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We demons t r a t e  the existence of  s ingle ton supermul t ip le t s  in Osp(N,4)  for al l  N. These  represent  ex t reme cases of mul t ip le t  
i shor tening because  they conta in  only  par t ic les  of spin s = 0 and  s = ~. We also discuss some of their  field theoret ic  aspects.  

It is well known  that  the na tura l  backg round  
geomet ry  of  gauged ex tended  supergravi ty  theories 
[1] is ant i -de  Sit ter  space ( =  AdS)  with an SO(3,2) 
group of  isometries.  The  bosonic  symmet ry  group 
of  these theories also conta ins  an S O ( N )  group 
and  therefore  the re levant  supera lgebra  is the 
g raded  extension of S O ( 3 , 2 ) × S O ( N )  which is 
Osp(N,4) .  I t  is c lear ly i m p o r t a n t  to s tudy the 
represen ta t ions  of  Osp(N,4)  which descr ibe  par -  
ticles in A d S  and  which are re levant  for supersym-  
metr ic  field theories in an AdS  background .  These 
mus t  be  un i ta ry  and hence are inf in i te-d imen-  
s ional  since SO(3,2) is non-compact .  Posi t ive en- 
ergy represen ta t ions  of SO(3,2) and  their  re la t ion 
to wave equat ions  in A d S  have been extensively 
s tudied  by  F r o n s d a l  [2]. These represen ta t ions  are 
charac ter ized  by  their  lowest  energy eigenvalue E 0 
and  the total  angular  m o m e n t u m  number  s of  their  
lowest  energy state and  are deno ted  by  D(E0 ,  s )  
Un i t a r i t y  requires  that  E 0 > s + 1 for s = 1, 3 , . . . ,  
and  E 0 >_ s + ½ for s = 0, 1. Al l  of these represen-  
ta t ions  become o rd ina ry  massless representa t ions  
of  the Poincard group in the l imit  where the radius  
of  A d S  becomes  inf ini te  except  those with E 0 = s + 
½ for s = 0, ½ which are except ional :  the s ingleton 
represen ta t ions  D(½, 0) and  D(1, ½) [3] possess  no 
Poincard  l imit .  In  this note,  we demons t r a t e  the 

existence of s ingleton supermul t ip le ts  in Osp(N,  4) 
for a rb i t ra ry  N > 1 and invest igate  some of  their  
f ield theoret ic  proper t ies .  In  the case N = 1, the 
existence of  a s ingleton mul t ip le t  was a l ready  
shown by Heidenre ich  [4] who cons t ruc ted  all 
par t ic le  representa t ions  of Osp(1, 4). Represen ta -  
t ions of  Osp(N,  4) for a rb i t r a ry  N were investi-  
ga ted  in refs. [5,6]. In  ref. [6], it  was shown that  
there  is a new type  of  mul t ip le t  shor tening in these 
a lgebras  for  N > 1. The  N -  ex tended  s ingleton 
mul t ip le ts  const i tu te  the ext reme case of  mul t ip le t  
shor tening as their  SO(3, 2) vacuum states conta in  
only  represen ta t ions  with s = 0 and  s = ½ for arbi-  
t ra ry  N; this is to be cont ras ted  with o rd ina ry  
represen ta t ions  of  bo th  Poincar6 syper symmet ry  
and  Osp(N,  4) which require  par t ic les  of hel ici ty 
s > _ l  f o r N > 3 .  

F o r  the convenience of the reader  we now brief ly 
summar ize  the essential  p roper t ies  of the Osp(N,  4) 
a lgebra  and refer to ref. [6], whose convent ions  
and  no ta t ions  we follow in the first pa r t  of  this 
paper ,  for fur ther  detai ls  and  explanat ions .  The  
even e lements  of Osp(N,  4) are the 10 he rmi tean  
SO(3, 2) genera tors  MAn = -- MAB where A, B = 0, 
1 . . . . .  4 and  N ( N - 1 ) / 2  hermi tean  S O ( N )  gen- 
era tors  T ij = - T ij where i, j = 1 , . . . ,  N. The  odd  
e lements  are  given by  4 N  M a j o r a n a  sp inor  charges 
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Q2, where a = 1 . . . . .  4 is a Dirac index. The part  
of  the algebra containing the spinor charges is 
characterized by the relations 

( e : ,  = . , j  . v  ..#...AB + 18~#T , (1) 

[MAB, Q:]  = - - i ( IAB) .zQ ~, (2) 

IT  i j, Q~] = iS'kQ~ - i ,SJkQ: ,  (3) 

with corresponding relations for the adjoint opera- 
tors Q~-( The SO(3, 2) and S O ( N )  structure rela- 
tions are, respectively, 

[MAB, MCD] = i(+L<DMBc -- +TAcMBD 

--~tBDMAc + +IBcMAD), (4) 

[T ij, T kl] = --i( SJkT il -- 8ikT jl 

- 8J'T'" + ,~"TJ*), (5) 

where */A~ = diag( + . . . .  + ). As in ref. [6], 
the Majorana  spinor Q~ can be parametrized as ( )  (01) 
Q'~= a ,  , (6) 

-i , ¢"fl = - 1 0 eaBa# 

i and -i = ( a ~ ) +  are where the operators a~ a~ 
fermionic lowering and raising operators whose 
properties have been discussed in ref. [6]. We also 
recall the method employed in ref. [6] to construct  
positive energy representations of the algebra 
(1)-(5). One starts f rom a vacuum state Ivac) 
which is annihilated by the energy lowering opera- 
tors ai~ 

a~lvac ) = 0. (7) 

As a consequence of  the Osp(N, 4) algebra, the 
vacuum state is also annihilated by the SO(3, 2) 
energy de-boost  operators M~- = i M o .  + Ma4 (a = 
1, 2, 3). The representation space is spanned by all 
vectors of  the form 

( M~-)"'( Mf )"+( M; )"'Blvac). (8) 

Here, M + m iMo+- -M+4 are the SO(3, 2) boost  
operators,  n+ are non-negative integers and the set 

consists of  all combinat ions  of products  of  the 
operators ~+. which are antisymmetric under inter- 
change of  the index pairs (~); the latter set con- 
tains 2 2N operators. A unitary representation of  

Osp(N,  4) is defined on the span of  (8) by im- 
posing a Hilbert space structure. The vacuum state 
is assumed to be orthonormal .  One then calculates 
the norms of  all higher states (8) by using the 
structure relations (1)-(5). The requirement that 
the norms be non-negative, which is equivalent to 
the requirement of  unitarity, imposes restrictions 
on the quantum numbers  of the vacuum. In  the 
limiting case where some norms vanish, the corre- 
sponding states are absent f rom this representa- 
tion. This is the phenomenon  of multiplet shorten- 
ing. 

We are here interested in singleton representa- 
tions and will therefore assume from the outset 
that the vacuum state is characterized by the rela- 
tions E 0 = 5 and s = 0. Furthermore,  the vacuum 
must  belong to the 2 iN/z! dimensinal spinor rep- 
resentat ion of  S O ( N ) ,  and we adop t  the 
Ge l ' f and -Zey th in  labelling ,1. Thus, (7) becomes 

E o s = 0  i . . . . .  ~ = 0 ,  (9) 

I ~ s  t 
(5 . . . . .  5) denotes the highest weight. It is not  
difficult to label the 2 tu/21 components  of  the 
vacuum states, but  for our  purposes it suffices to 
consider only one label, M, which is the eigenvalue 
of  T 12, i.e., 

r '21(5,  0)(5 . . . . .  ½)M) 

= MI(5, 0)(5 . . . . .  ½)M), 

M = + 5. (10) 

Act ing on the vacuum state with ~ ,  we obtain a 
new set of  states with E o = 1 and s = 5. Hence, 

a~l¢) = ClF'lx)  + c21•'), (11) 

where c, and c 2 are constants and the F i 's  form a 
representation of  the S O ( N )  Clifford algebra (the 
F i ' s  play the role of  G l e b s c h - G o r d a n  coefficients 
here). Furthermore,  

IX) = l( 1, 5 ) (5  . . . . .  5, -4- 5)) ,  (12) 

,1 See, e.g., ref. [7]. 
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with + sign for odd N and - sign for even N, and 

1 3 I h ' )  = I(1, ~ ) ( ~ ,  ½ . . . . .  ½)), ( 1 3 )  

with F' lXi) = 0. Again, it will not  be necessary to 
exhibit a labelling system. We shall assume, how- 
ever, that the vacuum state and Ih~} are nor- 
malized to one. Specializing to i =  1, 2, we get 
f rom (11) 

(~1 + i ~ ) 1 ¢ )  = c t (F t  + iF2) lX)  

+ c2 (IX') = ilX2)). (14) 

Using the Osp(N, 4) algebra, we can easily calcu- 
late the norm of both  sides in this equation. The 
result is 

<Ol(Mo 4 + j 3  _ r , z ) lO)  

= Ic,12<xl(1 + i r l 2 ) l x )  + Ic~1211(IX'> + ilX2>)ll 2, 

(15) 
where F t2 = 3[F t, F2]. Remember ing that J310 ) = 
0, M0410 ) = 310) f rom (9), and noting that T 12= 
- ( i / 2 ) F  tz, we find 

½ -- M = (1 -- 2m)lc~l  2 + ½1c2121l(IX ' )  + ilX2))ll 2, 

(16) 

where we have made use of  the assumed or thonor-  
reality as well as eq. (10). M =  ½ now implies 
c2 = 0 while M = -  ½ yields Icd 2 =  3. Choosing 
c 1 = 1 / v ~ ,  we thus have 

a~10) = ( 1 / ¢ 2 ) r ' l x ) .  (17) 

Cont inuing in this manner,  we now consider states 
obtained by applying an antisymmetrized product  
of  two a ,  s to the vacuum state. There are only 
three operators of  this type 

+ i j - - k  - -k  B=,~,ll ~i<~j a,~a n-j-i -(2/N)8 a<~att], (18) 

- -  ~t  --J" --J  --i C = a(~a#)  - a(~,al~ ) . 

Using the Osp(N,  4) algebra again, we may  
straightforwardly calculate the norms of the states 
A[0 ) and BI0 ) with the results 

IIAI0)II 2 = ( O I ( 2 N M o n ( E M o .  , + N - 2) 

- -  4 T i J T i J  - -  4 N J ~ J " ) i 0 ) ,  (19) 

NBI0)II 2 = IIAI0)II 2 + ( ¢ I ( 4 N ( N  + 1) M0Z4 

- 4N2M04 - 4 N ( N  + 1)J '~J  ~' 

+ 47"'Jr'J)1O). (20) 

Inserting the values E o = 3, s = 0 and 

( O I T ' ~ T ' q O )  = ¼N(  N -  1). (21) 

one verifies that both  states have zero norm for all 
N. 

The calculation is slightly different for the state 
CI~ ) because of boost  admixtures. We have 

--[i -- j]  - -k  - -k  i j  i j  
a(~,an)lO ) = + c 3 a ( ~ a a ) T  10) lea), (22) 

where c 3 is a constant.  The first term on the 
r ight-hand side of  (22) is not  genuinely new be- 

-k -k being a symmetric combination,  is cause a(, ,a#),  

proport ional  to the SO(3, 2) boost  operators M + 
and therefore belongs to the Regge trajectory of  
the vacuum state to which the state I ~ )  is orthog- 
onal  by construction. To determine c3, we observe 
that I~t~) is annihilated by the SO(3, 2) de-boosts 
as it is a new state in the supermultiplet. Applying 
the de-boost  to bo th  sides of  (22), we obtain, after 
a little calculation, 

i(o2o a) ~ariJl0) = c 3 N  (020 a ) ,,t~ 

X ( m 0 4  + o a j a ) T i J ~ ) ,  ( 2 3 )  

f rom which we read off that  c 3 = i / N E  o. Substitut- 
ing this value and E 0 = ½ into (22) and calculating 
the norms on both  sides, we find that, 

/ I J  IlJ \ \ ,~BlaBI = 0, for all N. (24) 

Thus, we have established that no new states are 
obtained by applying products  of two fermion 
creation operators to the vacuum since AI0 ) and 
BI0 ) have vanishing norm, and C1¢) is an element 
of  the space belonging to the Regge trajectory of 
the vacuum. Applying products  of  three and more  
fermionic operators will then lead to no new states. 
Altogether, we have thus shown that the states 10) 
and IX) already form a supermultiplet by them- 
selves for arbitrary N. For  N = 1, one recovers the 
singleton multiplet discussed in ref. [4]; for N = 2, 

- -  1 the s = 0 state has charge + { whereas the s - 
state has charge q = - ½  while for N = 3 ,  both 
states belong to the J = 3 representation of SO(3), 
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etc. For  N = 8, the supercharge, and the two sin- 
gleton states belong to the three inequivalent 
eight-dimensional representations of SO(8). The 
weight diagram of the N = 8 singleton representa- 
tion has already been constructed by G~naydin  
[5]. It is obvious f rom our construct ion that single- 
ton representations also exists for all N > 8. 

Having established the existence of the single- 
ton representations of  Osp(N, 4), we now consider 
the problem of building a lagrangian field theory 
for them. For  N = 1, Fronsdal  has already shown 
that [3] no physical information is lost if one 
writes the singleton action as a surface integral 
over spatial infinity of AdS, which is S 2 X S 1. This 
is not  surprising, since in d = 3, a Majorana  ferm- 
ion has one physical degree of  freedom, which 
matches the single bosonic degree of freedom in 
three dimensions. The AdS group SO(3, 2) acts as 
the conformal  group on S 2 × S 1. Accordingly,  one 
can introduce only interaction terms that are con- 
sistent with this conformal  invariance [3]. 

One way to derive an action for singletons is 
the following. Consider  the free action of  a mas- 
sive Osp(1, 4) multiplet in AdS, which has been 
given by Breitenlohner and Freedman and which 
reads [8] 

S = -~ d4x g 3~AO~A + -~" 

+ iy(3,~E)~X + ( 2 a  2 + am - m 2 ) A  2 

+ (2a 2 - am - m 2 ) B  2 - mY(x], (25) 

b~c = 0 and can be written as 

, ( x ) = S ( x ) ~ ,  (27) 

with constant  ~ and 

S(x )  = (cos p) - I /2(COS ½p q- ivi~ ̀  sin ½p) 

x (cos ½t - i~, ° sin ½t), (28) 

where we have introduced polar coordinates x ~ = 
O sin 0 cos ¢, x 2 = sin 0 sin ~, x 3 = O cos 0 and the 
radial unit vector 2 '  - x~/o. In these coordinates, 
the AdS metric is given by 

ds  2 = (a  cos O) 2[ d/2 - d P  2 

--sin2p(d92 + sin20 dq~ 2 )] .  (29) 

The angular variables 0 and ~b satisfy the usual 
constraints, whereas 0 ~ p ~ ~r/2 and spatial infin- 
ity corresponds to p = ~r/2. The time coordinate t 
is also periodic with period 2~r, but  f rom the 
dependence of  S ( x )  on t in (28), it is obvious that 
one should formulate the theory on the double 
covering of  AdS, i.e., identify t with t + 4~r. The 
results of ref. [8] guarantee that the commuta to r  
algebra following from (26) coincides with the 
algebra of Osp(1, 4), i.e., eqs. (1)-(5) for N = 1. 
We next observe that, in the limit p---, ~r/2, the 
matrix S tends to 

S(x )  ---> V/2 (COS p) - I /2p+M( ' ) ,  (30) 
p~r/2 

where M(t)---  c o s ( t / 2 ) -  iv ° s in( t /2) .  Further- 
more, 

where a is the inverse AdS radius and M an 
arbitrary mass parameter.  ~,~" is the AdS back- 
ground metric and D~ denotes the A d S - c o v a r i a n t  
derivative [in what  follows, we will rely on the 
results, conventions and notat ion of  ref. [8]. The 
action (25) is invariant under  

6A = (1/V~-)~X, 8B = ( i /v~-)~,SX,  

8 x = - (1 /v /2)[ i ' /~3~(A + i3AB) 

+ a( A - iySB ) + m (  A + i 7 5 B ) ] , .  (26) 

Here, c (x)  is a Killing spinor in AdS which obeys 

P_+ = ½(1 + i ' y 'U) ,  

2 P+_=P+_, P + P - = P  P+ 

P + + P  = 1 ,  

=0, (31) 

are two projection operators. Their existence ena- 
bles us to truncate the action (25) by imposing a 
"chirali ty condi t ion" at spatial infinity with re- 
spect to the operator  P+ (or, equivalently, P _ ) ;  it 
is impor tant  that such a condit ion does not inter- 
fere with the Majorana  properties of  the spinors 
unlike the usual chirality condit ion because here 
~,5 is replaced by iTi~ i. Since the "chiral i ty" of 
c (x )  at p = 7r/2 is already fixed by (27), we see 
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that a possible t runcation is 

B=O,x+=-P+x=O,  c = P  ~ = 0 .  (32) 

Consistency then requires that 8B = 8X+ = 0. Evi- 
dently, (26) and (32) imply (~B = 0, but  for 8X, the 
argument  is more subtle. Not ing  that ~," = 3,"V, ", 
where V~" is given in eq. (3.13) of ref. [8], and 
applying the projector P+ to 8X in (26), we obtain 

6X+ = - ( I / v / 2 ) [  a cos p ~A/Op +(rn + a)A],+.  

(33) 

It has been shown in ref. [3] that  the singleton 
action can be written as a surface integral over 
S 2 × S ~. In order to yield a non-trivial contr ibut ion 
at spatial infinity, the singleton lagrangian must  
scale as (cos p) 3. To determine the scaling be- 
haviour  of A, it is sufficient to look at the kinetic 
term. This gives 

A(p,  O, rg, t) ---) (a cos p)'/2q)(O, ep, t), (34) 

as p---) ~r/2. Inserting this into (33), we see that 
(33) will only vanish for the special mass value 

m = - ½ a .  (35) 

Remarkably,  this is precisely the value m must  
have in a singleton representation, because the 
field equation for A reads 

[ E o ( E o - 3 ) a 2 + 2 a 2 + a m - m 2 ] A = O ,  (36) 

since the eigenvalue of  the SO(3,2) Casimir opera- 
tor for a spinless particle is just  Eo(E o -  3)a 2. 
Substitution of  E o = ½ into (36) immediately yields 
(35) (the alternative value m = 3a is obtained if, 
instead of (32), we impose A = X-  = 0). 

One can further clarify the structure by rewrit- 
ting the action and t ransformation rules in a 
manifestly S 2 × S ~ covariant  form. To this end, we 
express X = X- in the form 

h 
x _ = a  cos O ( i o ~ X )  (37) 

where X is a two componen t  Majorana-spinor  on 
S 2 × S 1. The scaling behaviour in (37) is dictated 
by the same requirement as in (34). The super- 
symmetry  t ransformation parameter  ~ = c+ may  be 

re-expressed in an analogous fashion 

,j2(  ) 
c+ - ¢~-(a cos p)  t - io '2 'n  " (38) 

F rom (26), (32), (34), (37) and (38), it now follows 
that 

3q) = 2~2, (39) 

and 

3X = - i30q~/- iciJk2Jo~ 

× (p0 /0x' - n. (40)  

The second term in (40) can be further simplified 
by noting that it is actually p-independent  and 
therefore contains only derivatives with respect to 
the angular variables 0 and q~. Thus, (40) can be 
rewritten in the form 

8X = -ia04) • n - i~"~,4) • n, (41) 

where a = 1, 2 labels the coordinates on S 2 and the 
two-by-two matrices 5, ~ generate the Clifford alge- 
bra  in two dimensions, i.e., {~,", ~ }  = 2~ "¢ with 
the S2-metric ~"~. Applying the same procedure to 
(25), one can obtain the singleton action as an 
integral over S 2 × S 1. There is, however, a further 
subtlety. In  proving the supersymmetry of the 
action (25), partial integrations were carried out at 
liberty and surface terms were discarded. If, how- 
ever, the fields scale as (34) and (37), surface terms 
cannot  be neglected. Substituting the value (35) 
into (25) and using (34), one finds that the sum of 
the mass term and the part  of  the kinetic term 
containing derivatives with respect to the radial 
variable p have the wrong scaling-behaviour.  It 
turns out that this term is precisely cancelled by 
the corresponding term with the wrong scaling 
behaviour in 

1 4 5 f d xv / -g3~(g~A~A) .  (42) 

Therefore, the kinetic term in (25) should read 

1 fd4xv/-~,~,Ab~O,A,  (43) 
2 

instead. The final lagrangian on S 2 × S l now reads 

.LP(singleton) = (Oo~ 2 ) = ~"aO,q, Ot~ ~ 

+ 2iXO°h + 2iff,~,~O~X. (44) 
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No te  that  there is no  need for covar iant iz ing  the 
O~-derivative, which acts on X, because  a poss ib le  
connec t ion  term drops  out  as X is a M a j o r a n a  
spinor.  In  accordance  with the remark  after  (29), 
the s ingleton lagrangian  (44) has  to be  in tegra ted  
over  the double  covering of  S 2 × S t, i.e., 

1 fo4 '~dtfs2da £~'(0, t ) .  S [ s ing le ton]  = ~ ¢p, (45) 

We now br ief ly  commen t  on the quest ion of  
self- interact ions.  F r o n s d a l  has shown [3] how to 
extend (39), (41) and  (44) by  inc luding  supersym- 
metr ic  in teract ions .  The  only terms with the cor-  
rect  scal ing behav iour  are  06 and  02~X. To see 
whether  such in terac t ions  could  also be present  for 
h igher  N > I ,  we cons ider  the case N = 8  and 
uti l ize some results of  Marcus  and Schwarz [9] 
who have classif ied th ree-d imens iona l  supergravi ty  
theories.  A d o p t i n g  their  nota t ion ,  we assign the 
supe r symmet ry  t r ans fo rma t ion  pa rame te r  r/i and  
the fields 0 A and  X "/ to the three inequivalent  
represen ta t ions  of  SO(8). Eqs. (39) and  (41) are 
consequent ly  replaced  by  

~0A = 2r'A'~'xA' (46) 
8M = ( - i O 0 0  A - i ~ a 0 . 0  a ) F'AAn'. 

To include interact ions ,  a fur ther  te rm must  be  
a d d e d  to 8X A, namely  

8"XA = 8XA + f ( 0 )  F'A~/0Aff, (47) 

wi th  f ( 0 )  an a rb i t r a ry  scalar  funct ion of  0. In  the 
c o m m u t a t o r  0 A, this leads  to an add i t iona l  term 

8;] 0 A = 

+ 2 f ( 0 ) ~ n J ( r ' r  j T  _ r,ri ) ~ J .  

(48) 

F o r  f ( 0 ) =  1, the add i t iona l  te rm is jus t  the SO(8) 
ro ta t ion  in the c o m m u t a t o r  (1). However ,  p rope r  
scal ing behav iour  requires f ( 0 )  c~ 02 and there ap-  
pears  to be no way  to reconcile  the requi red  scal- 
ing with the closure of the algebra.  This  a rgument  
is easily seen to app ly  to all N > 1. We therefore  
conc lude  that ,  for N > 1, there is no supersymmet-  
ric se l f - in teract ion for singletons.  

One  may,  however,  enquire  whether  N > 1 sin- 

gle tons  could  be made  to in terac t  with other  fields 
such as gravity.  This  would  require  a fo rmula t ion  
of  s ingleton lagrangians  inside A d S  and  not  jus t  at 
its boundary .  A na tura l  set t ing where such cou- 
p l ings  might  occur  is Ka luza -Kle in  supergravi ty .  
Indeed,  inspect ion  of  the recent ly  de te rmined  mass  
spec t rum of  l l - d i m e n s i o n a l  supergravi ty  on S 7 
[10,7] ,2 reveals the poss ible  existence of  two states 
with the qua n tum numbers  of the N = 8 s ingleton 
mul t ip le t  in the " b a s e m e n t "  of  the inf ini te  tower 
of  states on S 7. Unfor tuna te ly ,  the associa ted  
modes  vanish ident ica l ly  and therefore  do  not  
appea r  at the l inearized level in the compact i f ica-  
tion. Whether  they could  appea r  at the non- l inear  
level and  in teract  with the other  states that  arise in 
compac t i f i ca t ion  or  whether  they appea r  in o ther  
compac t i f i ca t ions  such as a squashed S 7 [12], re- 
ma ins  to be invest igated.  

E.S. is grateful  to C E R N  for the k ind  hospi ta l -  
i ty ex tended  to h im dur ing  his stay there. We  
would  like to thank Professors A b d u s  Salam, J. 
Strathdee,  F. Engler t  and  P. Spindel  for enl ighten-  
ing discussions,  and  C.N. Pope  for his helpful  
comments .  

•2 The spectrum of the fermions has also been given in ref. 
[111. 
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