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O. Introduction 

We consider the equilibrium surface of a liquid of fixed volume in an upside 
down capillary tube. Let ~ c l R " ,  n > 2  be the cross-section of the tube and 
assume that the top of the tube and the equilibrium surface can be represented 
as graphs of functions q, and u on ~2. Then the physical principle of virtual 
work leads to the consideration of the energy functional 

Eft)  = ~ (1 + IDvl2) ~/2 dx - -~  [. v 2 dx + ~ fl v dH .  (0.1) 
z y 2 ~Y~ - i  

where lc (nonnegative) is the capillarity constant and flEL~163 is the cosine of 
the contact angle between the surface and the cylinder walls. We made the 
physical assumption that there is no contribution to the energy from the top of 
the tube, i.e. that the liquid 'wets '  the obstacle ~k. For  convenience of notation 
we reverse the coordinate system such that ~ becomes the bot tom of the tube 
and the gravitational field is upwards directed. 

Because of the bad term 
K 

v 2 dx  (0.2) 
2 

we can't expect any minimum of E in 

K := H"~ c~{v> r v - , p  d x =  V} (0.3) 
f~ 

where V > 0 is the prescribed volume. 
But we want to show here, that the corresponding variational inequality 

has a global regular solution, if we assume that at least one of the quantities ~c 
or V is small enough. 

Let A be the minimal surface operator  

A = -Di(ai(p)) 1, ai= Pi" (l + ]p[2)- 1/2 (0.4) 

Here and in the following we sum over repeated indices 
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and let the functions 

fie C1,~(0o), 

satisfy the conditions 

and 

H --~ H ( x ,  t ) e  C 1' a(]R. n x ]P~) (0.5) 

OH > 0, = (0.7) 

sup H(x, t) <= b. (1 + t) t > 0 (0.8) 
f2 

where b is some positive constant and H is introduced for greater generality. 
Then we can prove the following main theorem: 

Theorem 0.1. Let 0 be a bounded domain of PC, n>2 ,  with boundary of class 
C2'L and let the functions fl and H satisfy the conditions (0.5)-(0.8). Then the 
variational inequality 

(Au +H(x ,u ) -~cu ,  v-u)>__O for all v~K (0.9) 
where 

(Au,  rl)= ~ ai Dirldx + ~ fitldHn_ 1 (0.10) 
F2 OD 

has a solution ueHl"~(fd)~H 2' 2(~Q)~H2o'c~~ if we assume ~ C 2 ( 0 )  and if ~c or 
V is small enough. The solution has continuous tangential derivatives at the 
boundary and in the case n = 2  we have uECI(~). 

I f  we impose on ~ the further assumption 

-ai(Dtp). ?i> fl on ~ (0.11) 

where 7 is the outer unit normal to Of~, and if ~O~C 3'~, fl~C~'1(~s we have 
u e g  2, ~o(~). 

The proof is essentially based on a special a priori bound for the gradient 
of solutions to the problem 

A u +  H(x,u)=O in 

-a i (Du) .? i=f l  on OQ. (0.12) 

Using ideas of Ural'ceva [18] and Gerhardt [4], we can show that this bound 
does not explicitly depend on [H(., u('))]e. In the second part of this article we 
shall look for a solution to the boundary value problem 

A u - ~ c u + 2 = O  in O 

-a i .~k=f l  on ~f2 (0.13) 

where ,t is some parameter and ~c>0 is small. It turns out that (0.13) has 
always a solution for small ic, provided there is a solution in the case ~ = 0. 

The article ends with a corresponding result for Dirichlet boundary con- 
ditions. 

[ i l l < l - a ;  a > 0  (0.6) 
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The problem of a 'hanging drop' has been considered before by several 
authors, see [2, 11, 12, 14]. 

At this place the author wishes to thank Professor Gerhardt for having acquainted him with 
this problem and for helpful discussions. 

Notations. We shall denote by J" ]r~ the supremum norm on (2 and by II" lip the 
norms of the LV-spaces. 

By c = c(...) we shall denote various constants whereas indices will be used, 
if a constant recurs at another place. 

1. Existence 

For technical reasons we assume 

8H 
- - > z > 0  (1.1) 
~t = 

and let z tend to zero at the end of the proof. By considering the sidecon- 
ditions as isoperimetric, we are led from (0.9) to the following approximating 
problems 

Au+H(x ,u) -xu+2+#O,(u-O)=O in f2 

-ai(Du).yi=fl on O0 (1.2) 

where 2~N, 0</2EN are Lagrange multipliers and O~ is a sequence of smooth 
monotone graphs tending to the maximal monotone graph O: 

0, t > 0  {0, t__>0 (1.3) 
O(t)= [--1,0],  t = 0  O~(t)= _1, t < - e .  

l - l ,  t < 0  = 

We want to obtain a solution to (1.2) by a fixed point argument and so we 
consider the related problem 

Au+H(x,u)-~c~+)~+l~O~(u-O)=O in ~2 

- - a i ( D u )  �9 7 i = f l  o n  ~2 (1.4) 

for any ~6Ct'~(t2). 
From the results of Gerhardt [4, 5] we know 

Lemma 1.1. For all ~Ct '~(~)  and V > 0  there exists 2(~) and u~C2(~), such 
that u~ solves the problem (1.4) and 

- 0 dx-- v. (1.5) 

The solution u~ and the Lagrange multiplier 2(~) are uniquely determined by 
and V. 
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In view of the Lemma there is an operator 

T: c~,~(~) ~ c~,~(~) 
~ u~. (1.6) 

It is our claim to show that T has a fixed point, which would be a solution to 
(1.2). Therefore we want to use the following Lemma ([8], Corollary 10.2): 

Lemma 1.2. Let  S be a closed convex set in a Banachspace B and let T be a 
continuous mapping o f  S into itself such that the image T(S) is precompaet. Then 
T has a f i x e d  point. 

In order to verify the hypotheses of the Lemma we state the following a 
priori estimates, which will be proved in Sect. 2 and 3. 

Theorem 1.1. Let  u be a solution to (1.4), which fulfills (1.5). Then we can take # 
as large that 

u - 0 >  - 3 ~  (1.7) 

where # depends on e and tends to infinity when e tends to zero. Furthermore we 
have the upper bound 

u -  4' < c .  (c + ~:. I~1~) (V+ 8) 1/"+ 1, (1.8) 

the constants depending on H, tp, n, a, f2 and 3f2 but not on 2, #, ~ and z. 

Remark, that as a consequence of (1.7) and (1.8), the term ]u -0 [n  tends to 
zero provided that # tends to infinity and e and V tend to zero. 

Theorem 1.2. A solution of  (1.4)satisfies in the whole domain f2 

log IDul < c + c . (~c . [D ~[~ . Lu- ~91~) (1.9) 

where the constants depend on known quantities but not on 2, #, ~ and ~. 

Now let 
SM-" = {~e C1'~(~)[ IOlc, < M}. (1.10) 

From the two theorems we deduce that we can choose M as large and then 
find constants # 0 > 0 , 5 o > 0  and Vo>0 (resp. ~:0>0), such that for all /~>#o, 
0 < e < e  o and 0 <  V<V 0 (resp. 0<~<~:o)  we have 

T(SM) ~ SM. (1.11) 

It remains to show that T(SM) is precompact and that T is continuous. 
Again from the results in [4] and [5] we see that 2(~) and lu,~[c2 are 

bounded by constants only depending on M, when ~ is in S M. While the 
imbedding from Cz(~) in C1'~(~) is compact we conclude that T(SM) is 
precompact. 

The continuity of T follows from the uniqueness of the solution u~. 
Thus T has a fixed point u=u~, which is a solution to (1.2). Obviously, u~ 

has the right volume 
u~-  0 dx  = V (1.12) 

I2 
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and satisfies by (1.7) 
u ~ - 0 >  - 3 e .  (1.13) 

Letting now e tend to zero and # tend to infinity, we get a Lipschitzsolution u 
of the variational inequality (0.9), since the C 1- norm of u, is bounded inde- 
pendently of e and #. Furthermore, u is also a solution to the variational 
inequality 

(Au+H(x ,u ) -~u+2 ,  v - u ) > O  for all v~H~'~(f2)m{v>g,} (1.14) 

with some parameter 2. 
The regularity of u as stated in Theorem 0.1 now follows from the results in 

[13]. 

2. A Priori Estimates for [uln 

In order to get the estimate (1.7), we multiply (1.5) with 

w = m i n ( u - 0 + 6 , 0 )  6>e.  (2.1) 

Introducing the notation A(8)= {xEOI u < ~ - 5 }  we then obtain by integration 

[. ai(Du)'Di(u-O) dx+ [. flWdHn-l ~- I (H(x'u)--tf'fI)Ar~) WdX 
A(O) or? A(a) 

+#. [, O~(u-~,).(u-tfl+a)dx=O. (2.2) 
A(a) 

Now we observe that on A(6) we have O ~ ( u - ~ ) = - I  since 5 > e  and in 
addition H(x,u)<=H(x,~h) in view of the monotonicity of H. To estimate the 
boundary integral we use (0.6) and an inequality which is proved in ([6], 
Lemma 1): 

S g dH,_l < ~ Ingl dx + c o [. [gl dx (2.3) 
OQ ~ 

where c o = Co(n , 8P). 
We conclude for a11 6 > e 

a. S IDuldx+#. [, O-u-~Sdx<=(l+2[D~[o)[A(6)] 
A(6) .4(O) 

+(IU(.,0(.))la+~l~l~+[~l+co). ~ g,-u-adx 
A(0) 

(2.4) 

where IA(8)[ denotes the Lebesgue measure in RI" of A(6). Choosing now 

#__> p + JH(', ~(  "))1,, + ~c lel,, + l,~l + Co 

we get with the triangle inequality 

[D w[ dx + ft. ~ [w[ dx ~ c(a, n, ID ~[~)" [A(6)[. 

(2.5) 

(2.6) 
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The Sobolev imbedding theorem yields 

[Iwil,/,_~ +~" I]wll~ < c .  11(5)1 for all 6>=e 

and by the H61der inequality we obtain from (2.7) 

(61 -~2)" IA(g)1)1 <= c. IA((~ 2)1 ("+ 1)/, 
and for all 6~>62>e.  

((~1- (~2)" [A(61)[ </~-~ c-[A(62) 

From a lemma due to Stampacchia ([17], Lemma 4.1) we now deduce 

u - 4 /  > - 2 e - c .  IA(2e)[ */" 
and 

(2.7) 

(2.8) 

(2.9) 

[A(2e)] < e .  exp(- /~-(e ,  c)- 1. ~) . IA(e)l. (2.10) 

/~ large enough, we conclude the inequality (1.7). Then Choosing now 
depends on [D4/I~, a, n, ~[~1~, [H(',4/)lr~, ~, )~ and ~. To establish the other 
bound (1.8) we multiply (1.5) with 

v = m a x ( u - 4 / - k , O ) - , 1 - ~ .  S m a x ( u - t p - k , O )  dx (2.11) 

for any k>0.  Observing Svdx=O,  we get by integration 

a'(Oul. D~(u-4/)dx + ~ f l vdH ,_  1 
A(k) 63~ 

+ ~ (H(x, u) - ~c q~). v dx + #. S O~(u - 4/). v dx = 0 (2.12) 
F2 (2 

where now A(k) denotes the subset of ~2 where u -  4/> k, 
Again using the inequalities (2.3) and (0.6) we can estimate the boundary 

integral by 

( l - a ) - ~  Inu ldx+ln4 / (~ . lA(k )[+2c  o. ~ m a x ( u - 4 / - k , O ) d x .  (2.13) 
A(k) A(k) 

The third term of (2.12) can be estimated as follows 

t (x, u). dx = U(x, u). ( u -  4 / -  k) 
A(k) 

S .S -- u -4 / -kdxH(~ ,u)d~>_> ~ H(x,~)  ( u - 4 / - k ) d x  
Y2 I I A(k) A(k) 

1 
-{,>~o} b(l + u ) ~ ( ' A ! k ) u - 4 / - k d x d ~  

- ~ H(~,O)jI~( . ~ u - 4 / - k d x d ~ .  (2.14) 
{u<0} [ ~ l  A(k) 

This is a consequence of the assumptions (0.7) and (0.8). Finally we get 
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II H(x,u) .vdx r 
I2 / 1 

<(]H( ' ,O)ra+JH( ' ,O)Ja+b(1  u - t / . , - k d x .  (2.15) +~711u-0t[1 + 1Ol~,))- j~, 

From the definition of O, in (l.3) we conclude that the last integral in (2.12) is 
positive. Thus, combining (2.12), {2.13) and (2.15) we derive 

a. 5 [Duldx<2"lDO]alA(k) l+cl"  ~ u - ~ - k d x  (2.16) 
A(k) A(k) 

where 

1 1~1~)).(2.17) c 1 = (2Kl , l~ lo+2Co+lH( ' ,O) lo+lH( ' ,O) la+b (1 + | ~  Ilu-01ll + 

Introducing the notation w =max(u - ~ - k, 0), the H61der inequality yields 

a. ~ [Owl dx  < c . IA(k)l + q lA(k)[ ~/" Ilwll./._ 1. (2.18) 

The Sobolev imbedding theorem leads to 

II w ll,/,_ 1 < c. IA(k)] + c I" IA(k)l */"- ]l w II,/, _ 1 (2.19) 

where now in c 1 is involved an additional factor depending on a and n. To 
proceed further, we note that 

IA(k)l< 1. ~ u - O d x  (2.20) 
"~ A(k) 

and moreover 

Ilu-@]ll < V+6elg2F (2.21) 

in view of the lower bound (I.7). Thus, if we choose 

ko:= (2cl)"- (V+ 6e. If2[) (2.22) 

we obtain from (2.19) 

IJwll,/._ 1 ~ c .  IA(k)l for all k ~ k  o. (2.23) 

Now we are in the same situation as in (2.7) and we conclude 

u -  ~ < k o + c-IA(k0) [ 1/, (2.24) 

where c depends on a, n and [D@[~. 
Using again (2.20), we get by differentiating for k o the optimal estimate 

u - ~, < max (ko, c(n, a, ]OOlra)" (V+ 6e IO1) ~/("+ 1)). (2.25) 

This completes the proof of Theorem 1.1. 
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3. A Priori Estimates for ID ula 

We obta in  a gradient  bound  for a solution u of (1.4) by a modif ica t ion of the 
methods  in [4] and [18]. 

In view of the smoothness  of 092 we can extend /3 and ~ into the whole 
domain  • such ~ that  fl belonging to C O, 1(~) still satisfies (0.6), and such that  
the vectorfield 7 is uni formly Lipschitz  cont inuous  in ~ and absolutely bound-  
ed by 1. We shall use the following notat ions:  

S denotes the graph  of u 

S = {X =(x ,  x "+ 1)lx~O, x "+ 1 = u(x)} (3.1) 

and c5=(c51 . . . .  ,c5,+1) the usual differential opera tors  on S, i.e. for g ~ C l ( ~  "+1) 
we have ,+ 1 

c5 i g = D i g -  v~. ~ v k. D k g (3.2) 
k = l  

where v=(vl ,  ..., v,+ 1) is the exterior normal  to S 

v = (1 + [Dul2) - 1/2. ( _ O 1 u, .. . ,  - D,  u, 1) (3.3) 

Fol lowing an idea of Ura l ' ceva  [18], we want  to prove  th~tt 

v : =  (1 + IDul 2) 1/2 +/3.  D~ u. ])i~ W--{- ft. D~ u. yi (3.4) 

satisfies an est imate as stated in T h e o r e m  1.2. This would be sufficient, since 

IOul <- W < a -  1. v. (3.5) 
Using the abbrevia t ion  

I:I(x, u) = H(x, u) - ~c 43 + 2 + #. O~(u - O) (3.6) 

we state the following technical l e m m a t a  

L e m m a  3.1. For any function g ~ C l ( ~ )  we have the Sobolev inequality 

(! [gl,/,-ldH,ff-1)/n =< e2(n). (! IOgl dH,+ ! ~ Igl dH,+  Joe Igl. WdH._l) (3.7) 

where H, is the n-dimensional Hausdorff measure. 

For  functions vanishing on the boundary ,  this inequali ty was first estab- 
lished in [15], whereas a p roof  of the general .case can be found in [4]. 

L e m m a  3.2. For any positive function tl~Hl"~ we have the estimate 

J V.rl dH,,_~ <j  [arll dH,,+j (IH I + 1671 ) t/dH,,. (3.8) 
0f~ S S 

A proof  of this l e m m a  can be found in [4]. 
N o w  we are going to est imate the function 

w = l o g v .  (3.9) 

In t roducing  the nota t ions  z = m a x ( w -  k, 0), A(k) = {X~Slw(x)  > k} and I A(k)] 
=H,(A(k)) we proceed exactly as in [13] in order  to derive the inequali ty 
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where 

1 
JSz[2 dH.+A!k) ~ . zdH. 

A(k) 

<=%. IA(k)[+(2x. ID'/'ln+c4)..[ 
A(k) 

z dH, for all k > k o 

c3 = c3(~K2, IDfllo, Ic5 ~1~, n, a), 

c4=c,(16,l~,n,a, f~H(',u) dlDN~ ), 
k o = ko(a, n, ID 6In). 

(3.10) 

To proceed further, we need the following lemma 

Lemma 3.3. For arbitrary e > 0 the integral 

zdH,= ~ w - k d H ,  (3.11) 
A(k) A(k) 

can be estimated by 
112 

e. ~ IbzlZdH,+e.~ (w-k)dH,+c.e-~. lu-Ol~.IA(k)l  (3.12) 
A(k) A(k) ~ 

provided k > k o = ko(a, Co, ID ~'ln). 

Proof of Lemma 3.3. We consider the identity 

ai Diqdx + ~ H(x,u)tl-tcq~. tl+ 2tldx 

+#.~ O~(u-O)qdx+ ~ fi~ldH._l=O 
F2 a~ 

for all t/~Ht'~176 (3.13) 

Using this identity with r /=(u-0) -z ,  we obtain with the help of (2.3) 

[, IDul2.W-izdx<= [, aiDi~P'zdx - ~ ai(u-O)Diwdx 
(w>k} {w>k} {w>k} 

Thus, we conclude 

+ ~ I1111u-~lzdx+(1-a)( ~ IDulzdx+ ~ ID~lzdx 
(w>k} {w>k} (w>k} 

+ ~ fu-OIIDwldx+co. ~ lu-Olzdx). (3.14) 
{w>k} (w>k} 

a. ~ W z d x ~  ~ zdx+21D~Pl~. ~ zdx 
{w>k} {w>k} {w>k} 

+e. f zdx+(4e ) -~ru -Ol~  f zdx 
(w>k} (w>k} 

+e. ~ Ibw[2Wdx+(40- l . lu-~[  2. ~ Wdx 
{w>k} {w>k} 

+Co-I.-01g. I Wdx+eo. I z2W-ldx 
{w>k} {w>k} 

(3.15) 
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and since z < W for k>__ ko(a , Co, ID ~9[~) we obtain 

/_/2 
(,~>k~ ~ Wzdx<s.(~,>k} ~ ]6wl2Wdx+s" k~ n . zdx+c .e - l . lu -~12 .1A(k) l  (3.16) 

from which the assertion follows. 
Applying now this lemma to (3.10) we derive 

]6zIZdx+ ~ "zdx<-(c+K[DcPlo. Lu-~bla)Z.[A(k)[. (3.17) 
A(k) A(k) 

Moreover, from the Sobolev imbedding, Lemma 3.1 and from Lemma 3.2 we 
conclude 

(~ izl,/, 1 dH,)(,_ 1)/, 
S 

( ) <c(n). ~l&ldH,+ zdn,+ [. WzdH, 1 
OO 

s. ~ sZdH,)  (3.18) 
2 

To estimate the first integral on the right side of (3.18), we remark that from 
(3.17) we have 

(~ [(3 z12 dH,)1/2 < (c + K IDr [u - 01~)" [A(k)[ 1/2 (3.19) 
S 

Thus we obtain from (3.17) and (3.18) 

(~[z]"/"-tdH,)("-l)/"+~lg)z[Zdn,+ ~ . zdU,  
S S S 

<=(c+~c[Deb[a'Ju-Ola)lA(k)t+s" . zdHn+G. f f zdH ,. (3.20) 
S 

Then, again using Lemma 3.3 we obtain 

(~ [Zln/n-  1 dgn)(n - 1)In ,~ (C -'}- ts [DcPla. [u - 01o)' IA(k)l (3.21) 
S 

and from the HSlder inequality we get 

~ z dH,<(c + tcJD(I)[a, lu-~k[a)- IA(k)] a+1/" 
S 

By another use of Stampacchia's 1emma we conclude 

where 

for all k > k o. (3.22) 

w=logv<ko  +(C +KlDr lu-Ola)-[S[ ~/" 

k o = ko(a , n, ID ~{o, af2) 

c = c ( -~x H( " , u) , a, n, lf yla, lD fila, f2 ). 

(3.23) 

(3.24) 
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It remains to establish a bound for ISI = j Wdx. 

To accomplish this, we use the identity (3.13) with 

We get 

V 
, = u - 0 - 1 a  ~ .  (3.25) 

]HI u V ~ l D u l 2 W - l d x ~ f a ' D i O d x + t  - O - ~ d x  
Y2 ~ Y~ 

V 
+Co.~ u - O - ~  dx+(1-a) . I IDuldx .  (3.26) 

By the definition of O~ and V the terms with 2 and # may be neglected. Thus, 
we have 

Wdx < c(lDt)[a, ts a, n, Co, IHI, N) (3.27) 
12 

where N is an arbitrary upper bound for V and lu-g,  la. This proves Theo- 
rem 1.2. 

4. Solutions to the Equation 

Let f2clR", n > 2  be of class C 2'~ and assume that /3 and H satisfy the 
conditions (0.5)-(0.8). Then we consider the boundary value problems 

Au~+H(x,u~)-~cu~+2 =0 in f2 

-ai(Du~).yi=/3 on ~ .  (4.1;~) 

We shall prove: 

Theorem 4,1. Assume there is a solution uo~C2'~(~) to the problem (4,1; 0). Then 
we can ,find ~Co>0 so that for all O<~c<K o there is some 2~ and a function 
u~C2'~(O) satisfying (4,1; ~). 

We shall discuss the existence of a solution u o in the case ~ = 0 at the end 
of this section. 

Proof of Theorem 4.1. Let O be connected. In the other case we can carry out 
the proof in every component. 

We consider the variational inequality 

(Au~+H(x,u~)-~cu~,v-u~)>O for all v~K (4.2; tr 

where 

K : =  H 1' ~(Q)~ {v >= O) c~ {~ v -  0 dx = v}. (4.3) 
f~ 
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We take 0 = u  0 -  1 and V=IOL, so that u o is a solution to (4.2; 0). 
By Theorem 0.1, the problem (4.2; ~c) admits a solution u ~ H  z' ~(O) if tc is 

small enough, say 0_<K_<~q. Moreover, there exists a Lagrange parameter )~ 
such that u~ solves 

~Au~+H(x,u~)-~u~+2~,v-u~)>O for all veHl'| (4.4) 

and we have 

lUJc~<M for all O<~<~c~ (4.5) 

for some constant M (see Sect. 2, 3). 
It is our claim to show that for K small enough the functions u~ lie strictly 

above the obstacle 0 ~ u  o -  1 and therefore solve the Eq. (4.1; ;). To accomplish 
this, we need 

Lemma 4.1. For ~c small enough, a solution to (4.2; ~c) is unique in the class of 
functions satisfying (4.5). 

Proof of Lemma 4.1. Let ~ be another solution to (4.2; ~c), satisfying (4.5). We 
obtain 

~ (ai(Du~)-d(Dg~))(D~u - D ~ ) d x  <K. y lu~-fi~[2 dx. (4.6) 

In view of (4,5) the first term can be estimated from below by 

c(M). y ID(u~-fi~)[ z dx (4.7) 

and the Poincar4 inequality shows that for small K~ we have u ~ - ~ = c o n s t .  
The assertion now follows from the fact that u~ and fi~ have the same volume. 

From this Lemma 4.1 we conclude immidiately that the map 

If ---> U~ 

[0, Kt] ~ C~ (4.8) 

is continuous and therefore u~ tends to u o uniformly when ~: goes to zero. 
Thus, there is some ~ o < ~  such that for all ~:<~:o the function u~ lies strictly 
above the obstacle u o -  1 and is then a global regular solution to (4.1; ~c). 

Remark. If H(x, t)= H(x), we can always choose )~ = 0 in (4.1; ~). We have only 
to add a suitable constant to u~. 

Now we want to discuss the case ~ =0. 
Giusti [-9] considered the functional 

F(v)=S(l+[DvlZ)t/adx+~iH(x,t)dtdx+ ~ ~vdH,_ 1 (4.9) 

under the following assumption: 
There exist two positive constants eo and t o such that for every Cacciopoli 

set B c O we have 
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S H(x, to) dx + ~ fl)~B dH,-1 <= - (1 - %) ~ [D ZBI dx 
B ~ o (4.10) 

H(x, - t o ) d x  + ~ fi )~dH,_ 1 =<(1 - % )  ~ IDzBI dx. 
B 0~2 $~ 

It was shown that F has a minimum u in BV(s which is bounded by a 
constant depending only on %, t o and [[uHt. Moreover, u is of class C 2'~ in the 
interior of s 

Theorem 4.2. The minimum u o fF  is in C2'~t(~r~) and satisfies 

Au+H(x ,u)=O in s 

- a i ( D u ) . y i = f l  on  as (4.11) 

Proof of Theorem 4.2. In view of Giusti [9] we have 

sup lul <=C(~o, to, Ilull 1)= :m. (4.12) 

Now let t /and ~ be smooth monotone functions on I / w i t h  

t ]t[=<M+l 

(( t )= M + 2  t>_M+3 (4.13) 

- M - 2  t < - M - 3 ,  

0 I t l<M+l  
t/(t) = t - ( M + 2 )  t > M + 3  

t t+(M+2) t <  - M - 3 .  (4.14) 

Then, the function 

I](x, t) = H(x, ( (t)) + rl(t) (4.15) 
satisfies 

I](x, u) = H(x, u) (4.16) 
and 

& > 0 ,  - - = 1  for [t[_>M+3. (4.17) 
- ~ t  

We consider the new problem 

Av-I-I~I(x,v)+6v=O in s 

- ai" Ti = f l  on gO 
(4.18) 

where the term 6v has only to ensure the uniqueness of a solution. In view of 
the properties o f /4  in (4.17) we have global a priori estimates for [vlr~ and IDv]a 
independently of 6. (For a proof  of the gradient bound see Sect. 3 or [4].) 

By a result due to Gerhardt  [4] there is a solution uoEC2,'(~) of (4.18) for 
any 3>0.  The uo are uniformly bounded in C2'~(~) and thus the boundary 
value problem 

Av+I](x ,v)=O in s 

-a i .~ i=f l  on as (4.19) 
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admits a solution aeC2"(Q). But in view of (4.16) we have u - ~ i = c o n s t  and 
hence ue C2'~(~). 

Now the question arises whether there are simple cases, where the con- 
dition (4.10) can be verified. If/? and H are constants, we have the problem 

where 

Au+.~=0  in 

-a iTi=/?o  on #Q (4.20) 

laQI 
2 = - I~2~-'/~o, /~o < 1. (4.21) 

In [10] Giusti and Weinberger considered 'maximal domains', i.e. the case rio 
=1.  In particular they showed in the case n = 2  that for all /3o there is a 
solution of (4.20), if f2 is convex and the curvature of 8~2 is always less than 

la~l/IQI. 
Chen showed in [1], that whenever a disk of radius [g2[10fl I can be rolled 

around ~ in the interior of Q, then the condition (4.10) is satisfied and 
therefore a solution of (4.20) exists. 

Finally, Finn [31 established general geometric criteria that suffice for the 
existence of a solution to (4.20), corresponding to any/30. 

5. A Result in the Dirichlet Case 

Let q) be a function in C2'~(~) and assume that the following additional 
conditions are valid: 

~H(x,O)vdx<(1-~o) .~lDqdx,  5o>0 (5.1) 
~2 f2 

( n -  1). K(x) >lH(x, cp(x))L for all x e 0 0  (5.2) 

where K(x) is the mean curvature of 8~ in x. 

Theorem 5.1. There exists some t%>0 so that for every O<_~c<_tc o the problem 

Au~+H(x,u~)-~cu~=O in 
u~ = q~ on ~O (5.3) 

has a solution u~EC2'~(~). 

As in Sect. 1 the proof depends on suitable a priori estimates for the C 1- 
norm of solutions to the related problem 

Au,+H(x,u,~)-~ceb=O in 

u o = q~ on 8f2 (5.4) 

where ~b is some function in C1,~(~). 
It is well known, that in view of (5.1) for every ~b the ~ can be taken as 

small that (5.4) has a unique global regular solution u, .  
Now let 

~eSM: = {re C 1' ~(~)[ Iv[ c, < M} (5.5) 



Capillary Surfaces in Negative Gravitational Fields 463 

and 

0 ~--~/~--~/~ 1 = ~ ( M )  (5.6) 

where KI(M ) is as small that we can define an operator 

T: S M ..~ C1 '~ (~ )  
~ ur (5.7) 

If we can show that for some M large enough and ~cl(M ) small enough we 
have 

T(S ) (5.8) 

then we derive from Lemma 1.2, that T has a fixed point in S M, which is of 
course a regular solution to (5.3). The inclusion (5.8) may be derived from the 
following a priori estimates: 

Lemma 5.1. Let ur be a solution to (5.4). We then have for small ~c: 

]u[a < max (p + (c(n). eo - ~: [~6[~ [~11/,)- t1s 1/n. (5.9) 
O~ 

Proof of Lemma 5.1. We multiply (5.4) with w = m a x ( u e - k ,  0) for k> Ico=max(  p 
and denote by A(k) the set {x~t21u>k }. We get 0~ 

A(k) A(k) 

from which we derive in view of (0.7) and (5.1) 

c(n)'eo" IIW{I,/(,_I) < f [Du~Idx<IA(DI+K[~I~IIwI[./(._,tA(k)I ~/". (5.11) 
A(k) 

Since ~c is small, we obtain 

(h - k )  lA(h)l <(c(n). ~o - ~c [~6]a ]f2l 1/") - 1 [A (k)l I + z/,. (5.12) 

The upper bound now follows as in previous sections with the help of 
Stampacchia's result and the lower bound can be derived by similar calcu- 
lations. 

A gradient bound follows from results due to Serrin [16] and Giaquinta 
[7]. We derive 

Lemma $.2. We can take M as large and ~co(M ) as small that 

]Vu~[a <=M (5.13) 

holds for all ~b~S M and all O<_~<tr o. 

Proof of Lemma 5.2. In the interior of D the result follows from a local version 
of the gradient estimate in Sect. 3. At the boundary Or2 the gradient estimate 
depends on the existence of suitable barrier functions. It was shown in [7] and 
[16], that such barriers always exist, provided the Serrin condition is satisfied. 
In our case this condition takes the form 

( n - 1 ) . K ( x ) > l H ( x ,  (p)-~c~[ for all x~Of2. (5.14) 
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Thus ,  as a first s tep we h a v e  to c h o o s e  ~c o and  M such tha t  

~:o' M < m i n  ((n - 1)- K(x)  - H(x ,  q~(x))). 
0f2 

(5.15) 

F r o m  this  we  o b t a i n  a b o u n d  N for [DupLe, d e p e n d i n g  on  k n o w n  quan t i t i e s  

a n d  on  the  p r o d u c t  (~c o . M )  (see [73). T h e n  we  m a y  c h o o s e  M > N .  W e  h a v e  

on ly  to ensure ,  t ha t  the  p r o d u c t  (~c o- M)  does  n o t  enlarge .  But  this can  be  

m a n a g e d  by  a su i t ab le  cho ice  o f  xo. 

Th i s  c o m p l e t e s  the  p r o o f  of  T h e o r e m  5.1. 
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