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We mvestlgate the supersymmetry transformation laws m an arbitrary compacttflcat:on of 
d =  11 supergrawty to four dimensions The d = 4  fields of gauged N =  8 supergrawty are 
identified m a class of SO(7)- mvanant backgrounds The two stationary points m these 
background conflguraUons correspond to the round and parallehzed S 7 We expllotly demonstrate 
that the latter comctdes with the SO(7)- stattonary point of the N = 8 supergravaty potentml 
Ctural SU(8) is found to play a crucial role in estabhstung these results, we speculate on :ts 
possible relevance m the full d = 11 theory 

1. Introduction 

It is by now well established that compactificatlon of d = 11 supergravity [1] leads 
to effective d = 4 theories with and without residual supersymmetries whose proper- 
ties are to a large extent determined by the ground state soluuons of the d = 11 
theory and their symmetries (for recent revaews of the subject, see refs. [2-4]). Much 
progress has been made in understanding and classifying the small fluctuations in 
the vicinity of the ground state solution. Such considerations are for instance 
sufficient to elucidate the structure of the (classical) mass spectrum which has now 
been calculated in several cases of interest [3, 5]. On the other hand, much less is 
known about the nonlinear structure of the effective d = 4 theory and how this 
nonlinear structure emerges m the compactificauon. Even in the convenuonal 
Kaluza-Klein theories [6] this problem did not receive much attention. The most 
obwous candidate to study this is N = 8 supergrawty, the d = 11 supergravlty theory 
adrmts a classical soluUon with background metric (ADS)4 × S 7, full N = 8 super- 
symmetry and SO(8) internal symmetry [7, 8], and the massless excitations are 
known to constitute a standard N = 8 supermultiplet with maximum spin-2 [9, 8]. 
One may conjecture that the resulting effective d = 4 theory corresponds to gauged 
N = 8 supergravity [10] coupled to an mfinite tower of massive N = 8 multlplets, but 
there are several subtleties which make a straightforward demonstration of this fact 
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rather difficult. In fact, a recent analysis of G 2 invariant solutions of d =  11 
supergravity has led the authors of [11] to cast some doubt on such a relation. A 
more complete understanding of the nonhnear structure of the theory is therefore 
important and, m fact, indispensable to clarify the correspondence between the rich 
variety of stationary points of gauged N =  8 supergravity [12] and thetr d= 11 
counterparts. In this paper, we study some of the nonhnear aspects of the S 7 
compactification with particular emphasis on the relation between the parallelized 
solution of the d = 11 theory [14] and the SO(7)- stationary point of [12,13]; some 
of the results presented and elaborated here have already been announced in [4]. 

As we have mentioned above it ~s a first necessity to analyze the spectrum of small 
fluctuations about a given background. Hence one assumes that the d = 11 space-Ume 
is compactified according to 

6")1Lll ~ 6")T64 X °-)lL7. (1.1) 

The coordinates z ~ are split accordingly into z M ~  (X I', ym). Subsequently one 
expands the fields of d = 11 supergravity, collectwely denoted by ~(x, y), m terms 
of a suitable set of eigenfunctions Y(")(y) of the relevant mass operator accorchng to 

ep( x, y)  = ~'. ep(")( x ) Y(~)( y ) , (1.2) 
n 

and determines the elgenfunctaons Y(")(y) that characterize the y-dependence of the 
fluctuations. 

However, the analysis of small fluctuations is not of much use if one wants to 
understand the nonlinear structure of the compactification. The first complication is 
that the y-dependence of the modes m (1.2) is not free of ambiguity because the 
ans~tze are subject to y-dependent gauge transformations. Spurious modes may be 
eliminated by imposing a gauge condition; while such a procedure is useful in 
determining gauge invariant quantities such as the mass spectrum, it is of httle help 
in studying the effective d = 4 theory ,because most gauge conditions reduce com- 
pensating supersyrnmetry transformations which are nonlocal in terms of the extra 
coordinates ym. Secondly the proper sdentificatlon of the d= 4 fields involves 
nonlinear modifications as has been pointed out in [13]. Instead of specifying the 
y-dependence of ~(x, y), one may be specifying the y-dependence of f(~k(x, y)) 
where f is some unknown function such that f(ep(x, y ) )~  e~(x, y) m the linear 
approximation. Therefore, from the results of a linearized analysis one cannot infer 
anything about the full y-dependence of the fields. There is no doubt that such 
complications do indeed play a role because even in the stmplest case of the 
reduction on a 7-torus [15], nonlinear field redefimtions are required for a proper 
identification of the effeclave d = 4 fields. Also, the supersymmetry transformation 
parameter has to be redefined although these modifications disappear in the super- 
symmetric background. 
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The problem of nonlinear modifications becomes acute when one considers the 
truncation to the massless modes of the theory, and investigates their symmetry 
transformations. In the case of the 7-torus, the truncation to the massless modes was 
effected by imposing the restriction that all fields no longer depend on the extra 
coordinates. This leads to a truncation of the full theory winch is obviously 
consistent in the sense that supersymmetry transformations preserve the inde- 
pendence of the extra coordinates and thus do not reintroduce massive (1.e., 
y-dependent) modes which have been d~scarded m the truncation. For the S 7 
compactificatlon, this is no longer the case [13]. If one inserts the linearlzed ansatze 
of [9, 8] into the d = 11 transformation rules 

8~(x,y)=F(~(x,y),k(x,y)), (1.3) 

where ~(x, y) denotes the d =  11 supersymmetry transformation parameter that 
leaves the background invanant, one finds that the y-dependence of the left- and 
right-hand sides of (1.3) does not match. This means that one cannot consistently 
put the massive modes equal to zero because these modes will reappear through the 
supersymmetry transformation (1.3). Therefore the multiplet structure of the fluctua-, 
tlons ~s not manifest m the transformation rules, and this ~s a major obstacle in 
relating the d = 4 field theory to d = 11 supergravity. In prmciple the problem of 
defining a consistent truncation also arises in standard Kaluza-Klein theories with 
respect to the bosomc symmetries [16]. 

To examine the nonlinear modifications in more detail, we therefore adopt a 
strategy m which the qualitative features of the d = 4 transformation rules are used 
as input. After redefining fields accordmg to the "standard" procedure [15], one 
finds that the fermlonic transformation laws contain all the generic terms of the 
d = 4 transformation rules. At this point, it is no longer possible to make arbitrary 
field redefimtions, but one must restrict oneself to redefinitions that take the form of 
field-dependent chiral SU(8) transformauons. Subsequently one exploits these SU(8) 
redefiniuons to bring the transformatxon rules in a form that is consistent upon a 
truncation to the massless sector. These redefinlUons vamsh m the supersymmetric 
background of the round sphere, but for fimte devlaUons from that background the 
proper defmlUons of the fields thus revolve a fimte chiral rotation. 

The fact that we have two solutions of d = 11 supergravity that may have an 
interpretation m pure N = 8 supergravity, namely the round and parallelized S 7, 
gives us a umque opportumty to test the viablhty of this strategy. Namely, we 
consider the transformaUon rules in an S 7 background where the field strength with 
"internal" indices is proportional to a paraUehzing torsion but with an arintrary 
proportionality factor. After making an appropriate chiral SU(8) rotauon, we then 
establish the consistency of the spm-2, -3, -1 and .1 transformation rules m tins 
background. We should emphasize at this point that ~t is by no means guaranteed 
that consistency can be achieved by a mere SU(8) redefinition, so tins result must be 
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viewed as the first nontnvial mdlcauon that our approach is correct. The linearized 
approximation of our results is also consistent with the work of [17] where the 
redefinitions of the supersymmetry transformation parameter were determined to 
lowest nontrivlal order by requiring the consistency of the truncation to that order. 

Having identified the proper d = 4 fields in the chosen background configuration, 
we may consider the transformation rules at the two points that characterize the 
round and parallehzed solutions of d = 11 supergravity, and try to compare them 
with the known d - - 4  solutmns [12,13]. Based on the linearlzed approximation of 
the fluctuations about the round S 7 it has been argued that the round S 7 compactifi- 
cation corresponds to the supersymmetnc solution of gauged N = 8 supergravity, 
whereas the parallelized S 7 compacUficatlon should correspond to an SO(7)- in- 
variant solution of that theory in whtch the pseudoscalar fields acquire an SO(7)- 
invariant expectation value [18, 9]. This is indeed confirmed by our results, because 
we find a complete numerical agreement between the d -- 11 transformation rules m 
the parallelized S 7 background and the d = 4 transformations at the SO(7)- sta- 
tionary point of the N = 8 supergravity potential. Since the d = 11 transformations 
contain the reverse S 7 radius m7, whereas the d = 4 results are expressed in terms of 
the SO(8) gauge coupling constant g, we also find the relation between g and m 7 at 
the round and paraUehzed spheres 

g =  ~-m7, 

g = 4 × 5-3/4m7, 

(round S 7), 

(parallehzed S 7). (1.4) 

Using thus relation we can express the d = 4 cosmological constant m terms of m7; 
one finds A = - 1 2 m  2 and A = - 1 0 m  2, respectively, in agreement with the result 
of the d = 11 field equations which were no input m this calculation. 

The reader will notice that we do not analyze the scalars and pseudoscalars and 
thetr transformation rules in any detail here. The reason is that further comphcations 
appear in tins sector as will be plausible from our discussion: a chiral SU(8) 
transformation mixes scalars (conventionally assumed to be contained in the 7-met- 
tic) and pseudoscalars (conventionally assumed to be contained in the three-index 
field). It therefore appears that in order to describe these fields in a umfied way, one 
must transcend the geometrical framework of the S 7 background. 

This paper is organized as follows. In sect. 2 we evaluate the d = 11 transforma- 
tion rules in an arbitrary background of type (1.1). In sect. 3 these transformation 
rules are then determined m an SO(7)- invanant background in such a way that the 
truncation to the massless N =  8 supermultlplet Is consistent. This yields 
the transformation rules of the N = 8 supergravlty fields in a background where the 
pseudoscalars acquire an SO(7)- vacuum expectation value. Agreement between 
d = 11 and d = 4 is then estabhshed. In sect. 4 we discuss the Implications of our 
results. Particular emphasis is given to the chiral SU(8) group winch plays such a 
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crucial role in the definitton of the d --- 4 fields. Some useful formulae are collected 
in an appendix. 

2. Transformation laws 

Our starting point are the transformatmn laws of d = 11 supergravlty, which we 
will analyze m this section in the context of an arbitrary ground state of type (1.1). 
We here follow the conventions and notation of [19] and refer the reader to that 
paper for more details. The transformation rules relevant for our discussion are 
those of the elfbeln EM A and the d = 11 gravitmo ~/'u which are gxven by 

a E ~  = ½~:F A ¢tu , (2.1) 

(2.2) 

For  solutions describing spontaneous compactiflcatlon to four dtmensmns, the 
d = 11 in&ces are split into curved and flat d =  4 indices #, v . . . .  and a, fl . . . . .  
respecuvely, and curved and flat d = 7 indices m, n . . . .  and a, b . . . . .  respectively. 
For  example, the d = 11 gravitlno decomposes according to 

t ¢.(x, Y) 
f l u ( x ,  Y)  ~ ( (2.3) 

For  the elfbem, we make use of the local SO(l, 10) invariance of the d = 11 theory to 
fix a gauge where [15] 

- 

E •  = BZe"a 

e m a 
(2 4) 

In thts gauge, the local SO(1,10) mvanance is reduced to local SO(1, 3 )×  SO(7). 
Moreover, compensating rotations are needed in the supersymmetric transformation 
laws (2.1) and (2.2) to maintain the gauge choice (2.4). In order to rewrite the theory 
within the d = 4 context and to make contact with N = 8 supergravlty, we then 
redefine the fe lds  in the standard way [15]. Here we briefly summarize the various 
steps that are required in this procedure. One first re-expresses (2.2) in terms of flat 
indmes and redefines the spin-~ and spin-½ fields such as to ehminate an off-diago- 
nal lanetlc term mixing spin-~2 and spin-½ fields. One then performs a Weyl 
rescalmg to obtain the canomcal d = 4 Einstein action and lanetic terms for the 
spin-~ and spin-½ fields; there is also a corresponding redefiniuon of the supersym- 
metry parameter. Finally, a yS-redefinitlon of the fermionlc fields is required for the 
conventional pan ty  assignments. To keep the properties of the background as 
manifest as possible, it proves convement to Weyl rescale the fields not with respect 
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to the full siebenbem determinant det eraa; rather, we write 

em"(X , y) = ~mb(y)Sba(x, y ) ,  (2.5) 

where ~ma(y) is all orthonormal frame on 63L v, and define the Weyl rescaling with 
respect to the factor 

A(x ,  y)  = det S f ( x ,  y ) .  (2.6) 

With this choice the relation between the gravatational coupling constants In d = 4 
and d = 11 takes the form (see for instance [20]) 

(K~2) d.4 = ( ~  2 ) dffill ~ 7 dTy det " z ~  (2.7) 

In the final expressions, all derivatives 0 m, which act on internal coordinates, may be 
replaced by derivatives b m which are convariant with respect to the 91L 7 back- 
ground. After going through all these redefinitions, one obtains expressions wtuch 
can be still further simplified by the use of chiral notation for the spinors; the 
analogy with the d-- 4 results of [10] then becomes even more suggestive. We will 
use the letters A, B, C . . . .  to denote spin-7 indices (although these were prewously 
used to denote tangent-space indices in the d = 11 theory there should arise no 
confusion because the latter will not be needed in what follows). Subsequently the 
indices are promoted to chlral SU(8) indices by taking chiral projectmns. For the 

r redefined gravitino field qJ~, these are introduced in such a manner that 

,/s~k;A =ff~A, TS~k;A = -~k;A • (2.8) 

For the redefined spin-½ fields ~k'A, one first chromates the 9L 7 vector index m by 
switching to the eombinatmn F~nq, mC 1, where F m denotes the d =  7 F-matrices, 
which are discussed in the appendix. Subsequently one introduces a chiral SU(8) 

notauon through 

x = (1 + 

XABC = (1 ~ 7')~,~/2F(]n~P'cl. (2.9) 

Taking into account all that has been said so far one arrives at the following results 
after a somewhat tedious but otherwise straightforward calculation. Up to higher 
order fermionic terms, the gravitino transforms as 

--~'[ZT DmS~, } era ~111~ A = { ap- -  B~m~)m--~oa;fl'~oq 8 s, ° ra 

+ ½o~/Be'B + yaOV~,~anr ~ + iQas't,e'B. (2.10) 

Before explaining the various symbols in (2.10), we emphasize that we have not 
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made any assumption about the y-dependence so far; therefore (2.10) and snmlar 
formulae below are still completely general and independent of the specific com- 
pactification one may choose to consider. So, b m denotes the derivative that is 
covariant with respect to the given background configuration; in sect. 3 we will take 
it the covanant denvative m the S 7 background. The primes which appear on the 
right-hand side of (2.10) indicate that one is dealing with Weyl-rescaled quantities; 
for example, to'~ "t~ is the standard spin connection expressed in terms of the rescaled 
vlerbein field e'~=AX/2e~ with the modified derivative 0 ~ - B Z b m ;  simdarly 
"h, = e',"'& • More importantly, the tensor ~ A  B takes values in the Lie algebra of 
SU(8), and has all the characteristic features of a connection field associated with a 
local SU(8). We will return to the possible implications of this fact at the end of this 
paper. The tensor ~,~B is a complex tensor antisymmetnc in [AB] and antlsymmet- 
nc and antiselfdual in d = 4 Lorentz indices [aft]. Both ~ A  B and ~,AB have been 
calculated exphcltly, but since they are not relevant in what follows here, we refrain 
from gtvmg the corresponding expressions. The remaining quantity to be defined in 
(2.10) is (9{4B; this operator is given by 

 IAB= A -  1 / 2  { ½F,~Bs-lb(b~ - la-lb a) +  r#gcsid(s-iGs) , 

-~F~BS-I;(  s-lb¢S)a b} + l,~/-2F~F~b¢ + ~t~-2 f3aB. (2.11) 

The quantities f and Fab ~ are derived from the field strength FmNpO by 

f = _ 1 , a -  1 / 2 o . O v s u  
24 ~t-,J ~ *afly8 

gab c -- 1 , , , ~ -  1 / 2  e defg f 
- -  24'• abc de fg ,  (2.12) 

where F, av8 and Fabcd denote the field-strength components with d = 11 tangent- 
space indices taking values in S)lL 4 and 63L 7, respectively. The factor ,/' is related to 
the convention for the d = 7 F-matrices and is defined m the appendix. 

A similar compilation leads to the final result for the spin-1 fields X Anc 

..Anc _ a./5-~[AB..,¢o,Cl + ~¢~y,~2BCO e, ° + (9 ~nc e,n (2.13) 
A - -  " Y  " " = ' a f t  I t, 2 D , 

where we made use of the formulae hsted in the appendix. The complex tensor 
d ~  acL' is selfdual in [ABCD] with respect to the 8-1ndex Levi-Clvita symbol; we 
again refrain from giving its exphclt expression here. The operator ~?2ABCD is given 
by 

= 3 , [ 'O 'A-1 /2 ,  F'a F'bc e2""% 3 a-I/2,r AU c]oS-id(bb-¼a-lbba)+8, . ,.[A..c1D 

X(S-ld(s- lbaS)ba + S-Ioa(S-Ibas)bc + s - ld(s - lbaS)ab)  

-  fr ABr ]o + ( 2 / ' .  b ' a  - 38abr  c]oFocd. (2.14) 

We stress once more that the results (2.10) and (2.13) are vahd irrespecUve of the 
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chosen background. Also we have not imposed any restrictions so far on the 
y-dependence of the fields and transformation parameters. Nevertheless the structure 
of (2.10) and (2.13) is strongly remimscent of the transformation rules of gauged 
N = 8 supergravity [10], with 01 and 0 2 playing the role of the SU(8) tensors A 1 and 

A 2 • 

The spin-2 and spin-1 transformation rules do not require as much effort. 
However, whereas the compensating rotations are irrelevant for the fermions as long 
as one disregards higher-order fermiomc terms, they must be taken into account for 
the bosonic transformation laws. One of them we have already mentioned: it is the 
"off-diagonal" SO(l, 10) rotation required to maintain the special gauge (2.4). In 
addiUon, a compensating SO(l, 3) rotation is needed to cast the vlerbein transforma- 
tion law into the canomcal form 

8e~ = ½VAy~k~A + h.c. (2.15) 

A little more work is required to determine the spin-1 transformation law in terms of 
chiral spinors; it reads 

8B~," = ~V~tFm,4BA-I/2(2~/2VA~/~ s + ec.Y~,X-, ABC~) + h.c. (2.16) 

Hence we have now given the transformation rules for the spin-2, -3, -1 and -½ 
fields. In this we were graded by the form that these transformations take m gauged 
n = 8 supergravaty. The observation which wdl be crucial for what follows is that the 
field redefinitions that preserve the structure of these transformauon rules must take 
the form of a (field-dependent) chiral SU(8) transformauon. These transformations 
are naturally defined on the chtral spinors ~ f  and X Asc 

~'~A(x, y) -,, UaB(x, y),t/Btx.,.~ ,. , Y),  

xA"C(x, y) ~ Uao(x, y)UBe(x,  y)UCF(X, y)XDeF(X, y ) .  (2.17) 

In the next section we will see that such an SU(8) redefinition is indeed important 
in order to extract the correct d = 4 fields. Of course, in that case we will choose a 
specific background related to the sphere S 7. It is intriguing that the SU(8) structure 
of the transformation rules (2.10) and (2.13) also persists in the context of more 
general backgrounds. We wdl return to the possible lmphcations of this fact m 
sect. 4. 

3. Consistent supersymmetry in an S0(7)-  invariant background 

In this section we study the supersymmetry transformations (2.10), (2.13), (2.15) 
and (2.16) in an S 7 background where 

e,.a(x,y)=~ma(y) (3.1) 

is the (globally defined) siebenbein of S 7, and the field strength F,,np(x, y) ts 
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proportional to one of the Cartan-Schouten [21] torsions Sm~p, which satisfies 

D m S n p  q = l r¢17~PeranpqrstSrst, (3.2) 

as well as [9,13] 

s [ m n p s q ] r s  l_ t_mnpq[r  ¢,s]tu 
-~ --  ~11 ,g tu o 

_~_ mn 1 r mn ¢~stu Sm~PSqrp 26  q r - -  ~'l] g qrstu L, , 

(3.3) 

(3.4) 

where m 7 is reversely proportional to the S 7 radius. If Finn p = 0, then we are dealing 
with the round sphere, whereas Fro, p = + v~m7Smn p corresponds to the parallehzed 
sphere, wtuch is a solution of d - 1 1  supergravity [14]. Hence the class of back- 
ground configurations that we consider contains two solutions of d = 11 supergrav- 
ity. Furthermore It Is well known that these configurations are SO(7)- mvanant  
[13,22], and the results of tlus section show that they are dearly related to an 
SO(7)- mvariant background in gauged N = 8 supergravity. 

Since we assume that the background is also AdS invariant we may drop the 
x-dependence and concentrate on the transformation rules 

= -+x/2f)  eB(x,y)  ( 8 ~ ( x ,  y))  7a(½tl"aba -±,/-5-r'abc~ 1 AB 
48 v ' ~ -  *abc 

(6xa.C(x, y))={3~/~ ,F(aB6Cwba_!era v. 4 J ~  [ABXCID 

(3.5) 

"I- -~I[AB[Z++ r'a [+r ' ,bcd _ 36aFb ,:a)clnFb+a}enCx, y) ,  (3 .6)  

(8%~( x, Y)) = ½ea( x, Y ) V ~ /  + h.c., 

( SB~m( x, y ) ) = ~ ~l-21F~'s ( 2vl-2 ~a¢~ s + ~c'l¢X aBc)+ h.c.,  

(3.7) 

(3.8) 

where we have dropped the primes. 
For small deviations from the round S 7 background (Finn p = 0) the small fluctua- 

tions can be expressed m terms of products of eight Kllhng spinors ,/t(y) satisfying 

where m 7 is equal to 

bran  I = - -  ½ t m  7 Fm rl I ,  (3.9) 

m7 = ~v~-f. (3.10) 

Ultimately we want to compare our results to N = 8 supergravaty, so that we will try 
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to preserve the y-dependence of the d = 4 fields trrespecUve of the value of Finn p m 

the chosen background. Ttus forces us to keep m 7 constant, so that the S 7 radius is 
fixed. On the other hand the Freund-Rubin parameter f may then change under 
variations of Fmn p, so that the relation (3.10) is only valid for the round sphere 
where Fro, p = O. 

Only the round S 7 background is fully supersymmetric as can be venfied from 
(3.5)-(3.8), since all the supersymmetry variations vamsh m the background if 
Fm~ r = 0 and (3.10) holds, prowded that the 8 independent supersymmetries are 
characterized by the S 7 Killing spinors (3.9). Hence in chiral notaUon 

ka(x ,  y )  = e l (x)r l lA(y) ,  

kA(x,  Y)  = e t ( x ) * l ] ( Y ) ,  (3.11) 

where e A (cA) and e I (el) denote the positive (negative) chirality components. The 
massless gravitino field associated with these supersymmetries is contained in 
qS,(x, y)  and must have the same y-dependence as the corresponding supersymmetry 
parameters kA(X, y) .  Furthermore i t  has been shown that small fluctuations in Fm,,r 
proportional to the Cartan-Schouten torsion, i.e. within the class of background 
configurations that we consider, are also contained in the massless N -- 8 supermulti- 
plet [8, 9]. Nevertheless, if these fluctuations are inserted in the right-hand side of 
(3.5) wxth e A --cA, then ( ~ )  does not satisfy the Kllhng condition (3.9). This 
indicates that the massive modes transform into the massless modes, so that the first 
ones cannot be put to zero in a consistent fashion, since they will reappear through 
the supersymmetry transformations. However, this result is dearly unacceptable 
because the small fluctuatmns about a background must always transform among 
each other under the lsometries of that background, and can thus be classified 
according to irreducible representauons of the lsometry group. 

In the introduction we have already outlined how one may attempt to make the 
transformation rules consistent upon truncation to the massless sector, by introduc- 
ing redefinitmns of the fields and the transformaUon parameters. Since the transfor- 
matron rules (2.10), (2.13), (2.15) and (2.16) were already in quahtative agreement 
with those of N = 8 supergravity, one must restrict oneself to redefinitions that take 
the form of a field-dependent charal SU(8) transformation. Since Sm,,p xs the only 
quantity in the backgrounds considered here from which such a chiral SU(8) 
transformation can be constructed we start from 

U =  exp( ~zsm"p( y ) F,.,pVs ) . 

Since we use chiral components throughout we may drop the 3'5 here and consider 
the y-dependent SU(8) transformation 

U( z ) = exp( ~ 'S""P(  Y ) Fm,p ) . (3.12) 

This 8 × 8 matrix, wluch is an element of the SU(8)/SO(8) coset space, can be 
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calculated by using (3.4), and one finds 

U(~)=~(e-7 '~  + 7 e " ) + ~ , ( e - 7 " - e ' ~ ) S m " P ( y ) F m , p .  (3.13) 

Using (3.2) one may also verify the useful identity 

bmU(~') = ½*m7[Fm,U(z)]. (3.14) 

We now assume that for nonvanishmg F,,np 0c Smnp the supersymmetry parameters 
of the background must be modified by the SU(8) transformation (3.12), where ~" is 
related to the proportionality factor between F,~np and S,,~p. To preserve the 
qualitative features of the transformation rules this SU(8) transformation must act 
umformly on all fields. Hence after redefimng q,~ ~ UIk~, and e ---> Ue, the transfor- 
mation for the redefined field takes the form 

(3.15) 

for the positive chlrahty component. The next step is to investigate whether this 
redefinition can now be used to remove the inconsistent term in ( ~ )  proportional 
to F,,np. This turns out to be possible provided we choose 

Fabc = 2~-2mTtg(a~ )Sabc, (3.16) 
/ 

f =  ¢~-m7 (3 - 4tg24~') • (3.17) 

The variation (3.15) now takes the form 

( COS32~ " _ 
(8¢~(x,  y ) ) - -  y.m7 / cos24-------~ (2 cos~4~- + 2 -  3 cos4~') 

sm35~"> (2cos24~ " + 2 + 3cos4~-)~A(x , ~ Y), cosZ4 ) (3.18) 

which is obviously consistent. It is gratifying that our strategy of employing only 
SU(8) redefinitions does indeed allow us to achieve consistency. A priori these 
redefinitions could also have taken the form of an S1(8) transformation. 

At this point one may wonder what would be reqmred in case the siebenbem 
would also deviate from the round S 7 background. This is much more comphcated 
to analyze in general, but for small deviations it becomes rather strmghtforward. 
Upon inspection of the full transformation rule one discovers the need for an SU(8) 
transformation 

U =  exp(t~mFm), (3.19) 

where at the linearized level ~,. can be expressed in terms of the S 7 derivative of the 
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massless fluctuations contained m the slebenbein, which ~s proportional to 
71[tFmn~T1rF%l L]. The redefinition of k(x, y) according to (3.19) now gives rise to 
one of the terms which were found m [17]. Combining this term with the linearlzed 
result arising from (3.12) and with the linearlzed effect of the Weyl rescaling of 
~(x, y)  one finds all the terms of [17]. 

Let us now return to the prewous background and continue the analysis of the 
transformation laws. Note that all relevant quantxUes have already been determined 
in terms of the background parameter ¢, so that the remaimng calculaUons serve as a 
consistency check. It is clear that the SU(8) redefinitions do not affect the vierbem 
variation (3.7), so let us turn to the supersymmetry variation of the spin-1 fields. 
Applying the same SU(8) transformation to all the splnor quantities on the right-hand 
side of (3.8) yields 

(SB~,m( x, y ) )  = -~ IV~- ( u T (  T ) F m u ( " r ) )  AB (2V~-~Aq~ + ~cT~X ABc) 

+ 1~/~ ( u T ( _  ~.)FmU(-'r)) A B (2V/2~A~B + e¢3'~,X ABc), 

(3.20) 

winch can be wntten as 

(SB~,"(x, y) )  = ½¢2-e-2'~{ (2 cos4~ " +~ sln4"r)lFmAB + l sin(4~') S",pF]~ } 

~ _ ABC'I + h.c. (3.21) x B + c 

As follows from the results presented in the appendix (3.21) is indeed consistent 
upon truncation to the massless sector, because if one takes e and @~, proportional to 
a Kilhng spinor, and X proportional to an ant~symmetrlc product of three Killing 
spmors, then the right-hand side of (3.21) is precisely proportional to the Kilhng 
vectors 

~.r( y ) = t~'( y ) FmTff ( y ). (3.22) 

This y-dependence thus coinodes with that of the massless spin-1 fluctuations 
contained in B Z .  

It remains to evaluate (3.6) in tins background. A straightforward but somewhat 
tedmus calculation leads to 

(sxABC(x, y) )  = {3Vr-~ l(U(--r)rauT(--¢))tAB~cloba 

- ( v ( -  ( v ( - , ) r a y ( , ) )  

+ ~ (  U ( - ¢  )F"UT(-~  "))tAB( U(-~')(2Fa bcd- 3~va) u(,)) clnFb~d} ~n 
1 m n oD 

= _   m rlABr gls  .  
X eE"tg4r(cos 4¢ + 2sm4¢ tg4¢ + t sin 4¢). (3.23) 

Let us now consider these transformation rules in the truncatmn to the massless 
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sector. To that order one specifies the y-dependence of the fields according to 

~k~(x, y ) =  t I ~,(x)*IA(Y) ,  

xABC(x, y )  = xUr(x)~lIA(y)~lJ(y)~ll~(y),  

B Z ( x ,  y )  = B t J (x ) ,~ I (y )F"r t J (y ) ,  

e ~ ( x ,  y )  -- %~(x).  (3.24) 

Substitutmg the ansatze (3.11) and (3.23) m the fight-hand side of the supersymme- 
try variatmns, one finds that the vanatmns are again consistent with (3.23). The 
symmetry transformations for the d = 4 fields corresponding to the massless sector 
can then easily be extracted and read 

8e~ ~ = ½U~,°~zt + h.c., (3.25) 

[ c°s32"r (2cos24z + 2 - 3 cos4z) 
{Sift, I = y~m 7 [ cos24,r 

sin 32 z - } 
- t  co-7~r (2cos24z + 2 + 3cos41") et, (3.26) 

8B1s = ~6 vC~e- 2,~{ (2 cos 4r  + t  s ln4r)  8tsrL + ½t sin 4rC/JKL ) 

× +  Mr, x KLM) + h.c . ,  (3 27) 

8X tsr = - ½~/-2m7CtSrLeLe2'~tg4z(sln4r -- , (cos4r  + 2 s m 4 r  t g4 r ) ) .  (3.28) 

The antlsymmetnc selfdual tensor C IJrL, which is introduced in the appendix, 
coincides preosely with the tensor that has been used to study two solutions of 
gauged N = 8 supergravlty; in these solutions the scalar or pseudoscalar fields have 
vacuum expectation values proportional to tlus tensor [13]. One of the important 
properties of C 1JKL is 

CtSKPCLMNP __ ~XIJ/¢ + 98[~c,K1 (3.29) VVLMN MN] " 

We may now consider (3.25)-(3.28) in the background of the round and parallehzed 
sphere, corresponding to Fmnp=O and Fmnp = +_ 1/~m7Smnp, respectively. This 
corresponds to taking r = 0 (round sphere) and tg4r  = + ½ (parallelized sphere). 



104 B de Wtt, H Nmolat / d = 4 and d = 11 supergravtty 

For the round sphere, the only nontrlwal result is 

8~p. I =  m 7yt~e , . (3.30) 

For the parallehzed sphere we quote (tg4~" = + ½) 

6~ , '  = 7,m735-3/4(1 + v~-)x/z(3 + ¢3- + 2t(2 -- ¢3-)) e,, (3.31) 

~ B ~ J = ~ / 2 5 - 3 / 4 ( 1  + 73-)3/2{ ((2 + 73-) + ,(9 -- 47~))~tJXL 

+ ( - - 1  + ½V~ + ½, )C'rL)(2V/2~KqJ~ L + ~M~'~XKLM) + h.c., (3.32) 

8X .K  = _~ !/~m75_3/4(1 + ~/~-)1/2(~/~_ 5 + 2tq'5)ctSlCLe L . (3.33) 

This may now be compared directly to the exphcit solution of N = 8 supergravlty 
where the pseudoscalars have an SO(7)--mvanant vacuum expectation value. For 
zero expectaUon value (3.30) follows, provided the SO(8) gauge couphng constant g 
is chosen according to 

Igl - ~/21m71 • (3.34) 

For non-zero vacuum expectation value all results coincide with (3.31) (3.33) after 
adjusting for the different normahzations used in [13] provided that 

Igl = 4 × 5-3/41m71. (3.35) 

Inserting (3.34) and (3.35) mto the corresponding expressions for the cosmological 
constant at these d = 4 stationary points [12,13] gives 

A = - 6 g  z= - 1 2 m ~ ,  

A- -  - ~ v ~ - g  2-- -10m72, (3.36) 

which coincides precasely with the values that follow from the d = 11 held equations 
for the round and parallelized S 7 soluuons. This fully confirms that we have mdeed 
succeeded in identifying the proper d = 4 fields of N = 8 supergravity directly from 
the d = 11 theory, at least in the SO(7)- invariant background. The mampulatlons 
that were required in order to obtain these results are haghly nontrivial, so the 
conclusion that d = 11 supergravity on the round S 7 corresponds to gauged N = 8 
supergravity coupled to an infinite tower of massive supermultiplets seems hard to 
avoid. 
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4. Conclusions and outlook 
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In this paper we have evaluated the transformation laws of d = 11 supergravity m 
an arbitrary background that arises through the spontaneous compactification of 
thts theory to four dimensions. These transformation rules have then been analyzed 
in an SO(7)- invartant class of background configurations, and by reqmrmg 
consistency m the truncation to the massless sector, we have identified the d = 4 
fields of gauged N = 8 supergravtty. Furthermore there is complete numerical 
agreement between the two stationary points m this background correspondmg to 
the round and the parallehzed S7 solutions and the SO(8) and SO(7)- stationary 
points of the N = 8 supergravity potential. As a consistency check we have de- 
termined the cosmological constants for these solutions in terms of the mverse S7 
radius on the basis of the d = 4 theory and found the correct values A = - 12m: 
and A = - lOm$ that are known from the d = 11 solutions. Note that tlus result is 
based on the comparison between the d = 11 and d = 4 transformation rules, and 
not as in [23] on knowledge of many of the massless ansatze and the d = 11 
lagrangtan. 

We believe that our results constitute a proof that the parallehzed solution of [14] 
mdeed corresponds to the SO(7)) mvariant stationary point of the N = 8 potential 
identified m [12,13]. Previously thts equivalence had been con.ectured on the basis 
of the observation that the massless pseudoscalar fluctuations have the same 
y-dependence as the parallehzmg torsion [18,9]. However, this argument is not 
completely rigorous because tt is based on the analysis of small fluctuations only. 
Now we understand that it is nusleadmg, if not fallacious, for the followmg reason. 
We have demonstrated in tlus paper that m order to a&eve consistency the proper 
tdentification of the d = 4 fields of N = 8 supergravity involves a field-dependent 
chiral SU(8) rotation. Such an SU(8) rotation inevitably mtxes scalars and pseudo- 
scalars such that the tdenttfication of the scalars with the zero-mass fluctuations of 
the siebenbem and of the pseudoscalars with the zero-mass fluctuations of the field 
strength Fmnp IS only vahd in an infinitesimal neighbourhood of the round S7 
background, and fails for any fmte value of the (pseudo) scalar fields. To see thts 
more explicitly, we have also studied the transformation rules 111 a background where 
F mnp IS no longer proportional to a Cartan-Schouten torsion, and satisfies 

(4.1) 

without further restrictions. Based on the knowledge of the small fluctuations, thts 
background would be viewed as one in which the pseudoscalar fields of N = 8 
supergravtty have acquired a vacuum expectation value. However, this conclusion 
must be false. We have attempted to achieve consistency by means of chnal SU(8) 
rotations in this background; eq. (A.9) 111 the appendix gives the relevant SU(8) 
transformation for this case. We have found that consistency can only be achteved if 
also the siebenbein deviates from the round S7 background. Therefore the back- 
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ground (4.1) with the standard S 7 metric cannot have an interpretation wtthin the 
context of pure N = 8 supergravaty, and must be interpreted as arising from the 
vacuum expectation values of both massless and masstve scalar and pseudoscalar 
fields. It is only for the SO(7)- mvariant background where F,,np is proportional to 
a Cartan-Schouten torsion that the scalar-pseudoscalar mixing does not play a role, 
because the SO(7)- stability group of this background forbids a vacuum expectation 
value for the scalar fields. This observation thus explains why the attempts of this 
paper were successful. 

Our results strongly indicate, although by no means prove, that gauged N- -8  
supergravity is indeed the effective d = 4 theory that is obtained by compactlfiCatlon 
of d =  11 supergravity on S 7 and subsequent truncation to the zero-mass N = 8 
supermultiplet, if nonhnear modifications are properly taken into account. This 
seems to contradict the conclusions of [11], but we emphasize once more that m view 
of the scalar-pseudoscalar mirang the purely geometrical framework adopted in [11] 
is presumably inadequate for a unified description of the scalars and pseudoscalars. 
To see how this could be relevant we recall that the scalar fields in the ungauged 
theory arise from antlsymmetric tensors by duality transformations However, m the 
gauged version these scalars may acquire vacuum expectation values. In that case 
there Is no simple local relation between these two descripUons just m the same way 
as there is no simple relation between electric and magnetic phases in an ordinary 
gauge theory. This hne of argument ln&cates that the stationary points of the N = 8 
potenUal [12], for whxch so far no d = 11 counterparts have been found, may m fact 
correspond to nonlocal solutions of the d =  11 theory. Although such soluUons 
would still describe compactification to four dimensions, they would not be of the 
convenUonal Freund-Rubin type [7], but rather resemble magneUc monopole config- 
urations (yet dissmailar from the "black hole" solutions considered in [24]). 

Another intriguing aspect of our findings is that an SU(8) structure naturally 
emerges for the full d = 11 supergravity theory. Gauged N = 8 supergravlty m four 
dimensions possesses a local SU(8) x SO(8) mvanance, and the fields of that theory 
can be assigned to representations of SU(8)× SO(8) [10]. Without malong any 
assumptxon on the y-dependence of the fields, we have been able to assign the 
spin-2, spin -3, spin-1 and spin-½ fields to representations of SU(8) which coincide 
with those of gauged N = 9 supergravlty in four dimensions. This suggests that local 
SU(8) must also be relevant for the fields that describe the massive multiplets. In 
fact, this is consistent with the structure of the masswe multiplets that arise in the S 7 
compactification [3]; the hehcity states all have the same structure as the massless 
supermultiplet mullaplied with an extra SO(8) representatxon corresponding to the 
harmonic modes on S 7. Of course for the states one cannot make a distinction 
between SU(8) and SO(8), but an SU(8) × SO(8) assignment of the assocaated fields 
is clearly possible. The locally SU(8) symmetric form of N = 8 supergravaty also 
points in this direction, because m that formulation supersymmetry implies SU(8) 
mvanance through the supersymmetry commutaUon relations. 
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In view of the SU(8) structure of the transformation rules (2.10) and (2.13), we 
may pursue the analogy with N = 8 supergrawty even further, and conjecture that 
the SU(8) group of the full d = 11 theory may in fact be reahzed as a local symmetry 
of the equauons of motion for arbitrary compactificauons to four dimensions (for an 
early but somewhat different speculation regarding the SU(8) group, see [25]). The 
SU(8) structure would then be a universal characteristic of any compactlflcatlon, 
whereas the lsometry group depends on the specific properties of the mamfold e3L 7 
on which d = 11 supergravity happens to be compactified. Cremmer and Julia [15] 
have suggested that the local SU(8) of ungauged N =  8 supergrawty becomes 
dynamical at the quantum level and relevant for the physical spectrum. In [26,10], 
the addatlonal assumpuon was introduced that the local SO(8) group of gauged 
N = 8 supergrawty prowdes the forces that brad the preons and lead to eternal 
confinement. Extending this "preconfinement hypothesis" to the full d = 11 super- 
gravity theory leads to the conjecture that all physical states must now be slnglets of 
the lsometry group. The plulosophy underlying such a scenario is completely 
opposite to the conventional Kaluza-Klein philosophy [6]. There one generally 
assumes that it is the isometry group which is relevant for the physical spectrum, 
whereas possible "hidden" symmetries are commonly ignored. Here we consider the 
posslblhty that it is the ludden symmetry group which becomes physically relevant 
whereas, through dynanucal effects, the erstwhile physical symmetry group becomes 
a hidden symmetry which is no longer manifest. The intriguing question is then what 
the nature is of the physical ground state in connection with the large variety of 
possible spontaneous compacUficatlons of d = 11 supergravity to four dimensions. 

We have benefitted from sUmulatmg discussions w~th A. Casher and F. Englert. 
We thank the Department of Theoretical Physics of the Umverslt6 Llbre de 
Bruxelles for ~ts warm hospltahty. 

Appendix 

For the reader's convenience, we here summarize our conventions for the d = 7 
Clifford algebra and list some important formulae needed m the main body of this 
paper. We use hernutean 8 × 8 F-matrices which satisfy 

( r ~ , r "  ) =28  ~ ,  (m, n = 1,.- . ,7) ,  (A.1) 

Fmnpqrst  "~ -- 171 'emnpqrst, (A.2) 

where 71' = + 1 is an arbitrary duality phase. Antisymmetrized products of F-matrices 
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are defined with strength one, i.e. 

F m, ink= F t m , F m 2 . . .  Fm,l. (A.3) 

In the context of the paraUelized solution [14] and the associated stationary point of 
the N =  8 potential [12,13], the following combinations of F-matrices play an 
important role 

-'A abe -- l"~"'ntaabcdefgl"de/g (A.4) 

ab c - -  l...L-,n"£abcdefgr'de l"fg 
F[asF~]91- 24" *Ias~cDl' (A.5) 

where we note the opposite duality phase in the indices a, b . . . .  in (A.4) and (A.5). 
The expression (A.5) is furthermore selfdual in the indices [ABCD] with arbitrary 
duality phase [15]; the corresponding expression F"b4sFt'col, which is of opposite 
duality in the indices [ABCD], is not needed in this paper. The importance of (A.4) 
and (A.5) resides in the fact that they provide the basic input in solving the 
selfduality equation 

D m F n p q _ _  1 t r.rst 671 m e m n p q r s t  1~ (A.6) 

in terms of covariantly constant spinors 

( Dm + ½tmrm)71~=O. (A.7) 

Namely, (A.6) is solved by [8, 9] 

Fabc( S ) = i '-rabcnJ-B 

,~,[11-' .,,,J ~ K  I" ~L]I=IIJKL 
, q +  ~ [abq+, l+ . tc]q+ ~ (A.8) 

The tensors B I~ and B uxL in (A.8) belong to inequivalent 35-dimensional represen- 
tations of SO(8): B IJ is symmetric and traceless in the indices I, J whereas B IJxL is 
antisymmetric and (anti)selfdual m [IJKL]. To calculate the dural SU(8) rotation 
needed in sect. 3, one may in principle use e!ther of these representations. For 
practical purposes, it is, however, more convenient to work with the first representa- 
taon. For arbitrary B I~, the relevant exponential is given by 

exp(}Fab~(B)r "b~) = {tr(e -s ' s )  + ~F'~b~Fabc(e -8.B - }tr(e-s ' s ) ) .  (A.9) 
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An SO(7)- mvariant solution is obtained by speciahzmg to [7 
B,j  = ls" - 1  , (A.10) 

- 1  

which leads to the result (3.13) used in the text with Fro. p proportional to a 
Cartan-Schouten torsion Stun p. For this case the following indenUties are also of 
interest 

(S .  F)  2= - 2 5 2 -  36tS. F, (A.11) 

S.  FFmS" F = 36F,. + 6~FmS. F + 6tS. FFm, (A.12) 

S.  FFmnS" F = 36Fm, - 6 " t l ' e m n a b c d e S a b c F  d e  - -  72tSm,a F~, (A.13) 

r ~ s .  r r ,  = - s . r ,  (A.14) 

U(T)FmU(~) = ½e-2"(2cosaT + ,  sina~')Fm + ~e-2'~smarSm,pF np, (A.15) 

U(-z)FmU(~ ) = (1 - ½sm24'r) Fz + ½sm4rcos4"r(FmS. F -  S.  FFm) 

- ~,, sm24,(rm s .  1" + S" r r . ) ,  ( A . 1 6 )  

where U(~) Is defined in (3.13). 
We next hst some of the formulae needed in sect. 3 to convert a d = 7 vector 

spinor ffaA into a three-index spinor hABc by means of the definition [15] 

?tAB c = ,r:AB~ocl. (A.17) 

The inverse relation is 

,oc = ~,, ( r : ,X~ ,c  - ~( r o r  ~) ~Ar~ox ,o  ).  (A.18) 

As m [15] formula (A.18) as well as other relations below are most easily checked 
backwards. Inserting ~tAB c = F~BF~oleo, where X = a or lab] and Y = c or [cd] one 
may calculate the corresponding expression for ~k=A through (A.18). This expression 
can then be converted again by using (A.17). In that way one finds a useful identity 

r ~ , r / D ~  = r : ~ , {  - ¼rXra r r -  ~ r , r ~ r  X + ~ , r a r ~ r x r ~ r  , + h r ~ r ~ r , r ~ r  ~ 

+ ~tr(FXFb)(~ab - ~r~G) rY+ ~tr(FrF~)(a~b - ~roG) r~) c~D. 

(A.19) 
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For instance, choosing X = a ,  Y = [bc ]  and antlsymmetrizmg in [abc] we find 

(A.20) r[A;arcb~)]] = _ 1F(AB ( r d a b c  _ 6 8 taa rbcl ) ¢ l n  " 

Another useful Identity can be found by simdar techmques 

r(~B~clo = - ~ r (AB(  rc  ab - 4~tarb~ ) c ] o .  

In sect. 3 we also need 

-~F~AB(FaS. r - S .  r r o )  c l  o = - ~'Sab~F(~B(Fas • F - S .  r r o ) c ] o  

= ( r ~ r ~ ; ~  - r ; ) , r~ lo  ) so~ , 

(A.21) 

(A.22) 

wtuch can be derived by utthzang the properties of the Cartan-Schouten torsion (3.3), 
(3.4). 

Finally we recall from [13] the following identity for Kllhng vectors 

Smnfill r"p  ~ = ,C tJKL~ir FmT1L , (A.23) 

where C IJrL is a constant antisymmetric selfdual tensor expressed by 

C IJrl~ = l t SmnP(y )~ l t ' ( y )Fm~iJ (y )~ l r ( y )Fpr lL l ( y ) ,  (A.24) 

where the torsion S,~p and Kilhng spinors ,!i are defined by (3.2)-(3.4) and (3.9), 
respectively. 
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