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We demonstrate the existence of singleton supermultiplets in Osp( N ,4) for all N. These represent extreme cases of multiplet
shortening because they contain only particles of spin s =0 and s =3. We also discuss some of their field theoretic aspects.

It is well known that the natural background
geometry of gauged extended supergravity theories
[1} is anti-de Sitter space (= AdS) with an SO(3,2)
group of isometries. The bosonic symmetry group
of these theories also contains an SO(N) group
and therefore the relevant superalgebra is the
graded extension of SO(3,2) X SO(N) which is
Osp(N4). It is clearly important to study the
representations of Osp(N,4) which describe par-
ticles in AdS and which are relevant for supersym-
metric field theories in an AdS background. These
must be unitary and hence are infinite-dimen-
sional since SO(3,2) is non-compact. Positive en-
ergy representations of SO(3,2) and their relation
to wave equations in AdS have been extensively
studied by Fronsdal [2]. These representations are
characterized by their lowest energy eigenvalue E,
and the total angular momentum number s of their
lowest energy state and are denoted by D(E,, s)
Unitarity requires that Eg>s+1fors=1, 2,...,
and E;> s+ 3 for s =0, 3. All of these represen-
tations become ordinary massless representations
of the Poincaré group in the limit where the radius
of AdS becomes infinite except those with E, = s +
3 for s = 0, 3 which are exceptional: the singleton
representations D(4, 0) and D(1, }) {3] possess no
Poincaré limit. In this note, we demonstrate the

existence of singleton supermultiplets in Osp( N, 4)
for arbitrary N > 1 and investigate some of their
field theoretic properties. In the case N =1, the
existence of a singleton multiplet was already
shown by Heidenreich [4] who constructed all
particle representations of Osp(1, 4). Representa-
tions of Osp(N, 4) for arbitrary N were investi-
gated in refs. [5,6]. In ref. [6], it was shown that
there is a new type of multiplet shortening in these
algebras for N> 1. The N — extended singleton
multiplets constitute the extreme case of multiplet
shortening as their SO(3, 2) vacuum states contain
only representations with s =0 and s = % for arbi-
trary N; this is to be contrasted with ordinary
representations of both Poincaré sypersymmetry
and Osp(N, 4) which require particles of helicity
s>1for N>3.

For the convenience of the reader we now briefly
summarize the essential properties of the Osp(N, 4)
algebra and refer to ref. [6], whose conventions
and notations we follow in the first part of this
paper, for further details and explanations. The
even elements of Osp(N, 4) are the 10 hermitean
SOQ@3, 2) generators M, , = — M, 5, where 4, B= 0,
1,..., 4 and N(N — 1)/2 hermitean SO(N) gen-
erators T/ = — T/ where i, j=1,..., N. The odd
elements are given by 4N Majorana spinor charges
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!, where a=1,..., 4 is a Dirac index. The part
of the algebra containing the spinor charges is
characterized by the relations

(QL, 04} =28Y12EM, 5 +18,,T", (1)
(M5, L] = —i(L45) s Q. )
[, @] =is*gi - is7*Q, (3)

with corresponding relations for the adjoint opera-
tors Q. The SO(3, 2) and SO(N) structure rela-
tions are, respectively,

[MAB’ MCD] = i("lADMBC —NacMpp

—NppMyc + T’BCMAD)’ (4)

[Tij, Tkl] — —i(Sf"Ti’ _ SikTﬂ
—8/'T* + 81'T7%), (5)
where n,, = diag(+, —, —, —, +). As in ref. [6],

the Majorana spinor Q! can be parametrized as

. al 0 1 ©)
Qa= eaBFz;, L -1 0/

where the operators a’, and a’ = (al)" are
fermionic lowering and raising operators whose
properties have been discussed in ref. [6]. We also
recall the method employed in ref. [6] to construct
positive energy representations of the algebra
(1)—(5). One starts from a vacuum state |vac)
which is annihilated by the energy lowering opera-
tors al,

al|vac) =0. (7)

As a consequence of the Osp(N, 4) algebra, the
vacuum state is also annihilated by the SO(3, 2)
energy de-boost operators M, =iM,, + M, ,(a=
1, 2, 3). The representation space is spanned by all
vectors of the form

(M]")"(M5)" (M)" Bjvac). (8)

Here, M} =iMy,— M,, are the SO(3, 2) boost
operators, r; are non-negative integers and the set
B consists of all combinations of products of the
operators ', which are antisymmetric under inter-
change of the index pairs (/); the latter set con-
tains 22" operators. A unitary representation of
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Osp(N, 4) is defined on the span of (8) by im-
posing a Hilbert space structure. The vacuum state
is assumed to be orthonormal. One then calculates
the norms of all higher states (8) by using the
structure relations (1)—(5). The requirement that
the norms be non-negative, which is equivalent to
the requirement of unitarity, imposes restrictions
on the quantum numbers of the vacuum. In the
limiting case where some norms vanish, the corre-
sponding states are absent from this representa-
tion. This is the phenomenon of multiplet shorten-
ing.

We are here interested in singleton representa-
tions and will therefore assume from the outset
that the vacuum state is characterized by the rela-
tions E, = 1 and s = 0. Furthermore, the vacuum
must belong to the 2!¥/? dimensinal spinor rep-
resentation of SO(N), and we adopt the
Gel’'fand-Zeythin labelling *!. Thus, (7) becomes

a, Py =a, (Eo=%,s=0)( T ) =0, (9)
! [ N/2]}times
(3,..., 7) denotes the highest weight. It is not

difficult to label the 2!¥/2 components of the
vacuum states, but for our purposes it suffices to
consider only one label, M, which is the eigenvalue
of T ie.,

T|(3, 0)(3,..., 1) M)
=M|(3,0)(3..... }) M),
M=zt1. (10)

Acting on the vacuum state with E{, we obtain a
new set of states with E,=1 and s = 1. Hence,

‘_’LW)) = 01Fi|X> + Czl)\i)’ (11)

where ¢, and c, are constants and the I'"’s form a
representation of the SO(N) Clifford algebra (the
T'">s play the role of Glebsch-Gordan coefficients
here). Furthermore,

x> =11, 3)(3,--. ) (12)

[Slled

, +

Nl=

1 See, e.g., ref. [7).
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with + sign for odd N and — sign for even N, and
N> =101, 3)(3, 2.0 3, (13)

with T¥|A,) = 0. Again, it will not be necessary to
exhibit a labelling system. We shall assume, how-
ever, that the vacuum state and |A,) are nor-
malized to one. Specializing to i=1, 2, we get
from (11)

(@ +ia})1py = o, (T +il?)jx)
+o, (XY =i|A%)). (14)

Using the Osp(N, 4) algebra, we can easily calcu-
late the norm of both sides in this equation. The
result is

<0l( M04 +J° = T12)|¢>
=1e) X xI1 +il2) [x) + ey PI0X Y + 1)),

(15)

where I'? = J[I", I'?]. Remembering that J*|@)) =

0, My, 0> = 1#) from (9), and noting that 7'* =

~(@{/2)T"2, we find

3= M=(1-2M)|c;)* + 3, I(NY +1A7))11%,
(16)

where we have made use of the assumed orthonor-

mality as well as eq. (10). M =3 now implies

c,=0 while M= —1 yields |¢,|>=3. Choosing
= 1/\/5, we thus have

@9y = (1/V2)T1x). a7
Continuing in this manner, we now consider states
obtained by applying an antisymmetrized product
of two a.’s to the vacuum state. There are only
three operators of this type

A = e, pa,ag,
B=e,|ala,+alay—(2/N)s"akal], (18)
C =3~ @{.7h,

Using the Osp(XN, 4) algebra again, we may

straightforwardly calculate the norms of the states
AIp> and Bi@> with the results

HAW»”Z = <@’(2NM04 (2M04 +N-— 2)
—A4TYTY — ANJT°) |9, (19)
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I BIBYI® = 1| 4B)N1* + (BI(AN(N + 1) Mg,
—4N3*M,, — 4N(N + 1)J*
+4TTY) ). (20)
Inserting the values E,= 3, s = 0 and
PITYTVP) = IN(N - 1). (21)

one verifies that both states have zero norm for all
N.

The calculation is slightly different for the state
C|¢) because of boost admixtures. We have

a0y = csacag TPy +1), (22)

where ¢, is a constant. The first term on the
right-hand side of (22) is not genuinely new be-
cause @(,dy,, being a symmetric combination, is
proportional to the SO(3, 2) boost operators M
and therefore belongs to the Regge trajectory of
the vacuum state to which the state |\/;) is orthog-
onal by construction. To determine c,, we observe
that |%/;) is annihilated by the SO(3, 2) de-boosts
as it is a new state in the supermultiplet. Applying
the de-boost to both sides of (22), we obtain, after
a little calculation,

i(ozoa)a/sTUW’> = C3N(o2oa)uB
X (Mo, +0J*)TY B>, (23)

from which we read off that ¢, = i/NE,. Substitut-
ing this value and E, = } into (22) and calculating
the norms on both sides, we find that,

Vel =0, forall N, (24)

Thus, we have established that no new states are
obtained by applying products of two fermion
creation operators to the vacuum since A|) and
B|) have vanishing norm, and C|()) is an element
of the space belonging to the Regge trajectory of
the vacuum. Applying products of three and more
fermionic operators will then lead to no new states.
Altogether, we have thus shown that the states )
and |x) already form a supermultiplet by them-
selves for arbitrary N. For N = 1, one recovers the
singleton multiplet discussed in ref. [4]; for N = 2,
the s = 0 state has charge + ; whereas the s = 1
state has charge ¢g= — 1 while for N =3, both
states belong to the J = § representation of SO(3),
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etc. For N = 8, the supercharge, and the two sin-
gleton states belong to the three inequivalent
eight-dimensional representations of SO(8). The
weight diagram of the N = 8§ singleton representa-
tion has already been constructed by Gunaydin
[5]. It is obvious from our construction that single-
ton representations also exists for all N > 8.

Having established the existence of the single-
ton representations of Osp( N, 4), we now consider
the problem of building a lagrangian field theory
for them. For N =1, Fronsdal has already shown
that [3] no physical information is lost if one
writes the singleton action as a surface integral
over spatial infinity of AdS, which is S? x S'. This
is not surprising, since in d = 3, a Majorana ferm-
ion has one physical degree of freedom, which
matches the single bosonic degree of freedom in
three dimensions. The AdS group SO(3, 2) acts as
the conformal group on S? x S!. Accordingly, one
can introduce only interaction terms that are con-
sistent with this conformal invariance [3].

One way to derive an action for singletons is
the following. Consider the free action of a mas-
sive Osp(1, 4) multiplet in AdS, which has been
given by Breitenlohner and Freedman and which
reads [8]

1 = —uv Qv

= Efd4x¢—g [5"78,43,4 + g"8,B3, B
+i)2y“—DFx +(2a* + am — m?) A*
+(2a2—am—m2)B2—m)—(x], (25)

where a is the inverse AdS radius and M an
arbitrary mass parameter. g* is the AdS back-

ground metric and ]_)“ denotes the AdS-covariant .

derivative [in what follows, we will rely on the
results, conventions and notation of ref. {8]. The
action (25) is invariant under

84 =(1/V2)éx, 8B=(i/V2)év’x,

8, = —(1/v2)[iv*a,(4 +iv°B)
+a(A—inB)+m(A+iysB)]£. (26)

Here, €¢(x) is a Killing spinor in AdS which obeys
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D,c = 0 and can be written as
e(x)=S(x)¢, (27)

with constant £ and

S(x) = (cos p)_l/z(cos 1p+iy'2'sin 1p)
X (cos 3z —iy%sin 1r), (28)

where we have introduced polar coordinates x! =
p sin 8 cos ¢, x2 = sin @ sin ¢, x> = p cos # and the
radial unit vector £ = x‘/p. In these coordinates,
the AdS metric is given by

ds?=(a cos p)fz[dt2 —dp?
—sin’p (482 + sin’ d¢?)]. (29y

The angular variables § and ¢ satisfy the usual
constraints, whereas 0 < p < 7/2 and spatial infin-
ity corresponds to p = 7 /2. The time coordinate ¢
is also periodic with period 27, but from the
dependence of S(x) on 7 in (28), it is obvious that
one should formulate the theory on the double
covering of AdS, i.e., identify ¢ with ¢ + 47. The
results of ref. [8] guarantee that the commutator
algebra following from (26) coincides with the
algebra of Osp(l, 4), i.e., eqs. (1)-(5) for N=1.
We next observe that, in the limit p — 7 /2, the
matrix S tends to

S(x)p_:/zﬁ(cosp)_1/2P+M(t), (30)

where M(1) = cos(¢/2) —iy® sin(z/2). Further-

+
P =P,, P,P_ =P P . =0, (31)
P

are two projection operators. Their existence ena-
bles us to truncate the action (25) by imposing a
“chirality condition” at spatial infinity with re-
spect to the operator P, (or, equivalently, P_); it
is important that such a condition does not inter-
fere with the Majorana properties of the spinors
unlike the usual chirality condition because here
v> is replaced by iy'%‘. Since the “chirality” of
e(x) at p=7/2 is already fixed by (27), we see
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that a possible truncation is
B=0,x,=P,.x=0, e.=P_e=0. (32)

Consistency then requires that 8B = éx, = 0. Evi-
dently, (26) and (32) imply B = 0, but for 8x, the
argument is more subtle. Noting that y* = y“V_ ",
where V. * is given in eq. (3.13) of ref. [8], and
applying the projector P to 8x in (26), we obtain

8x, = —(1/\/5)[a cos p 94/3p +(m+a)A]e, .
(33)

It has been shown in ref. [3] that the singleton
action can be written as a surface integral over
S? x S!. In order to yield a non-trivial contribution
at spatial infinity, the singleton lagrangian must
scale as (cos p)°. To determine the scaling be-
haviour of A, it is sufficient to look at the kinetic
term. This gives

A(p, 8,9, 1)~ (acosp) (6, 9,1), (34)

as p — « /2. Inserting this into (33), we see that
(33) will only vanish for the special mass value

m=—1la. (35)

Remarkably, this is precisely the value m must
have in a singleton representation, because the
field equation for A reads

VE,(E,~—3)a?+2a*+am—m?|A4 =0, 36
0 0

since the eigenvalue of the SO(3,2) Casimir opera-
tor for a spinless particle is just E,(E,— 3)a>.
Substitution of E, = } into (36) immediately yields
(35) (the alternative value m = 2a is obtained if,
instead of (32), we impose A = x_ = 0).

One can further clarify the structure by rewrit-
ting the action and transformation rules in a
manifestly S2 X S! covariant form. To this end, we
express x = x_ in the form

x_=acosp(}\ (37)

io'%'A ) ’
where A is a two component Majorana-spinor on
S? x S!. The scaling behaviour in (37) is dictated
by the same requirement as in (34). The super-
symmetry transformation parameter € = ¢, may be
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re-expressed in an analogous fashion

_ n
o= v2(acos) T, L) (38)
From (26), (32), (34), (37) and (38), it now follows
that

8¢ =27 (39)
and
A = —id,pn — i€V xJo*

X (pdd/dx' — x'%/3¢/3x7 ) 7. (40)
The second term in (40) can be further simplified
by noting that it is actually p-independent and
therefore contains only derivatives with respect to

the angular variables § and ¢. Thus, (40) can be
rewritten in the form

A= —1i9,9-n—17%9,9 -, (41)

where a = 1, 2 labels the coordinates on S? and the
two-by-two matrices ¥* generate the Clifford alge-
bra in two dimensions, i.e., {7%, ¥#}=2g°® with
the S%-metric 3°f. Applying the same procedure to
(25), one can obtain the singleton action as an
integral over $2 x S!. There is, however, a further
subtlety. In proving the supersymmetry of the
action (25), partial integrations were carried out at
liberty and surface terms were discarded. If, how-
ever, the fields scale as (34) and (37), surface terms
cannot be neglected. Substituting the value (35)
into (25) and using (34), one finds that the sum of
the mass term and the part of the kinetic term
containing derivatives with respect to the radial
variable p have the wrong scaling-behaviour. It
turns out that this term is precisely cancelled by
the corresponding term with the wrong scaling
behaviour in

1 —
5 [a*x/=g8,(g+43,4). (42)
Therefore, the kinetic term in (25) should read
1 —_—
-3 fd“x‘/—gg“ 4D, 4, (43)

instead. The final lagrangian on S? X S! now reads
Z(singleton) = (3,9?) = §°#3,9
+2iA0%A + 21A7°9, . (44)
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Note that there is no need for covariantizing the
d,-derivative, which acts on A, because a possible
connection term drops out as A is a Majorana
spinor. In accordance with the remark after (29),
the singleton lagrangian (44) has to be integrated
over the double covering of $2 x S!, i.e.,

1 T
S[singleton] = 5/" dif dR.2(6,9,1).  (49)
0 S

We now briefly comment on the question of
self-interactions. Fronsdal has shown [3] how to
extend (39), (41) and (44) by including supersym-
metric interactions. The only terms with the cor-
rect scaling behaviour are ¢° and ¢*xx. To see
whether such interactions could also be present for
higher N > 1, we consider the case N =8 and
utilize some results of Marcus and Schwarz [9]
who have classified three-dimensional supergravity
theories. Adopting their notation, we assign the
supersymmetry transformation parameter n' and
the fields ¢* and X* to the three inequivalent
representations of SO(8). Eqs. (39) and (41) are
consequently replaced by

8¢" = 2T ' X4,
] 4 44N . . ( 4 6)

SN = (—i8,9" — 170,90 ) T, in'.

To include interactions, a further term must be

added to 8A*, namely

8N =M + £(o)T, o', (47)

with f(¢) an arbitrary scalar function of ¢. In the
commutator ¢, this leads to an additional term

[87,85]¢ =...
+2f(¢)mnd(I'T/T = T/T'T) 459",
(48)

For f(¢) = 1, the additional term is just the SO(8)
rotation in the commutator (1). However, proper
scaling behaviour requires f(¢) & ¢? and there ap-
pears to be no way to reconcile the required scal-
ing with the closure of the algebra. This argument
is easily seen to apply to all N > 1. We therefore
conclude that, for N > 1, there is no supersymmet-
ric self-interaction for singletons.

One may, however, enquire whether N > 1 sin-
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gletons could be made to interact with other fields
such as gravity. This would require a formulation
of singleton lagrangians inside AdS and not just at
its boundary. A natural setting where such cou-
plings might occur is Kaluza-Klein supergravity.
Indeed, inspection of the recently determined mass
spectrum of 11-dimensional supergravity on S’
[10,7] *? reveals the possible existence of two states
with the quantum numbers of the N = 8 singleton
multiplet in the “basement” of the infinite tower
of states on S’. Unfortunately, the associated
modes vanish identically and therefore do not
appear at the linearized level in the compactifica-
tion. Whether they could appear at the non-linear
level and interact with the other states that arise in
compactification or whether they appear in other
compactifications such as a squashed S7 [12], re-
mains to be investigated.

E.S. is grateful to CERN for the kind hospital-
ity extended to him during his stay there. We
would like to thank Professors Abdus Salam, J.
Strathdee, F. Englert and P. Spindel for enlighten-
ing discussions, and C.N. Pope for his helpful
comments.

*2 The spectrum of the fermions has also been given in ref.
1.
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