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We find a new SO(7) invariant solution of d = 11 supergravity by exploiting the relationship of this theory with gauged 
N = 8 supergravity in d = 4 dimensions. 

Spontaneous compactification of extra dimen- 
sions is a possible framework for unifying the 
fundamental interactions [1]. According to this 
idea one starts from a higher-dimensional field 
theory, preferably pure gravity or supergravity, 
which has a (ground-state) solution with a maxi- 
mally symmetric d = 4 dimensional subspace 
associated with ordinary space-time and extra 
dimensions that parametrize a compact manifold 
that is small enough to prevent their immediate 
experimental discovery. The resulting theory can 
usually be rewritten as an effective d = 4 field 
theory of massless fields coupled to infinite towers 
of massive fields. The d =  4 fields arise as 
coefficient functions in some harmonic expansion 
about the ground-state solution. These functions 
depend only on the d = 4 space-time coordinates 
x ~', whereas the higher-dimensional fields depend 
also on the extra coordinates y m. Often one 
retains only the massless modes in the harmonic 
expansion. This truncated "low-energy" theory 
may then have several solutions, which are also 
solutions of the original higher-dimensional the- 
ory. On the other hand most solutions of the latter 
will have no interpretation in terms of the 
truncated theory because also some of the fields 
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that are associated with the massive states have 
acquired nonzero vacuum expectation values. 

The above general considerations are relevant 
when comparing d = 11 supergravity [2] to gauged 
N = 8 supergravity in d = 4 dimensions [3]. The 
seven extra dimensions can be compactified to the 
sphere S 7, and this solution is fully supersymmet- 
ric and invariant under the SO(8) isometry group 
of S 7 and the SO(3, 2) isometry group of the d = 4 
anti-de Sitter space [4]. Gauged N = 8 supergrav- 
ity has a solution with the same features, which 
indicates that the S7compactification corresponds 
to gauged N = 8 supergravity coupled to massive 
supermultiplets. This relationship has been con- 
firmed by calculations of the full spectrum of 
small fluctuations about the S 7 solution, which 
indeed comprises one massless supermultiplet 
[4,5], and an infinite tower [6] of massive N = 8 
anti-de Sitter supermultiplets [7]. Consequently 
there must be a truncation of d = 11 supergravity 
to pure N = 8 supergravity in which all the 
massive supermultiplets are put to zero. In such 
a truncation the y-dependence of the d = 11 fields 
is restricted leaving only the N = 8 supergravity 
fields as x-dependent coefficient functions. Knowl- 
edge of this truncation could be helpful in 
elucidating the symmetry structure of gauged 
N = 8 supergravity, and it could lead to new 
solutions of d = 11 supergravity. It is the latter 
aspect that we intend to explore in this letter. So 
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far two solutions of d = 11 supergravity have been 
identified with extrema of the potential of gauged 
N = 8 supergravity, namely the compactification 
of the round [4] and the parallelized [8] S 7. These 
solutions are invariant under SO(8) and SO(7), 
respectively. However, N = 8 supergravity has two 
solutions with SO(7) and one solution with G 2 
symmetry [9], whereas a first search [10] for all 
d = 11 solutions with at least G 2 invariance has 
not led to any other solutions beyond the round 
and parallelized S y. 

As we have explained elsewhere [11] the 
truncation of d = 11 supergravity to gauged N = 8 
supergravity is rather complicated. However, we 
have been able to determine some systematic 
features of the embedding of the N = 8 supergrav- 
ity fields into the d = 11 theory. The results have 
been verified for an SO(7) invariant one-parameter 
class of field configurations of N = 8 supergravity 
in which the pseudoscalar fields acquire an SO(7) 
invariant constant value. The corresponding field 
configuration in d = 11 supergravity has been 
identified and contains both the round and the 
parallelized S 7 solutions. The d = 11 supersymme- 
try t ransformation rules at these solutions have 
been compared to those in d = 4 dimensions taken 
at the two solutions of N = 8 supergravity in the 
pseudoscalar background, and a complete quanti- 
tative agreement was found. However, in N = 8 
supergravity also the scalar fields can acquire 
SO(7) invariant constant values (the SO(7) groups 
left invariant by scalars and pseudoscalars corre- 
spond to two inequivalent subgroups of SO(8)), 
and this one-parameter  class contains the second 
SO(7) invariant solution. Consequently, if one can 
identify the corresponding d = 11 field configura- 
tions one must  be able to find a new SO(7) 
invariant solution of d = 11 supergravity. 

The purpose of this letter is to present this new 
solution of d =  11 supergravity. As discussed 
above we use our knowledge of the relation 
between the d = 4 and d = 11 supergravity fields. 
For  the elfbein field we proceed from the following 
ansatz 

em~(Y)  (1) 

, a  i where e.  (x )  s the vierbein associated with the 

maximally symmetric d = 4 space-t ime. We use 
the notation of ref. [11]. Note that this ansatz is 
more general than the ones previously considered 
in the context of Freund-Rubin  solutions [12] 
because of the y-dependent factor A-1/2(y)  in (1). 
F rom the analysis of the supersymmetry transfor- 
mation laws it follows that this factor must  be 
included for all field configurations corresponding 
to N = 8 supergravity which involve deviations of 
the siebenbein e,~ ~ from the round S 7 background. 
Those are then parametrized as follows 

e m a ( y )  = b m b ( y ) S b a ( y ) ,  Z l (y) - - -  detS~b(y) ,  

(2) 

where erna(y) denotes the 8 7 siebenbein with given 
curvature characterized by the mass parameter  m 7. 
For  the four-index field strength we take the 
ansatz [12] 

F~,~o o = i f B~,~oo, (3) 

where *l~po is the fully antisymmetric covariant 
Levi-Civita tensor. Since we have assumed that the 
d = 4 subspace is maximally symmetric there is no 
x-dependence in (2). By invoking the Bianchi 
identities on (3) it follows that (3) is y-indepen- 
dent, so that f is just a parameter. In contradis- 
tinction if we convert to d = 11 tangent space 
indices, the tensor F ~#vn does depend on y 
through the factor A -1/2 in (1); F ~#vn is in fact 
proport ional  to fZi 2 ( y ) .  

All other fields are zero, so we must now give 
an ansatz for the metric deviations (2). This ansatz 
is motivated by our knowledge of the small 
fluctuations about S 7 corresponding to N = 8 
supergravity excitations [4,5], and the known form 
of the scalar vacuum expectation value in an SO(7) 
invariant background [9,13]. This leads us to 
define the y-dependent  vector 

iC  - I  F J-Ki',b L Ca = ~ IJKLn abl~ n 71 , (4) 

where C IJKL denotes the S0(7) invariant self-dual 
tensor discussed in ref. [13], which satisfies 

c t J K e C L u N P  = 66IJKLM N + 98tlILCJ/qMN 1. (5) 
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The 7/I(y) are the Killing spinors of S 7 that satisfy 

( I ) , , ,+½im7~, , , '~Fa)Tl I (y )=O ( I = 1 , . . . , 8 ) .  (6) 

The vector *a vanishes at certain points on S 7. Its 
radius is related to a parameter * (y)  = ~ab*ab(Y) ,  
where , t  

* t C - i  F s : r  F L ab = iZ ijIctYl a71 ~i b*l • (7) 

* varies between - 21 and 3, and since ~2 = (3 - *) 
×(21 + *) the vector (4) vanishes whenever 
* = - 21 or 3. This happens at the north and south 
pole of S 7. Nevertheless it is convenient to express 
all our results in terms of the unit vector ~ and 
*. We give the following useful identities 

I)a~b = m7[(3 -- * ) / (21  + * ) ] l / 2 ( ~ a b -  ~a~b), (8) 

l)a* = 2m7 [(3 -- *)(21 + , )11 /2~ ,  (9) 

~ b  = ~(3 + *)6~b - ~(21 + * ) ~ b -  (10) 

To find the correct ansatz for (2) we follow the 
strategy of ref. [11] and require supersymmetry 
transformation rules that are consistent upon 
truncation to pure N = 8 supergravity. As was 
explained there, consistency must be achieved by 
means of a field-dependent (and thus y-depen- 
dent) chiral SU(8) transformation. Using this 
requirement for the supersymmetry variation of 
the spin-1 fields, it follows that the expression 

eat J( y ) = A - 1/2S - lab~IU'r FbU~l J, (11) 

where U is an SU(8) matrix, must satisfy the 
Killing condition for arbitrary Killing spinors ,/l 

~1 It is possible to invert the relations (4) and (7) and find an 
expression for CIjrL in terms of y-dependent quantities. 

C IJxL = ~ ( 9  + ~)~lt1F,,~lJ~lrF,?l LI 

+ t~i~a~tlFab~J~lrFb~ LI 

- ¼[ ~,,~,~/(3 - ~)]~t'r,,,r'Cr,,,?J 

At ~ = - 21 this expression reduces to 

CIJKL = - -  Fa[ IJ FatcLl " 

and ~/J: 

~),,eb IJ + [)be,, IJ = 0. (12) 

After parametrizing Sab and U in terms of (4) it 
turns out that (12) determines Sab and U modulo 
two integration constants. The relevant result is 
the expression for Sab which reads 

Sab = g -  1/3(1 + 21~')1/9[ ~ab "1" ( a - 1  - 1)~a~b], 

(13) 

where g and H are defined by 

g(~', *) = [1 + 63T 2 - 2~'(1 + 9T)*] l/z, (14) 

H ( r ,  *)  = (1 + 2 1 r ) / g ( r ,  * ) .  (15) 

Here r is an arbitrary parameter. Because (12) is 
a homogeneous equation the result (13) is only 
determined modulo an arbitrary proportionality 
constant. However, solutions of the d = 11 field 
equation are determined up to an overall scale 
factor. Therefore the ansatz (13) may contain the 
same solution several times but not necessarily 
with the same scale. Indeed, both for ~- = 0 and 
r = - 1 / 9  the function g is y-independent, and 
the metric that follows from (13) corresponds to 
the round sphere, because (13) is simply propor- 
tional to an SO(7) matrix. However, the S 7 
curvatures are not the same, because the normal- 
ization of (13) at z = 0 and z = - 1 /9  is different. 
Expanding (13) about the round sphere at z = 0 
reproduces the massless fluctuations found before 
[4,5], namely 

Sob = (1 -  ,)8ob +  8ob,) + 

(16) 

The next step is to calculate the Riemann 
curvatures corresponding to (1) and (13). The 
various components are 

R , , ,  "b = m 7 2 { - 2  + 2 [ ( 3 - * ) / ( 2 1  +*)1 

× ( H  z -  1)(H 2 + H +  3)(H 2 -  n + 3)} 

× ~,,[~n bl + m 72( - ~ ( H  2 + H + 3) 

- ] [ ( 3  - * ) / ( 2 1  + , ) ] ( n  2 - 1)  

× ( H  3 -  8H 2 -  3 H -  9 ) } ( H -  1) ~'t,n~'l'~',,l bl, 

(17) 

62 



Volume 148B, number 1,2,3 PHYSICS LETTERS 22 November 1984 

R~,,,,"" = e~"m72 [(3 - l j ) /(21 + ~j)] g 

X ( - ~ H 2 ( H  2 -  1 ) ( H  2+ 2)~,. ~ 

+ ~ H ( H  2 -  1 ) [ - ~ ( H -  1 ) ( n  z -  5 H -  3) 

+ (21 + ~ ) / ( 3  - ~ ) ]  ~m~a} , 

R~'~/~ = (2m4 z 

(18) 

+ ]m72g 2 [(3 -- ~) / (21  + ~)] H 2 ( H  2 - 1) 2} 

× '(~ "~1 (19) e~, e~ , 

where m, n and a, b refer to d = 7, and/~, 1, and 
a, fl to d = 4 world and tangent space indices, 
respectively. In (17) and (18) we have used that the 
vierbein eft' parametrizes a maximally symmetric 
d = 4 space with curvature proportional to m 42, 
whereas the background siebenbein e,, a corre- 
sponds to the round S 7. Putting H = 1 in (17) and 

2 (18) immediately exhibits the definitions of m 4 
and m 72. 

After contraction of (17)-(19) with the ap- 
propriate elfbein components one finds the d = 11 
Ricci tensor. It is then straightforward to verify (1) 
and (13) solve the field equations provided that the 
following relations hold 

99¢ 2 + 1 8 ¢ -  1 = 0, 

f2  = }m72(1 + 21r)20/3, 

m42 = 4m72(1 + 21r) 2. 

(20) 
(21) 

(22) 

There are two solutions of (20)-(22), but these 
differ only by an overall scale factor. 

It remains to be shown that this solution is 
indeed SO(7) invariant. For this purpose we define 

K '''J = ~ " °  [ ( 2 1  + ~ ) ( 8 o e  - ~a~b) i~ ' r% J 

+ b lroJ], (23) 

which differs from e,,, zJ by a term proportional to 
~lZFaT/J which separately satisfies the Killing 
condition (12). Therefore K " I J  is a Killing vector 
with respect to the round S 7 background. One 
may also verify that it is also a Killing vector with 
respect to the full metric that follows from (13), 

i.e. 

DmKff s + DoKm tJ = 0, (24) 

where the covariant derivative is now computed 
from the full metric, and the index on K mlJ has 
been lowered with the full metric. To prove that 
(23) generates the SO(7) subalgebra of SO(8) we 
observe that the Killing property with respect to 
the round S 7 background implies 

K mtJ  = P I J K L i ~ l K F a * l L ~ m a ,  (25) 

with constant P~JKL" To determine this matrix it 
is most convenient to choose the point Yo on S 7 
where n/(y0)  = •/. After a little algebra one finds 

pIJKL (3f. 6IJKL -- 1CIJKL. (26) 

It has been demonstrated in ref. [13] that this is a 
projector onto an SO(7) subalgebra of SO(8), 
which proves the assertion. 

The crucial element in the construction of the 
above solution was the relation between d = 11 
and d = 4 supergravity fields as it has been 
outlined in ref. [11]. This solution was not found 
in ref. [10] because the authors restricted them- 
selves to configurations (1) with A(y)  = 1; this was 
done primarily for practical reasons because a 
general analysis for unrestricted functions A (y )  
is extremely complicated (we thank N.P. Warner 
for a discussion on this point). On the basis of the 
work of ref. [11] the relation between A ( y )  and 
the siebenbein ema(y) is known, and rather 
specific restrictions can be derived for possible 
ans~ttze. On the other hand, the fact that the above 
construction was successful confirms once more 
the correctness of the approach followed in ref. 
[11]. In particular this concerns the important role 
played by chiral SU(8) transformations in defining 
a consistent truncation to pure N = 8 supergravity. 
As a further check on this we have also verified the 
consistency of the gravitino transformation rule 
at the above solution. Employing again the SU(8) 
redefinition one finds consistent transformations 
provided that f has the same value as prescribed 
by the field equations (cf. (21)). The gravitino 
transformation rule can also be compared directly 
to the transformation at the SO(7) invariant scalar 
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solution of N = 8 supergravity. Using the results 
of ref. [13] this leads to 

g2 = 2.51/4(1 -- 3"r)2m7 2, (27) 

where g is the S0(8) coupling constant and ~" 
satisfies (20). Substituting this value of g2 into the 
value of the d = 4 cosmological constant at the 
scalar solution, one finds 

A = - 2 . 5 3 / 4 g  2 = - 2 0 ( 1  - 3~')2m72. (28) 

Using (20) the above result leads to A = - 3m42, 
with m 42 as quoted in (22), which indicates that 
the d = 11 solution does indeed correspond to the 
scalar solution of N = 8 supergravity. In view of 
this correspondence it follows that the d = 11 
solution must  be unstable [13]. 

The results of this paper indicate that most of 
the solutions of gauged N = 8 supergravity are to 
be found on the basis of (1) and (2), possibly with 
extra torsion (i.e. Franp q :7 ~ 0 ) ,  The most interesting 
solution is the one where both em a and Fmnpq take 
SO(7) invariant values, but under mutually in- 
equivalent SO(7) subgroups of SO(8). In that case 
one expects to obtain a solution with G 2 invari- 
ance, because N = 8 supergravity has such a 
solution. Interestingly enough the latter has 
residual N = 1 supersymmetry [9]. Therefore its 
d = 11 counterpart  will be the first example of a 
solution with residual supersymmetry and Fmnpq 

0. However, f rom a d = 11 point of view there 
is no reason to restrict oneself entirely to solutions 
that are related to N = 8 supergravity, and we 
expect that many  more interesting solutions will 
be found. 

Note added. It  has been emphasized by van 
Nieuwenhuizen [14] that the ansatz (1), where 
A ( y )  is replaced by an arbitrary function of y, 

represents the most general configuration which 
allows for maximal d - -  4 symmetry. He has also 
examined whether this ansatz may lead to a 
solution of the field equations with vanishing 
cosmological constant. 
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