invariant metric ansatz for d = 11 supergravity is 

d s 2 = o 2 ( O ) d 1 2 ( x ) + p 2 ( O ) d O 2 + o 2 ( O ) s i n Z O d ~ 2 2 ( y ) ,  (4.1) 

where d l2 (x )  is the maximally symmetric space-time metric, and d~?62(y) is the 
metric on a unit round S 6. The metric (4.1) actually has SO(7) + invariance. Also note 
that, motivated by [8], we have introduced a function 01(0) which, while redundant 
from the point of view of parametrizing the metric, greatly simplifies the solution. 

The ansatz for FMNPQ is constructed from tensor fields on S 6. Let ~7 i denote the 
covariant derivative on a six-sphere of radius 1 / m  (throughout this section i, j ,  k, l 
will denote six-dimensional world indices, and i', j ' ,  k '  and l '  will denote the 
corresponding tangent space indices). Our gamma matrix conventions are 

{ F~,, F;, } = 28,9, ,  F o = iF1. . .  F 6 , (4.2) 

hence one may take F, (a = 0, 1 . . . . .  6) to be purely imaginary and skew symmetric. 
The Killing spinor equation on S 6 is 

(V', + ½imP,)X = O, (4 .3)  

which has eight solutions for either choice of sign, but such solutions are simply 
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related by multiplication by F 0. These solutions transform is in the spinor 8 of the 
SO(7) + isometry group of S 6. 

The complex structure and torsion tensors of [18] may be written in terms of a 
single spinor solution, X, of (4.3): 

Fij = _ iYf FoI ' i jX , 

Tl j  k = tYi Fjk  = -T- m 2  FolPi jk  X , 

Si j  k = ~ e i j k ; , , , T  `ran = T i rny fFi jkX .  (4.4) 

The arbitrary sign comes from (4.3). Since these quantities are determined in terms 
of a single spinor of SO(7) +, their isometry group is obviously G 2. One may view the 
quantities in (4.4) as simply the projections of the parallelizing torsion, S, ,np [7], of 
S v onto S 6. 

By Fierz reordering, one may establish the following identities: 

f ,  f S X  = - iroF,  X ,  

T jkFJkx = _+ 4mFo~ x , 

S ; j k F J k x  = -T- 4 i m F ~ x .  

The most general G2-invariant ansatz is then [18] 

( 4 . 5 )  

~jk, = 12f1(0) FIi;Fk;] ,  

Fo,~ = f~(0)~jk +f3(o)s;jk, (4.6) 

along with (3.3) and (4.1). The Bianchi identities require that f3(0)=./1'(0). There 
are three Maxwell equations, two of which reduce to the requirement that f2 = 

- 2 f o - a o l f D  and the third yields 

where p = p2sin0. 
The Einstein equations are 

( 4 . v )  

I-2 -8~2 492 

8 2 R o o =  - [ l o - g f  2 q- 3 g  - 16p gf2],  

= _  - 2 2 1 6 .  ~j?]  ( 4 . 8 )  
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where 

g=-- [ p l p 3 s i n 3 0 ] _ l [ 4 f 2  ° 8 0 2 #  + ( f { ) 2 ] l / 2 .  (4.9) 

The curvatures of the metric (4.1) are 

1 { 3  o "  o 'O ' l  
- -  - - ( p ] + o ' : ) ~  

R~,. = p] o2 o o Pl 
+ 6 g,~, 

R o o = p ~  3 - - + 2 - - - - - p  o P~ 3 - -+20  ' 

R i j = -  (021-0  '2) P + - - - - - 4  gij. 
Pl P P Pl 

(4.10) 

It was shown in [22] that the SO(7) + invariant solution [8] can be obtained by 

taking 

f l  = O, o = ½v /3a lX  1/3, Pl = al X1 /3 ,  P2 = a l X  t /6,  

X-= 1 - 4sin20, a 6 = 6~0f2. (4.11) 

Recalling that the G 2 critical point of the scalar potential of the gauged N = 8 
theory occurs when the scalar expectation value is simply a linear combination of the 

expectation values at the SO(7) + and SO(7)- critical points, one might expect the O 2 

compactif icat ion to be a superposition of the Englert solution [7] onto a metric like 
(4.11). Accordingly, we take the ansatz 

Pl = al X1/3,  02 -~ a2 X-I~6,  o = a3X  1/3 , X ~  1 - l sin20 (4.12) 

(this ansatz is essentially the same as (2.21) and (2.22)). 
One can eliminate f (  and g2 from the right-hand side of (4.8) to obtain a 

consistency check on the ansatz (4.12). It is satisfied provided 15(a1/a3)  2 - 3 0 / -  44 
= 0. To obtain the correct ansatz for f l ,  we once again use the Einstein equations 
but this t ime to eliminate all but f~. One finds that one must take 

f a ( ~ )  = k X  lsin40 (4.13) 

for some (determined) constant k. One may then check that the remaining Einstein 
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equat ion  and  the Maxwell equation (4.7) are satisfied provided that 

l = } a 2 a , ,  a 2 _ 5  2 , / ~ - a  3 211 X ~ 3 f  2 . ( 4 . 14 )  
, = - - g a l ,  k =  V3O 1, a6 54 

C o m p a r i n g  this with the observation made after (3.8), we see that l = - 24/3 and that 

(4.14) coincides with the solution given in sect. 3. For  comparison,  the Englert 
solut ion s imply has fa = k'sin40. 

It  was shown in sects. 2 and 3 exactly how this solution may be interpreted in 

terms of  the four-dimensional  N = 8 theory obtained by consistent t runcation on the 
round  S v. The  function o = A-  1/2, where A is the determinant  of the per turbat ion of 

the siebenbein (2.2). If one is compact i fying to d dimensions one simply takes 
o = A  -1/~a-2) [22]. This is precisely the Weyl rescaling factor that one needs to 

diagonalize the scalar lagrangian for compactif icat ion on flat manifolds. As we will 

see in sect. 5, the rescalings of the seven-metric have a beautiful geometric interpreta- 
tion. 

5. The non-linear metric ansatz 

In sect. 2, the metric ansatz for the SO(7) + and G 2 invariant solutions was 

cons t ruc ted  by exploiting the relation between d = 11 supergravity, compactif ied on 
S 7, and N = 8 supergravity in four dimensions. Based on the evidence that we have 

presented so far we conclude that the truncation of  d = 11 supergravity on S 7 to the 

massless sector is, in fact, identical with gauged N = 8 supergravity in four dimen- 

sions. Therefore  it should be possible to write down the metrics (and, eventually, the 

field strengths) directly from the vacuum expectation values of the scalar and 
pseudoscalar  fields in the d = 4 theory. In this section, we prove that this is indeed 
possible, at least for the metric, by giving the full non-linear metric ansatz for 

arbi trary  scalar and pseudoscalar fields on N = 8 supergravity. 
As is well known,  the 70 scalars and pseudoscalars of  N = 8 supergravity live on 

the coset space E 7 / S U ( 8  ) and are therefore described by an element ~'-(x) of the 

fundamenta l  representation of E v [13]: 

= I",./'(x) ]. 
v'J"(x) ,,%(x) 

(5.1) 

Here, SU(8) index pairs I/j] . . . .  as well as SO(8) index pairs [IJ]  . . . .  are ant isymme- 
trized and therefore, u and u are 28 x 28 matrices. Complex conjugation is effected 

by raising (lowering) indices, e.g. 

( u i / J )  * = uO u ,  etc. (5.2) 
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U n d e r  local SU(8) and local SO(8), the matrix ~'~" t ransforms as 

~(x) --~ U(x)~(x)O l ( x ) ,  U(x) E SU(8) ,  O(x) ~ SO(S) ,  (5.3) 

where  the matr ices  U and O are in the appropr ia te  56-dimensional  representat ion.  
By means  of such an SU(8) t ransformat ion,  the 56-bein '~" may  be brought  into the 

fo rm 

%"(x) = exp l ,f? a,,i~/ 

where  ¢sj~z is a complex self-dual tensor describing the 70 scalars and pseudoscalar  
fields of  N = 8 supergravity.  

To  find the non-l inear  ansatz for the metric in terms of these fields, we compare  
the SU(8) ro ta ted  version of (2.12) directly with the corresponding result in four 
d imens ions  [4]: 

- i  j - i l k  6 A / J = - - ( u i / J + V i j , j ) ( 2 ~ / 2 e + i , + e k ' ~ , X  • ) + h.c. (5.5) 

Since the SU(8) matr ix  U(x, y), which is implicitly determined as a funct ion of u 
and  e, is i r re levant  for our  purposes,  we repeat  the argument  leading us f rom (2.14) 
to (2.17) in sect. 2, thereby eliminating U(x, y). This leads immedia te ly  to* 

where  

A l ( x ,  y ) g m n ( x  , y )  = l I ~ m I J ( y ) I ~ n K L ( y )  

X(Uo IJ ( x )+u , jZ j (X ) ) (U ' JKL (X )+dJ~ :L ( x ) ) ,  (5.6) 

/ £ " " ( y )  = ib,'(y)~Z(y)F%TJ(y) (5.7) 

are the usual Killing vectors on the round S 7 and we have used the definit ion 

A(x,y)=[detg,,,,(x,y)]l/2 [ d e t g  .... (x,y) 1/2 

det ~m,,(y ) = d e t ~  .... ( y )  (5.8) 

in accordance  with (2.2). Formula  (5.6) is the central result of  this section. Al though 
it can be argued that (5.6) ensures the existence of a consistent t runcat ion of the 
t r an s fo rma t ion  law (2.13) to a / /o rders ,  we will not pursue this line of a rgument  here, 
but  ra ther  recalculate the metric  ans~itze directly in terms of the d =  4 vacuum 
expec ta t ion  values as evidence for the correctness of  (5.6). We are thus interested in 
the G2- invar iant  configurations.  The most  general vacuum expectat ion value con- 

* Note that this expression is symmetric under the interchange of m and n because [13,4] 
IJtj  __ ij KL KLi] __ ~ K L  lg lJ i ju tJKL -- U UKLt! -- t.tlj lltj -- UIji jU " -- Oij , 

11IJ i juKLt j  u I J i j u K L t ]  ~ O. 
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sistent with this symmetry can be parametrized as 

1 ] ~ k [ * ' ~ l J K l .  ~). (5.9) (eOt j~L)=~V~ ~c+ cosc~+iCtJKLsin  

In order  to describe the 56-bein for this scalar expectat ion value, define 

D , 5 ~  =- ½ ( C +"MNC MN,~,~ + C "M~C~+~'~'~'.) , (5.10) 

and observe that  

+ _ {x J-I (5.11) D I J K L  - -  231, Xs 1 , 

where  X is a real symmetric traceless matrix which, in a particular basis, takes the 
form 

X / =  diag( - 1 . . . . .  - 1 ,7 ) .  (5.12) 

Let  

p -= c o s h ( ½ ~ X ) ,  

c--- cosh( X), 

Then  one can show that 

q - s i n h ( ½ ¢ ~ - X ) ,  

s --- sinh(~-2 X),  v - c o s a .  (5.13) 

u ta~L(~ ,  a)  = 2pSSffL + ½(1 + cos2a)pqZC*+ JKL 

+ ½(1 - cos2e~)pq2C IJKL- ¼i s in (2a)pqZD IJxL , 

VtJKL(~, a)  = ½(3e i~ + e -  3ia)q38 l J  + coso~p2qC1+ JKL 

- - i s inap2qCtJKL+ ~(e i" -- e-3i")q3D1+ ~xL . (5.14) 

The  simplest way to compute  this is to observe that C+, C_ and the SU(8) generator  
i X /  gene ra t e  an SU(I ,1)  subalgebra of E7C7~. This is, of course, the unique 

subalgebra commut ing  with G 2. 

In this parametr izat ion the scalar potential,  V, and A?  tensor [4, 6] are 

V =  292{(7v a - 7v 2 + 3)c3s 4 

+ (4v 2 -  7) vSs v + cSs 2 + 7v'c2s 5 -  3c3},  (5.15) 

A~J = d i ag (z l , . . .  , zl,  z2) , (5.16) 

z l = _ p V + 6 p 3 q 4 + p , q S e 3 , , + ( q V + 6 p a q 3 ) e  i~+p3q4 e 4i~, (5.17) 

z2 =_ p7 + eVi~q7 + 7( p3q4e4'" + p4q3e3'"). (5.18) 
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There are three non-trivial critical points characterized by 

s o ( v ) - :  = = , :  = v =  - d g : ,  

z 1 = z 2 = 3 ( 2 + ! / ~ ) 1 / 2 { 1  + V ~ -  i ( 7 -  3V/5)}, (5.19) 

SO(7) + : a = 0, s 2= ½(3~-s- 1), c 2 =_(~ 3~f~-51 + 1), 

V = - 2 X 5  3/4g2, Z l = Z 2 = 3 X 5  s/a, (5.20) 

G 2" s 2= ~(¢~-- 1), c 2 = 1(3 + 2v~-), v 2 = ¼(3 - ~fJ-), 

V =  2~ ~-31/4g2 1~21 ~ v - - -  - z l @ z  2 .  ( 5 . 2 1 )  
' 6g2 ' 

The N = 1 supersymmetry of the G 2 solution follows from the observation that 
Iz2] 2=  - ( V / 6 g  2) (we have not given zl and z 2 explicitly; they may be obtained 
from (5.13), (5.17), (5.18) and (5.21)). This identity means that the spinorial equation 
84,~ = 0 can be reduced to the Killing spinor equation on the anti-de Sitter space 
with cosmological constant equal to V. Note that because z 2 is complex, the 
supersymmetry generator is related to the four-dimensional Killing spinor through a 
chiral SU(8) rotation generated by iX/ .  The details of the SU(4) critical point will 
be discussed in an appendix. 

We now observe that the tensor appearing in (5.6), 

M I J K L  ~- ( lgij IJ -q- UIjIJ ) (  IdIJKL --~ u i jKL ) , (5.22) 

may be rewritten as 

= Re(u; jKL+ V)j~L ) , (5.23) 

where u' and v' are the u- and v-matrices of the 56-bein evaluated at 2qS,/kt instead 
of qsok/. This "double angle" formula is trivial to see if one goes to the symmetric 
gauge and uses the parametrization of ref. [4], appendix. 

Thus M~jKL can be obtained by taking the real parts of (5.14) and replacing p and 
q by c and s, respectively. Note that D does not contribute since it is skew 
symmetric under interchange of IJ with KL. Furthermore, when C is contracted 
i n t o  K~aZJKb) KL it vanishes because the duality phases are opposite. Similarly, a little 
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calculat ion shows that  

I J K L " ~ a  aXb 

= 23~6X/1 + 2X/~IGbrl J. (5.24) 

The  first t e rm vanishes because X /  is a symmetr ic  traceless tensor. Thus it is only 
the coeff icients  of  3~ L and ~+g"IJKL in (5.23) that  are relevant  for our purposes.  These 
are respect ively 

a t = 2(c  3 + 03s3), a 2 = cos(c + vs). (5.25) 

F o r  the SO(7) solution we have a 2 = 0 which once again explains the absence of 
met r ic  dis tor t ions  up to an overall factor  in Englert 's  solution [7]. 

F o r  the SO(7) + and G 2 solution, we have f rom (5.19), (5.20) and (5.25), 

a k 2 = [ ¼ for SO(7) + 
(5 .26) 

al  ~ ~ for 6 2 . 

Subst i tu t ing the first value into (5.16) and using the definit ion (2.6) together with the 
first re la t ion in (2.8), we obtain 

A lgo'n = a l (  ~ . . . . .  ~ .... ) 

= ~ a  1 [ ( 9  - ~ ) ~  .... + (21  + ~)~"'~"] 

= ~½a~ [(9 - ~) (~" '~  - ~ ' ~ " )  + 30~"@' ] ,  (5.27) 

which is precisely the result obta ined before for the SO(7) + solution. Similarly, the 
second value in (5.26) yields 

= ~lsa x [(15 - 4)( g . . . .  ~"~") + 36~"~"], (5.28) 

which is the correct  metric for the G 2 solution. 
It  is also s t ra ightforward to recover the metrics of the G 2 and SO(7) + invariant  

solut ions in the forms that  were given in sect. 4. In order  to accomplish this we use a 
technique which often greatly simplifies calculations of  quanti t ies involving Killing 
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vectors.  On the n-sphere there are (n + 1) scalar fields, 4,A which satisfy 

/)m/) 4, a = -~, ,n4,  A , (5.29) 

4,A4,~ = 1, (5.30) 

4,~&4,~ = 0 ,  (5 .3~)  

Om4,A bn4, A = -}- ~mn , (5.32) 

&,4,~b-> ~ + 4,"4,~ = a " ' ,  (5.33) 

and the Kil l ing vectors may  be writ ten 

/< .~ .  = ~ (4 ,%,4 ,"  - 4 ,%,4,~ ). 

I f  the S"  has radius r and is embedded  in R "+1 one can identify r4, a 

car tes ian coord ina tes  x A. 

(5.34) 

with the 

F o r  S 7 the two expressions (5.7) and (5.34) for the Killing vectors are related by 
triality. (There  is of  course a third expression for the Killing vectors which is the 
same as (5.7) but  with spinors satisfying the Killing spinor  equat ion of the opposi te  
sign.) Thus  

is _ AR (5.35) K m - ( I ~ I J ) A B K  m , 

where  we take ss ( F  )AB= iFSAn  . 

Next  we observe  that 

AB FIJAt#PI ' IcD = 168CD , (5.36) 

c IJKL~, IJ  F KL = q ' ~ a l C y  DI (5.37) 
+ ~ AB-- CD °~V[A~*B] ' 

where  XA B is equivalent  to (5.12). Therefore  

A - l g m n - -  1t ~,IJ ~ plJKL'~ mlJKnKL 
-- g~alOKL "4- u2v + I K 

m A B  n 2 [ a l K  K A B  + 2 a 2 X A , K m A c K n B C ] .  (5.38) 

I t  is trivial to s implify this expression using (5.29)-(5.34). One obtains  

A - t g m n = a l [ (  1 - 2 a 2  -~1 ) ~212 ° ° ] - -  + 8 4, 2 ~ ,""  + 8 D " 4 , D " 4 ,  , (5.39) 
al 
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where  ~ = e08, which we identify with x 8 / r  = cos 0 in R 8. In this case 

A 1gin"= 8ax(1 + 6 a 2 ] [ ( 1 - l s i n 2 O ) ~ , m ' + l b " % D n e o l , a l  J 

where 

F r o m  the defini t ion of a we have 

and  using the fact that  

one  obta ins  

(5.40) 

8 a  2 
l = - -  . ( 5 . 4 1 )  

a x + 6a 2 

- - i  m n  ° d e t ( a  g g , , p ) = A  -9 ,  

/ ) p ~ - b P ~  = 1 - ~ 2 = s i n 2 0 ,  

o - 2 =  A = [8(a  I + 6a2)  ] -V9(1  + l s in20)  -2/3 

(5.42) 

(5.43) 

(5.44) 

g , , ,  = [8(a  1 + 6a2)]2/9(1 - / s i n 2 0 )  1/3[~,, n - IDmeOl)~¢O]. (5.45) 

F r o m  (5.43), one sees that  (/)eq~)dy p = sin 0 dO, and thus (5.45) is equivalent  to (4.1) 
and  (4.11). Indeed  substi tuting (5.26) into (5.41), we obtain  l =  4 and l =  3 for 

SO(7) + and G 2, respectively. 
Perhaps  one  of the more  surprising features of the metric  (5.45) is that, apar t  f rom 

the overall  scaling by (1 - l sin20)-1/3, the metric  is that  of an ellipsoid embedded  in 
a flat  R 8. M o r e  generally, consider the surface 

a 2 b2 t 2 + - . .  + x ~ + 2 ) = 1  (5.46) 

in R ~+2 with a flat metric. In t roduce  polar  coordinates  with x 1 = rcos/3. Then 

ds  2 = d r  2 + r2d/3 2 + r 2sin2fl d~2,2,, (5.47) 

where  d r / ]  is the metric  on S n. On the surface (5.46) one has 

r = a (1  - lsin2fl)  -1 /2 ,  (5.48) 

where  
b 2 =  1, 

sin 0 = r sin/3. After  a little algebra one finds that  the metric  (5.47) on the surface 

l =  ( 1 -  a V / b 2 )  = ( 1 -  e2) ,  and e is the eccentricity of the ellipsoid. Take  
a 2 <  1, in which case r~< 1, and introduce a new coordinate,  0, with 
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(5.46) reduces to 

ds 2 = (1 -- l sin20) dO 2 + sin2Od~22 , (5.49) 

which is precisely the form of the metric in the curly brackets of (5.45). Therefore, 
except for the conformal factor, the G 2 and SO(7) + invariant solutions have 
seven-metrics which are those of ellipsoids of eccentricity ~/~- and q- ~/~, respectively. 
Similarly, the inhomogeneous compactifications of eleven-dimensional supergravity 
based on S 4 and of chiral ten-dimensional supergravity based on S 5 [22] can be 

described in terms of ellipsoids. 
The description of the internal metric in terms of ellipsoids is not merely restricted 

to these critical points. We now show that, at the least, when all the pseudoscalars 
are set to zero, the general metric ansatz (5.6) reduces to that of a positive-definite 
quadratic surface, and moreover we will give a geometric interpretation for the 

overall conformal  factor. 
If  one takes the 56-bein in the symmetric gauge with all the pseudoscalars equal to 

zero, then it is an element of SL(8,R) acting on a direct sum of its 28 and 28 
representations. Furthermore, in these circumstances [13] 

I~iJcD ( lgiJlj  ~- u i j IJ  ) I~IJA B = 4S[A[CSB] D]' 

where SA 8 E SL(8, R) acting on the eight-dimensional representation. Define 

F I J ~, K L ]ill 
M A B C D  ~ ~ A B ~  CD~'~IJKL 

= ½(MAcMBD--MADMBc) ,  

where MIjKL is given by (5.22), and 

(5.50) 

(5.52) 

A lgmn _ 1 Aft l id j~mABlg 'nCD (5.54) 

Take a system of cartesian coordinates, x A, in R 8, and let S 7 be defined by 

XAXA = r 2. (5.55) 

If  T A c  is any tensor field in R 8, it may be viewed as an extension of some tensor 
field on S 7 if and only if all of its contractions with the normal vector, x B, vanish on 
the surface of S 7. With this in mind we may extend the tensor field gmn,  ~, .... and 
K ABm onto R 8. (The indices rn, n , . . . ,  are now viewed as running from 1 to 8.) 

It follows f rom (5.6), (5.35) and (5.52) that 

MA8 =-- S  SS. (5.53) 
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Indeed, we take 

and thus 

B. de Wit et al. / N = 8 supergrat~i O, 

/ mA. =_2 (xAs. _ x.sAm) 
r 2  

= 8 ,~ _ l_ xmx~ ' 
r 2 

(5.56) 

(5.57) 

O pahy ,yb ) ,  n ~ - - ~ - - (  (5.64) 
" Oy" 

h,. =- (nPnP) -1/2 (5.65 t n m ~ ~ I n  m . 

From (5.55) and (5.59) the surface, S 7, is defined by 

p ,~y , yh  = r 2" (5.66) 

However, in this new cartesian system, the surface is an ellipsoid ( P =  s T s  is 

where 

A - l g m n = ~ [ ( M A B x A x S ) M , , ~ - - ( M m A x A ) ( M n s x B ) ] .  (5.58) 

Change coordinates to a new cartesian system, y A,, defined by 

y A ' =  S-1A,BXB (5.59) 

Remembering to act on the indices of gmn with (Oym'/OXm), o n e  finds that in this 
new coordinate system 

= _  6 m , , ,  pm'Vyp')(pn'q'yq' , (5.60) 
?,2 

where 

pro,, ,= Sp,m,Sp,,,, (5.61) 

g2 = p,~, p,pm, q,yp,yq, . (5.62) 

Dropping the primes on the indices, one finds that 

a - l g  m" = It2 [8 . . . .  h~h "1 (5.63) 
1.2 
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positive definite). Moreover, (5.63)-(5.65) show that the new metric, g ' " ' ,  is propor- 

tional to a flat cartesian metric projected onto this ellipsoid. 
The determination of A from (5.63) is a little non-trivial. From (2.2) we have 

~5 9=det[~r(,A tg,,,,~,,,p)], (5.67) 

where rr is the projection operator onto S 7. The trick is to observe that this is 
equivalent to taking the 8 × 8 determinant 

...... + 
oet[la g g,,p r ~ ] -  . ( 5 . 6 s )  

A straightforward calculation yields 

and therefore 

gin,, = ( r~-~)1 /3[~ , , , , -hmh, , ] .  (5.70) 

Once again, one may check the consistency of this. At the SO(7) + critical point 
SA R = diag(e -~ . . . . .  e - t , e  vt) where e 16~= 5. This leads to/~z = [1 - ~ sin20] as before. 

Thus we have not only shown that the metric is proportional to that of an ellipsoid, 
but have also given a geometric interpretation of the scale factor/~-2/3 in front of it. 

Since the scalars of gauged SO(5), N = 4, d =  7 supergravity [23] all lie in 
SL(5, R) (which play the same r61e as SL(8,R) for the N = 8, d = 4 theory), the 
complete ansatz for the scalar fields in the S 4 compactification of d = 11 supergravity 
is to use the simplest ellipsoidal distortions of S 4, along with conformal factors # 
and A. 

6. Conclusions 

The results of our analysis of several solutions of d = 11 supergravity represent a 
further step towards a better understanding of the embedding of gauged N - - 8  
supergravity into the full eleven-dimensional theory. The central input in our 
analysis was the requirement of consistency of the supersymmetry transformation 
rules which encompasses other notions of consistency. Guided by this requirement 
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we were led to the non-linear metric ansatz. We believe that, after the analysis of the 
supersymmetry transformation rules in an SO(7) invariant background in [11], our 
results constitute another rigorous argument proving the equivalence of gauged 
N = 8 supergravity and the S 7 compactification of d = 11 supergravity, at least for 
certain field configurations. At the same time, they have enabled us to concisely 
define the meaning of equivalence. In contrast, arguments based on the existence of 
solutions in d = 4 and d = 11 dimensions with the same symmetries are not very 
stringent since there could be accidental degeneracies for such solutions. On the 
other hand, we have shown how to construct d = 11 metrics directly from their d = 4 
counterparts,  at least for the critical points with SO(7) +-, G 2 and SU(4)-  invariance. 
Although we have not investigated the SU(3) × U(1) extremum of N = 8 supergrav- 
ity, we are confident that the methods described in this paper will yield yet another 

solution of d = 11 supergravity with SU(3) × U(1) symmetry distinct from the one 
found in [24]. 

Evidently, our results are also significant for the interpretation of spontaneously 
broken solutions of d = 11 supergravity. The explicit formula (5.6) for the non-linear 
metric ansatz serves to illustrate certain misconceptions that may arise from an 
analysis in terms of the small fluctuations only. At the linearized level, the metric 
ansatz takes the form [5, 20] 

gin,( x, Y) = g,m,(Y) + A'J~t '(X)[ I£1mS(Y)k,~, L(Y)  -- ~g,m,(Y)KP'J(Y)I~pKL(Y)] , 

(6.1) 

where the self-dual t e n s o r  A I J K L ( x )  describes the 35 scalar fields of N = 8 super- 

gravity. Eq. (6.1) is nothing but the expansion of (5,6) to lowest non-trivial order. 
F rom (6.1), one might be tempted to conclude that the metric deviations only 
contain the scalar and not the pseudoscalar excitations, but inspection of (5.6) shows 
that this is false. In fact, it was already pointed out in [11] that, even if only the 
pseudoscalars of N = 8 supergravity are switched on, consistency requires the metric 
to be distorted. Formula (5.6) precisely describes how this comes about. The SU(4) 
invariant solution [9] provides another excellent example of this. It corresponds to a 
purely pseudoscalar expectation value, and yet the internal metric is that of a 
stretched S 7. In the appendix, it is shown that this stretching is precisely accounted 
for by (5.6). 

It  is obvious from (5.6) that the metric has a more general y-dependence than is 
lJ KL is projected suggested by (6.1), where only the self-dual part  in the product K m K n 

out. Similarly, the y-dependence of the internal field strength Fmnpq no longer 
coincides with that of the linearized pseudoscalar fluctuations. This was also 
confirmed by an analysis of certain bosonic modes on the parallelized S 7 in ref. [26]. 
Following the interpretation proposed in refs. [15,25], which was based on an 
analysis in terms of linearized fluctuations only, one would be led to the conclusion 
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that previously massive modes have acquired a non-zero vacuum expectation value 
and hence the deformation is no longer within the N = 8 truncation. Again, our 
formula shows this interpretation to be false. Similar considerations apply to the 
appearance of new massless states. The N = 1 residual supersymmetry of the G~_ 
solution implies the existence of a massless gravitino whose y-dependence coincides 
with that of the supersymmetry parameter. Analyzing this y-dependence in terms of 
the harmonic modes on S v, one arrives at the conclusion that the new massless state 
is a superposition of previously massive gravitinos, whereas our arguments show that 
the breaking occurs within the N = 8 truncation. Such a misidentification is caused 

by not taking into account the field-dependent SU(8) rotation on the fermions that 
is required for consistent transformation laws [11]. Of course, these considerations 
do not exclude "level crossing" in the sense that previously massive states, which do 
not correspond to pure N = 8 supergravity, become massless [20, 25]. However, our 

analysis shows that a knowledge of the full non-linear structure of the theory is 
indispensable for a proper understanding of this phenomenon. Attempts to use the 
linearized Fourier analysis and the representation theory of subgroups of SO(8) in 
order to classify modes in other compactifications than the round S v are doomed. 

There remain several problems to be solved. The most important of these is to 
correctly identify the non-linear ans~itze for the other fields of d = 11 supergravity, 
but this will be more difficult than for the metric. For the internal field strength or 

the potential, we have found that the following expression seems to be relevant: 

X~h, ( x,  Y) = Hl'( y ) Fiab~lJ( y )~lX( y )~l~lt~( y ) 

× [ ( x )  - (6.2) 

Eq. (6.2) is completely analogous to (5.6) and is the only expression in terms of u 
and u which is SU(8) invariant, has the correct SO(8) structure and correctly 
reproduces the linearized fluctuations of refs. [5, 20]. 

There may also be a geometric method for obtaining the correct ansatz for the 
potential, A .... p. It was observed in [9, 27] that the field strengths and the potentials 
for the SO(7)-  and SU(4)-  solutions of the eleven-dimensional theory were the 
projections onto S 7 of constant tensors in R s. It may be that the appropriate ansatz 
for combined scalar and pseudoscalar expectation values involves the projection of 
constant tensors onto ellipsoids. One obvious approach is to write the 56-bein in the 
gauge 

~,= '~v~:~ p'~'; T , (6.3) 

where "~'~ is a purely scalar 56-bein and "~'p is purely pseudoscalar. The matrix %~ 
would then describe the siebenbein of the ellipsoid, and %'p would define the 
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constant tensor field to be projected onto the ellipsoid. Finally, as in the SU(4) 
solution, c% might induce a constant rescaling of the ellipsoid's siebenbein. If these 
conjectures (or something similar) are correct, then the complete non-linear ansatz 
will reduce solely to the consideration of purely space-time-dependent quantities in 
R s, and the consistency proof will be as trivial as that for dimensional reduction on 
tori. 

Two of us (H.N. and N.P.W.) thank the organizers of the 1984 Aspen Workshop 
on Higher Dimensions where this work was begun. N.P.W. and B.d.W. are grateful 
to the CERN Theory Division for hospitality and financial support. 

Appendix 

C O N S I S T E N C Y  O F  T H E  SU(4) I N V A R I A N T  S O L U T I O N  

The SU(4)- invariant critical point occurs at a purely pseudoscalar expectation 
value eoij~:i_ = ½~2 Yi-JKz~ where 

Y i J K L : i [ , ~ 1 3 5 7  ~2468 at_ .~1368 _ R 2 4 5 7  
[ V l J K L  - -  V l J K L  ~ I J K L  V l J K L  

+ R145~ _ _ + .~ 2367 ,~ 1467 R2358 l 
~ I J K L  ~ I J K L  ~ I J K L  ~ I J K L ]  ", 

s i n h ( ~ h ) =  1, cosh( CUb)= ¢2 .  

(A.1) 

(A.2) 

Considered as a matrix, Y[JKt~ has three eigenvalues: 0, + 2 and - 2, with multiplici- 
ties 16, 6 and 6, respectively. It immediately follows that Y satisfies 

Y, jKLYKt.MNYMNPQ = 16Y, jpO. (A.3) 

Moreover, 

W I J M  N ~ 1 Y I J K L Y K L M N  

where 

0 1 
- 1  0 

= 4 ~  M N  _ 4 F [ I [ M F ~  NI ' 

0 1 
- 1  0 

0 
- 1  

1 
0 

0 
1 

- 1  
0 

(A.4) 

(A.5) 
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In symmet r i c  gauge, the submatr ices  of  the 56-bein are simply 

sinh(½ V~-XCW ) 
u i J t j = c o s h ( 1 2 ~ k l / ~ ) ,  O i j l J =  i ~ f ~  Y . (A.6) 

However ,  W I J K L W K L M N  = 8 W I J M N  , and so it is e lementary  to obta in  

uiJ t j  = ( c  + 1)3; .{-  ( c -  1) F~[iFjIA , (A.7) 

v ` j ' =  ½isYif l  , , (A.8) 

'~V _= sinh(¢l h).  (A.9) 

The  tensor  MIjKI ., defining the metric, can now be read off  f rom (5.6), (A.7)-(A.9):  

MIJKI  - = 2 c 2 3 ~  J. - 2( c 2 - 1) F[I[KFj] LI (A.10) 

= 43~: J. - 2F~I~eFsl q (A.11) 

at the critical point .  Hence  

a lg,,,,, = 4# .... l F F I( mlJl~ nKL (A.12) 
- -  4 "  I K *  J L * "  *" 

= 4~, .... + ~ [3Ui}jF, v,.l + F,  j F , . c ]  K " ' J R  ''KL (A.13) 

= 4~, .... - 2 K " K " ,  (A.14) 

where  

K " ' =  ¼Fij[~ m'J . (A.15) 

The  second te rm in (A.13) vanishes because F i u F x r  1 has opposi te  duality phase to 
liJ KL] K,,  K,, . By Fierzing, and using the duali ty of F i } j F K c  1, one can show that  

K " K , , ,  = 1, that  is K "  is a Killing vector  of unit norm. Indeed,  if one were to embed  
the unit  S 7 in R ~, with cartesian coordinates  x A, one can show that  K m =  F+mAx A 
where  F + is identical  to F except that  F ~  = - F ~  = -FTs .  Such a Killing vector  
m a y  be chosen as par t  of  an average vielbein on the round S 7, in which case the 
remain ing  inverse sechsbein, ~ "  defines a CP 3. This is the s tandard  U(1) H o p f  
f ibrat ion over  CP 3 with total space S 7. The metric corresponding to the SU(4 ) -  
critical po in t  is therefore 

~m ~¢1 g .... = 4 A  E e pe p + ½ K " K "  , (A.16) 
p=l  
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or  {6 / 
g,,,~ = 4A 1 E ePn, OPn q- 2KINK, ,  " (A.17) 

p = l  

This is the metric of the stretched seven-sphere which was used to obtain the SU(4) 
compactification of eleven-dimensional supergravity [9], Note that as in ref. [9], the 
U(1) fibre is stretched by a factor of v~.  
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