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We denve the mass  spectrum of  supergravlty compacUfied on the round seven-sphere The 
final result may be arrived at either by employing ha rmomc  expansions on S 7 or by usmg properties 
o f  Osp(8, 4) 

1. Introduction 

Simple supergravity in eleven space-time dimensions [1] naturally permits spon- 
taneous compactification [2] to four space-time dimensions because of the presence 

of  a three-index gauge-field m that theory [3]. This means that the field equations 
of  d = 11 supergravity have solutions by which d = 11 space-time ~ t j ,  which is 
locally parametrized by coordinates z M, spontaneously decomposes into a product  

of  a four-dimensional space-time ~ 4  and an "internal" manifold ~7,  which are 
locally parametrized by x ~" (p  = 0, 1, 2, 3) and ym (m = 5, 6 , . . . ,  1 1), respectively. 

There are only two fully supersymmetric compactifications with n = 8 supersymmetry 
[4], namely one with ~ 4  = Mlnkowski space and ~f~7 = T 7 [5] and the other with 
~ 4  = (ADS)4 and ~ 7  = S 7 [6]. In the truncation where the y-dependence is discarded, 
the first leads to ungauged N = 8 supergravity [5]; the massive modes correspond 
to the Fourier coefficients on T 7 In the second case, as well as in more complicated 

cases, one must expand the fields of  d = 11 supergravity, which we collectively 
denote by &(x, y), in terms of  a suitable complete set of  eigenfunctions y~n)(y) of  
the relevant mass operator  according to 

~b(x, y) = ~. ~b~n)(x) yt ,)(y) (1.1) 
n 

It has been demonstrated m refs. [4, 6] that, for "/~7 = 87, there indeed occurs a 

massless N = 8 supermultiplet  in the expansion (1.1). Since the isometry group of  
S 7 is SO(8), the effective d = 4 theory which is obtained in the truncation where the 

i On  leave of  absence from Tel-Avtv University 
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higher modes in the expansion (I.1) are discarded is presumably equivalent to 
gauged N = 8 supergravity [7], at least if non-linear modifications are properly taken 
into account. According to the conventional lore [8], the excited modes in the 
expansion (1.1) describe particles with masses of  the order of  the Planck mass and 
multiples thereof and therefore should play no role in the analysis of  the low-energy 
behavtour of  the theory. However,  they are expected to play an important  role at 
the quantum level [9]. Moreover, it is doubtful that the conventional philosophy ts 
entirely correct since the natural unit of  mass which arises in the compactif icauon 
ts of  the order of  the inverse size of  the internal mamfold  ~7 ;  the latter bemg a 
dynamical parameter  in the quantized theory, there is a priori no reason to take it 
to be of  the order of  the Planck mass [10]. It is therefore of  mterest to determine 
the full mass spectrum for the S 7 compactlficatlon and other cases. In this paper, 

we present the calculation of  the mass spectrum o n  ,////7 = S7 in detail. For the bosonic 
modes, the results have already been given m ref. [11] while the complete results 
have been reported in ref. [10]* For mamfolds  other than S 7, so far only partial 
results have been obtained: the zero modes on the squashed S 7 [14], which constitute 
the massless supermulttplets, have been derived in ref. [15]; the massive spm-2 and 
spin-23- modes on the squashed S 7 have been determined in ref. [16] while the massive 

spln-I modes were analyzed in ref. [17], finally, the fermionic spectrum on M p°" 
spaces has been completely determined m ref [13] All calculations so far have been 

based on harmonic expansions but we believe that the group theoretical methods 
described in sect 3 of  this paper  will also be useful for other supersymmetric 

compactifications, if there is a residual N-extended supersymmetry,  the massive 
states must belong to multiplets of  Osp (N, 4). 

We now briefly summarize our conventions and notations. Supergravlty tn eleven 
dimensions [1] is based on the following multiplet of  fields: an elfbein eM A (fiat 
indices are labelled by the f rs t  letters of  the alphabet),  a 32-component  Majorana 

vector spinor tpM and an anUsymmetnc three-index tensor AMN, which is subject 
to the abehan gauge transformations**. 

8AMN ~, = D[MANP ] . (1 2) 

Defining FMNpO=--240E~ANp01 and /~M~ M~--riM, / ~ ] ,  the invariant action of 
d = I l supergravity reads 

I v  r MNJ,-- 4 4 2  M'IFM, MaFM5 MsAM9 M, -~ttPMl ~PP N +(~)3 rl M~ 
I 

3~/2 ( ~Mf~NeO'S g, N + 12~PrOR O S)F~Rs } (1.3) 
+(4v)----5 

* The results of  refs [10, 11] have meanwhile  been independent ly  obtained m ref [12] and, for the 
f e r m m m c  modes,  m ref [13] 

** C o v a n a n t  denva twes  are denoted by DM4~ ------- ck M 
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up tO higher order fermiomc terms. Eq. (1 3) is invanant  under  the local supersym- 

metry transformations 

t~eMA= --I '~'A~bM, ~AMNP -- 4"2 ~F[MN~IIP] 
8 

2x/2 " NeOR 
8~bM = Dr~e +(-~.)2 ~(FM -- 8 8 ~ [ ' e O R ) e F N e o R .  (1.4) 

Again, we have omitted higher-order fermionic terms in (1.4). In the absence of 

fermion condensates, the classical equations of  motion, which follow from the acUon 

(1.3), are 

RMN -- I gMNR = --~{8 F~poRFN P°R - gMNF2} , (1.5) 

F MNPQ (1.6) 2 • (41) 2 ~?NPQ~, MsF~, M,F~ ~8, 

and, up to a supersymmetry transformation, we have put 

~bM = 0. (1.7) 

The solutions describing spontaneous compacUfication on ~t4 x ~ 7  are characterized 
by g,,m = F~,,,,p = F~,v,p = F ,  vpp = 0. I f  we impose in addition 

Fm,pq = 0 ,  (1.8) 

we get from (1.5) and (1.6) 

F~,~p¢ =frh,~p~, f = constant ,  

Rmn = - 6 m 2 g ~ . ,  

R ~  = 12m2g~,~, m 2 = ~ f  2. (1.9) 

These solutions were obtained by Freund and Rubin [3]. For the purposes of  this 
paper,  we will further specialize to "/~4 = (ADS)4 and ~t7 = S 7 [6]. In that case the 

Riemann curvature tensors of  ~ 4  and ~t7 are given by 

gmnpq = - -  m ~( g,,,pg.q - g,.qg,,p ) . (1.10) 

Finally, we note that the /~-matrices in d = 11 can be expressed in terms of  d = 
4 y-matrices and eight-dimensional F-matrices, which generate the Clifford algebra 
in seven dimensions, according to ref. [5]: 

/~, = "yu ®~ ,  /~m = ~s@ F,. ( l . l l )  

2. The mass spectrum 

The bare mass spectrum of the four-dimensional theory can be obtained by varying 
the fields gMN, AMNp and ~bM around their background values I f  there are no 
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fermionic condensates, the bosonic field equations are given by 

#( RMN -- I gMNR)  = - ~ 6 { 8  FM~:~nFN P°R - gMNF2} , (2. l) 

8(F~N~.M) = -- 2(4!)2 8{rl NPOM' MsFM, ~,FMs Ms}, (2.2) 

and are linear in 8gMN and 8AMNp. Since the fermionic fields vanish in the S 7 
background, the fermionic field equation is straightforwardly obtained from the 
action (1.3); xt reads: 

, f ,  MNea, _,_ I_/-~jpMNPOnS ~_ 
- - , a  ~t"P,N " 9 6  ~ z-'l Jr - -  12gMegNOFRS}FeoRSeN = 0, (2.3) 

where the superscript 0 labels the background value. In eqs. (2.1)-(2.3), one expands 
the components of ~b~, 6gMN and 8A~Np in complete sets of eigenfunctions Y~")(y) 
of suitable differential operators on S 7 according to (l.l).  The masses of the four- 
dimensional fields associated with the functions ~b~")(x) are then obtained in terms 
of the eigenvalues belonging to the eigenfunctions Y~")(y). However, the actual 
calculation reveals a mixing between the various fields of the theory and one has 
in fact to dlagonalize a mass matrix 

The diagonalization can be performed by redefining the fields, and such a method 
was used to obtain the fields describing the zero-mass supermultiplet, namely one 
graviton, eight gravitinos, 28 SO(8) gauge fields, 56 spin-½ fields, 35 scalars and 35 
pseudoscalars [4, 6]. For instance, the decouphng between the spin-~ and spin-½ 
fields was achieved by the field redefinitions 

- -  I 5 l r ~ m # l  qJ~, = ~b~, *iY %," ~ , , ,  (2.4) 

~0,. = q , - .  (2 .5)  

However, this procedure has the disadvantage that it only works in the truncation 
where massive modes are discarded. If  the latter are retained, it turns out that the 
coupling between massless and massive modes persists. One may try to extend the 
field redefinitions (2.4) and (2.5) so as to achieve complete decoupling, but in that 
case mass-dependent and hence non-local modifications are required. 

Another procedure is suggested by the very fact that the lineanzed equations 
(2.1), (2.2) and (2.3) contain spurious modes associated with the various gauge 
invariances of the eleven-dimensional theory. These are the modes 

~N = 2SCUM.N), (2.6) 

a ( O )  _ MN ~NP-- At~N.PI, A .M = O, (2.7) 

2,,/2 ,( ~, iNt~n _ 88 ~ F ~ R ) ~ N p O R  e (2.8) = = 

Here h~N -- --6gMN (h ~N -- 6gMN), a~N~, and the superscript (G) labels the eleven 
coordinate, the 45 Maxwell and the 32 supersymmetric gauge modes. These gauge 
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modes introduce an arbitrariness in the formulation of the gauge invariant physical 
states in terms of  fields. Therefore, by choosing 1 1 +45 +32 convenient gauge 
conditions we cannot only eliminate spurious modes but also diagonahze the mass 
matrix of  the physical states at the outset. Convenient gauge choices are: 

hm;'.,, = h ~ ~ = 0 (10 condit ions),  (2.9) 

hMM = 0  (one condit ion),  (2.10) 

a m"P.p : a m l ' L P , p  ~-  a~VP,p : 0 (45 condit ions),  (2.11) 

FM~bM = 0  (32 conditions).  (2.12) 

The bosonic spectrum was computed in ref. [11], but for the sake of completeness 
we hst here the (mass) 2 values found there. These (mass) 2 are defined by the following 

differential operators 

spin-0 , / '~ .~ , -8m72, /=-m2, / ,  (2 13) 

spin-1 ( ~ . ~ -  ~ .~) '~  = - m 2 T h , ,  (2.14) 

spin-2 7/(~)., "p-  16m2~/(~)=-m27/(~) ,  (2.15) 

( ~  = ~ . ~  = 0). 

In this way, the spin-0 and spin-1 fields of  the "massless" supermultiplet have 

indeed zero mass while the (mass) ~ of  the (non-conformal) graviton has been assigned 

the value 8m72. In units of  m 2, the results are: 

m 2 = ( k + 3 ) 2 - 1 ,  k>~O, 

m ~ + = ( k + 3 ) 2 -  1 , k ~ l  

(m(ll-)) 2 = k 2 -  1, k/> 1 

(m(iE-))2=(k+6) 2 -  1 , k ~  > 1 

(1),2 k 2_ mo- ) = l ,  k >1 1 

~2).2 = (k +6)2_ l k>- I  too-) , 

(i).2 mo+ ) : ( k -  3) 2 -  1 , k t> 2 

( m ~ ÷ ~ 2 = ( k + 9 ) 2 - 1 ,  k>~O 

(3).2 mo+ ) = ( k - 3 )  2 -  1 , k~>2 (2.16) 

where the superscripts label different towers with the same spin-parity assignments. 
The massless supermultiplet  is given by the lowest value of  k in the towers mE, m(l 1-), 

(i) and (1) In these equations the integer k labels the relevant tensor harmonics m 0- mo÷. 
on S 7 in the expansion (1.1). Note the appearance of an additional zero-mass state 

(I) 
for k = 4  and a multiplet with m 2= -1  for d = 3  in the scalar tower m0+. 
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The tensor and pseudo-vector potential eigenfunctions are respectively the trace- 
less transverse h.v and the t r a n s v e r s e  At~mn. T h e  two vector towers are characterized 
by dual field strength elgenfuncUons V~)~v and V~m2)~ expressed by 

I) _ V ~ , ~ -  ~',..~ +36(k +5)m27am.~ (k >- 1), 

2) _ V(2~,~- Y(m~,~-36(k + l)m2am~,~ (k  >- 1), (2.17) 

where 

= 3~/2 m771~.,p=h,,, " . (2.18) ~ / ~  - -  p O" 

The two pseudoscalar towers are described by the elgenfunctions aO)ranp and u~(2)mnp 
with opposite duality phase, namely 

6 m 7 ( k  + 3)a°),,p = "rlrnnpqrsta O)qrs't (k >>- 1), 

+ - (2) t 6m7(k 3)am,p =--~m,pq,sra (z)qrs (k >~ 1). (2.19) 

The fields s °) and s (2) corresponding to the first two scalar towers are: 

s O ) = h m " . m . , , - k m 2 7 h m , , ,  (k~>2), 

S (2) = hmn.m,n +(k  + 6 ) m 2 h r a  m (k I> 0),  (2.20) 

while the last scalar tower is described by the traceless transverse part of  hm.. (The 
tower s (t) starts only at k = 2 because it is not possible to construct a tensor hm. on 
S 7 which leads to a non-vanishing s °) when k = 0 or 1.) 

To compute the fermionic mass spectrum, we substitute the Freund-Rubin expecta- 
Uon value for FMNeO into (2.3) and write out four- and seven-dimensional indices 

explicitly*. 

~'P,b + 5 t ~ , F m ,  s ~,,F m -  ~ ran 3 5 ~ ,  ')t .rp,,, "Y "Y t P s . v - - ) t  "y qJv.m'+'y F ~bm,r. +~m7"Y y O r = O ,  (2.21) 

~/5"yla'UFm~[JU.la, "~ ')tl~Fmn~tl~ n -- ~/IzFmn~jn ta, "[- ~15rmnP~ltp.n -3m7ySFmn~on --'- 0 .  (2.22) 

Clearly, eqs. (2.21) and (2.22) mix four-dimensional sp in )  and spin -1 fields. To 
unmix these equations, we make use of  the gauge condition (2.12). The fermionic 
spurious modes are of  the form ~ X ,  see Eq. (2.8). In the four- and seven-dimensional 

subspaces, (2.8) becomes, respectively, 

~ t , X  = X,~  - -  m7"Ys"Yu)(, (2 23) 

~,,,X = X.,, -½m7F,,,X. (2 24) 

The gauge condition (2.12) can be re-expressed in the form 

yt"~O~ + 'ys I"m~b m = 0 .  (2.25) 

* C o v a r m n t  der iva t ives  on  vec to r - spmors  are  ful ly  covanant~zed,  ~ e c o v a n a n t  w~th respect  to local  

Lorentz  as well  as genera l  coo rd ina t e  t r ans fo rma t ions  
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Evidently,  this gauge mixes four- and seven-dimensional  subspaces.  Combining  

(2.25) with the equation of  motion (2.3), one deduces an equivalent condition 

I~ M M : I~l'*,~ d I- I[Im,ra 

=½ysy , , 0 ,=  i " - ~ F  0,,.  (2.26) 

Using (2.23) and (2 24), we may therefore re-express the gauge condition (2 12) as 

~MOM = ~'0~,  + ~"q ' , ,  = O. (2 27) 

Inserting these conditions into the equaUons of  motion (2.21) and (2.22), we obtain 

~ ~ 5 ~ ~- , (2.28) --y ~b ,v--zm7y y Y q /v=-3m7ySt~+ysFm~ ' ,m  

5 /~ m n m m n 3 m - y  y ~b ,~,=F 0 , , - m 7 ( F  r O , - ~ b  ) .  (2.29) 

Consequently, the equations for the four-d~mensional spin-½ and gravitino fields 
have been completely decoupled by the gauge choice (2.12). Inspection now shows 
that, up to an additwe constant, the spin- 3 mass matrix is given by the eigenvalues 
of the Dirac operator on S 7. Similarly, the spin-½ mass matrix is gwen by the 
eigenvalues of the operator on the right-hand side of  (2 19). This operator cannot 
be directly identified with the Rarita-Schwinger operator on S 7 but may be inter- 
preted as the Rarita-Schwmger operator plus a "de Sitter" mass term on S 7 in a 
special gauge. 

To solve the eigenvalue equations (2.28) and (2 29), we make use of the spherical 
scalar and vector harmonics as well as covariantly constant spmors on S 7 [18]. The 
spherical harmomcs Y(y)  and Y,,(y) obey the equations 

Y ' P p = k ( k + 6 ) m 2 y  (k>~O), (230) 

Y,.'P.p = [k(k +6) - l]m72 Y,. (k i> l ) ,  (2 31) 

where Y,. is transverse, i.e y m  _-0 The eigenmodes of  the Dirac operator on S 7 
are easily found by making the ansatz 

~p(y) = am7 Y(y)rt(y)  + i l l "  Ym(y)~/(y), (2 32) 

where rt(y) Is the covariantly constant spmor on S 7. After a little calculation, one 
finds that, for each k t> l, there are two eigenvalues whereas there is only one for 
k = 0, namely*, 

A =7 for k = O ,  

A = k +  7, - k - ~  for k~>l ,  (2.33) 

with 

aft -~ = A +5 (A ~ - I ) .  (2.34) 

* These values have also been quoted tn ref [19] 
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The spin-½ mass matrix is obtained m an analogous fashion, although the calculation 
is considerably more tedious. To determine the mass spectrum, it follows from (2.29) 
that one has to solve the eigenvalue equation 

F"~bm.,, - m7F"F"~,, = A m 7 ~  m . (2.35) 

It ms here that we need the vector spherical harmonics (2.31); the correct ansatz is 

~b,, = am27 YmT1 + flm7 Ym.nFnT1 + ym2ynFmnTI 

+ t~m7 yv.nFmnpT1 + e m  7 Yn .mFn~l  + eYP'n.mF, vT1. (2.36) 

We first note that, upon applying the operator on the left-hand side of  (2.35) to the 
ansatz (2.36), only terms of  the type already present m (2.36) are produced;  on the 
other hand, all six terms in (2.36) and, in particular, the last term containing two 
derivatives are needed. To prove this, one has to make repeated use of  (2.31) and 
the commutator relation for two covanant  derivatives in the form 

[Dn, Dp] Ym = -2m2 gmt, Yvl (2.37) 

and analogous ones for higher-order tensors. 
Substituting the ansatz (2.36) into (2.35), one gets a linear equation for the six 

coefficients o~, /3, y, 6, e and ~'. The mass eigenvalues A are then given by the 
elgenvalues of the corresponding 6 x 6 matrix. To facilitate the computation, it proves 
advantageous to first separate off the spurious eigenmodes which are of the form 
(2.24). Applying the operator ~,,  to the eigenvalue equation (2.35), we obtain 

Fm(~"O,),m = (a + 1 ) m 7 ~ n ~ n  (2.38) 

If  one now decomposes ~b,, into pieces which are transversal and longitudinal with 
respect to the operator ~,,, viz. 

I~ra=Xm"~mX, ~mxrn=O , (2.39) 

one infers from (2.38) that this decomposition is maintained by the spin-½ mass 
operator (note that the "de Sitter mass term" in (2.35) is essential here). Therefore, 
the eigenspace of this operator decomposes naturally into the space of spurious 
states with ~m~bm # 0 and the space of  physical states which obey 

"q'm = 0 (2.40) 

Eq. (2.40) is a genuine seven-dimensional gauge condition. It should also be noted 
that the analogous decomposition 

~m=X"  +FmX ' ,  F m X ' = 0 ,  (2.41) 

is not mvariant with respect to the spin-½ mass operator. 
The eigenmodes of  type (2 24) are now easy to identify: one simply expands the 

spinor X in (2.39) into the complete set (2.33) of  eigenmodes of  the Dirac operator 
The corresponding eigenvalues are then related to the eigenvalues A of (2.35) by 
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eq. (2.38). In this way, we find 

A = k +  5, A = - k  - 7  (k~>l) .  (2.42) 

Observe that the mode associated with the eigenvalue A = ~ is absent because, in 
this case, X in (2 39) is the covariantly constant spmor which is annihilated by the 
operator ~,~ ; the wave function for ~b,~ thus vanishes identically. 

Having identified the modes of type (2.24), one next simplifies the ansatz (2.36) 
by rendering it orthogonal to these modes. This is equivalent to imposing the 
condition (2.40), and after a little calculation, (2.36) is replaced by 

¢t~ hys'¢a' = am~ Y,,,r I + tim7 YP'"r,,,np'rl + y(m~ Y"r,,,,,~ + m7 Ym., ,r"n ) 

+ 3( YP'n mF,,p~ - 5mT Y,,.,,F"rl - k (k  +6)m7 Ym ,,F"rl) . (2.43) 

In this way, we have been able to eliminate two out of  the six coefficients present 
in (2.36) and to reduce the determinaUon of  the physical eigenvalues to the computa- 
tion of  a 4 by 4 determinant. The relevant 4 by 4 mamx can be obtained by inserting 
the ansatz (2.43) into the left-hand side of  (2.35); it is 

I 
25--A 0 k ( k + 6 ) + 5  - ( k ( k  +6)2 +25) -] 

2 A 2 3 - k  +6) (2.44) 
rid= k(k +6) +5 7 A 

1 0 - 7 - A  _] 

From (2.44), one calculates the eigenvalues which are given by 

A = k + 7  ( k / > l ) ,  - k - - ~  (k t>2) ,  (2.45) 

A = k - ~ ,  - k - ~  (k~>l) (2.46) 

The restriction to k I> 2 in (2.45) requires some explanation. Substituting the putative 
eigenvalue A = _7 (i.e. k = l) into (2.44) and making use of  the ansatz (2 43), we get 
the corresponding wave function 

~bm = 2(m72 Y"F,,,,,~ + m 7 Ym . .Fa 'q )  

+ YP'".mF,,prl  - 5m 7 Y, , , ,F" r / -  7m7 Y,,,.,,F"rl. (2 47) 

The vector spherical harmomc Y,, for k = 1 may be explicitly represented by ¢/~F,,~/J 
m terms of  covariantly constant spinors n i, from which it follows that 

Y, , , , , ,=-  Y , . , , ,  Yt"",m = 2m2ytp3~l .  (2.48) 

Inserting (2.48) into (2.47), one sees that the wave function (2.47) vanishes identically 
and therefore the eigenvalue A = _7 in (2 42) is, in fact, absent. Finally, it can be 
shown by explicit calculation, that the two towers (2.45), in addition to (2.40), satisfy 
the constraint F'Xm = 0 whereas the other two towers (2.46) do not. It should, of  
course, be understood that the eigenmodes corresponding to (2.39), (2 42), (2.45) 
and (2.46) belong to irreducible representations of SO(8); we have suppressed their 
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representation labels for simplicity. The symmetry assignments will be discussed in 
the following section. 

We now briefly return to the gauge con&tlon (2.12). It has already been pointed 
out that it connects four- and seven-dimensional quantities but its implications in 
the four-dimensional context must stdl be elucidated. For the modes (2.42), one 
obviously h a s  ~ml~m ~ 0  and therefore the gauge condition (2.27) determines a 
constraint on ~'~b~ for the four-dimensional spin-3 fields. More precisely, it follows 
from (2.42) that there is an exact correspondence between the massive gravitinos 
and these modes which furthermore belong to the s a m e  representations of SO(8). 

o • • • 1 

Thus, through the constraint on ~'~bj,, the modes (2.42) provide the reqmred hehclty-~ 
states to make the spin- 3 fields massive. (This correspondence is also useful m the 
group theoretical t reatment)  On the other hand, the massless gravitino has no 
associated spurious mode, as was mentioned after eq. (2.42), and the gauge condition 

(2.11) reads 

~ " ~ ,  = 0 (2.49) 

in this case. Eq. (2.49) eliminates the helicity-½ degree of  freedom and expresses the 
masslessness of  the lowest-lying gravltino as well as the existence of  eight supersym- 
metries of the ground state. 

The masses of the spin-½ and spin-3 particles are defined by the eigenvalues m~/2 

and m3/2 of the four-dimensional differential operators appearing m the left-hand 
side of eqs. (2.28) and (2.29). They are given, in units of m7, by eqs. (2.33), (2.45) 
and (2.46) up to an additive constant. We thus have 

mO) _ k +2 k 1> 0 3 / 2  - -  , , 

m ( 2 )  _ - k - 4 ,  k >- 1, 
3 / 2  - -  

o) - k - 1  k>~l m , / 2  --  , ~ , 

m ~ ) 2 = - k - 7 ,  k ~  > 1, 

m ~ 3/)2 = k + 5 , k >~ l , 

m(4) _ _ k - 1 k / >  2 (2 .50 )  
1 / 2  - -  ) " 

The superscripts label the towers. The members of  the "massless" N = 8 supermulu- 
_0 )  and _0)  Note that for convenience the plet are at the bottom of  the towers ,,,3/2 ,,,~/2. 

"massless" gravitino has been given the value +2 We do not list the SO(8) content 
of  the modes here as this will be discussed in the next section. 

3. O s p ( 8 ,  4 )  c l a s s i f i c a t i o n  

Up to this point, the symmetry assignments of  the various modes have not b e e n  

discussed in any detail. The mass spectrum of  N = 8 supergravity on S 7 in the 
bosonic and fermionic case has been determined by solving the appropriate eigen- 
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value equaUons, and no explicit reference to the SO(8) and supersymmetry content 
of  the modes was necessary. The SO(8) assignments can be deduced from those of 
the spherical (scalar, vector and tensor) harmonics on S 7 which are known [18], but 
this is not sufficient to group the various states into supermultiplets. For a complete 
classification, one has to make use of  the full invariance of  the S 7 ground state. This 
group contains not only the 28 rotations of  SO(8) corresponding to the 28 Kllhng 
splnors on S 7 but also eight spinorial translations which correspond to the eight 
Kllhng spmors on S 7. Together, the generators associated with these bosonic and 
fermionic transformations constitute the graded Lie algebra Osp(8, 4), and a ngorous 
proof  of  the Osp(8, 4) invariance of the S 7 ground state has been given in ref [20]. 
The excitations corresponding to the fluctuations about the ground state should 
therefore form irreducible representations of  Osp(8, 4). From the general Kaluza-  
Klein theory [8] and the absence of  higher spin fields in eleven-dimensional super- 
gravity, it follows that the relevant representations are those with maximum spin 2. 
The latter have been classified in ref. [21]; and we will restrict our attention to these 

representations here. 
The masses of the excited states are proportional to the inverse radius [m71 of  the 

seven sphere. Thus, m the limit m 7--> 0 where the space becomes flat, all masses tend 
to zero. In this limit, the relevant superalgebra is the Pomcar6 superalgebra, and 
we conclude that m this contraction hmit, the massive representations of Osp(8, 4) 
become massless  representations of  N = 8 Pomcar6 supersymmetry. This has the 
very important consequence that all massive representations of Osp(8,4) with 
maximum spin 2 must be obtainable from massless representations of N = 8 super- 
symmetry with the same spin hmit. There is only one such multiplet with maximum 
spin 2, namely the massless N = 8 multlplet already mentioned in the introduction. 
It contains one graviton [1 of  SO(8)], eight gravitinos (=Ss), 28 spin-1 fields (=28), 
56 spin-½ fields (=56s), 35 scalars (=35v) and 35 pseudoscalars (=35¢) (for the group 
theoretic conventions, see ref. [22]). Hence, one should be able to derive all massive 
Osp(8, 4) multlplets from products of  the form 

R®{1, 8s, 28, 56s, 35v, 35¢}, (3.1) 

where R is an as yet unspecified representaUon of  SO(8). 
To facilitate the discussion, we next introduce Dynkin labels to classify the 

representations of  SO(8) [22]. Each irreducible representation of  SO(8) can be 
uniquely labelled by a set (ala2a3a4) of  four non-negative integers a~, a2, a3, a4. 
Since the massless graviton which belongs to the massless N = 8 multiplet is an 
SO(8) singlet, the charged massive gravitons will carry the same label as the relevant 
irreducible representation. One now realizes that the representation R which occurs 
in (3.1) is no longer arbitrary, since we know from the explicit calculations [8] that 
the massive gravitons are in one-to-one correspondence with the eigenfunctions of  
the laplacian on S 7, i.e. the spherical harmonics on S 7. These are characterized by 
the Dynkin labels (n000), n c N, which correspond to the symmetric and traceless 
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SO(8) tensors with n indices. To obtain the full Osp(8, 4) multiplet, we replace R 
in (3.1) by n(nO00), perform the multiplication and identify the irreducible com- 
ponents m this product  The Dynkin labels of the massless representation are given 
by 

8s = ( 0 0 0 1 ) ,  28 = (0100), 

56s=(1010),  35v=(2000),  35¢=(0020). (3.2) 

The result of  this multiplication, which is given in ref. [21], is, however, not yet the 
final answer. One stdl has to add lower helicity states to the spin-2, sp in )  and spin-1 
fields to make them massive. The lower helicity states which are absorbed must 
belong to the same representation as the gauge field into which they are absorbed. 
The final result which is obtained after absorbing these states reads*" 

spin-2. (n000), 

spin) :  (n001)~(n  - 1010), 

spin-l+: ( n - 1 0 1 1 ) ,  

spin-l- :  (n 100)~(n -2100 ) ,  

spin-½: ( n + l O l O ) ~ ( n - l l l O ) ~ ( n - 2 1 0 1 ) O ) ( n - 2 0 0 1 ) ,  

spin-0+: (n +2000)~9 (n - 2200)~(n - 2000), 

spin-0-: (n020)~(n  - 2002), (3.3) 

where, whenever an integer is negative, the associated representation does not exist; 
for example, the second spin -3 tower starts only at n = 1. For each n, (3 2) is an 
irreducible representation of  Osp(8, 4), and the integer n therefore labels the "floors" 

of  the massive tower. 
To relate the group theoretical result (3.3) to the solutions of  the elgenvalue 

equations of  the preceding section, one must properly adjust the relation between 
the index n which labels Osp(8, 4) multiplets and the index k which labels the 
spherical harmomcs. For the spin-2 and sp in )  states, the identification is straightfor- 
ward; for example, the eigenmodes of  the Dlrac operator found in (2.32) and (2.33) 
exactly correspond to the two representations m (3.3), and the absence of  the "ground 
floor" for the second tower was also obtained there. The spurious modes (2.42) 
which are eaten by the gravitinos also appear in the product (3.1) but have already 
been absorbed m (3 3). For the spin-½ states, one makes use of  the decomposition 

(/100)® (0001) = (/101)~9 (l + 1 0 1 0 ) ~ ( / -  1110)~ (/001), (3.4) 

which yields the physical modes because the vector spherical harmonics Y,, with 
index k ~  > 1 belong to the representations (/100) with l = k -  1/>0. The F traceless 

* For the special case n = 1, this result was first obtained m ref [19] 
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elgenmodes (2.29) then correspond to the ( / -2101)  and ( l -1110)  representations 
in (3.4). That these assignments are indeed correct follows from the gauge condition 
(2.25): the term y~'~b~, can only belong to (/001) or (/010), and any representation 
for ~,, which is different must satisfy the constraint Fmqjm = 0. Similar considerations 
apply to the spin-0 sector. 

Besides spin and SO(8) content, the complete characterization of  the Osp(8, 4) 
states requires the knowledge of the lowest eigenvalues Eo of  the "energy operator" 
Mo4 of  the SO(2, 3) subalgebra of Osp(8, 4). The energy labels are most easily found 
using the fact that 

Osp(8, 4) = Osp(1, 4) x SO(7) (3.5) 

and the known energy labels of Osp(l,  4) representations [23]. To illustrate thxs 
procedure,  we first analyze the n = 0 multiplet (3.2). Under the SO(7) subgroup of  
SO(8), these representations decompose as 1 --> 1; 8s--> 1 +7, 28-~ 7 +21; 56--> 21 +35; 
35v--> 35 and 35c--> 35. It is evident that the members of an Osp(1,4) multiplet must 
belong to the same representation of  SO(7); on the other hand, states that emerge 
from the same SO(8) representation must carry the same energy label. The 35 
corresponds to a Wess-Zumlno muitiplet in (ADS)4, and since it is massless, it is 
uniquely characterized by [23]: 

D(1, 0)0) D(3,1)O D(2, 0),  (3.6) 

where the first number is the energy E0 and the second the spin s of  the lowest state 
m the SO(2, 3) multiplet. Massless higher spin representations are characterized by 
(s =½, 1 , . . . )  

D(s + 1, s)O) D(s +3, s +½). (3.7) 

Below, we also need the general massive higher spin representations of Osp(1, 4), 
which are given by 

D(Eo, s)O)D(Eo+½, s +½)09 D(Eo +½, s - ½ ) ~ D ( E o + l ,  s) ,  (3.8) 

where Eo > s + 1, s = ½, 1 . . . .  Putting everything together, we obtain table 1 

TABLE 1 
The n = 00sp(8, 4) mulaplet 

t 0 + Spm 2 23- 1 - ~ 0- 
SO(8) 1 8s 28 56s 35e 35¢ 
SO(7) l 1 
decomposition 7 7 

21 21 
35 35 35 

5 3 Eo 3 ~ 2 i 2 1 
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TABLE 2 

The n = 1 0 s p ( 8 ,  4) multlplet 

Spin 2 ~ 1 + 1- ½ O- 0 + 

SO(8) 8v 8c 56c 56~ 160~ 160c 224vc 224¢v l12v 
SO(7) 8 8 8 8 
decomposmon 48 48 48 48 

112 112 112 112 
112 112 112 

Eo 2 4 3 2 ~ 3 2 ~ 2 2 2 2 2 

A similar analysis for the n = 10sp(8 ,  4) multiplet leads to the results shown m 
table 2. 

This construction is easily generalized to the higher excited multiplets on S 7 The 
result is gwen by: 

s = 2: Eo(n000) = 3 + i n ,  

s=3 :  Eo(n001)=~+~n,5 i 

Eo(n - 1010) =-7l + i n ,  

s =  l: Eo(nlOO)= 2 +½n, 

Eo(n - 1011) = 3 +½n, 

s =½: 

Eo(n -2100)  = 4 + ½ n ,  

~o(,, + lOlO) = 3 +½n, 

Eo(n - 1110) =~+½n,  

Eo(n - 2101) = 7 +½n, 

Eo(n - 2001) = 9 +½n, 

s = 0 :  Eo(n + 2000)= l + i n ,  

Eo(n020) = 2 + i n ,  

Eo(n - 2200) = 3 +½n, 

Eo(n - 2 0 0 2 )  = 4 +½n, 

Eo(n - 2 0 0 0 )  = 5 +½n, 

from which one reads of[ the umversal mass energy relaUon 

Eo = 3 +½x/m 2 + 1 for bosons ,  

Eo = ~ +½]ml for fermions.  

Eq 

(3.9) 

(3.10) 

(3.11) 

(3.10) is valid for all bosomc states except the 35v massless scalars for which 
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TABLE 3 

The spect rum of  supergravRy on the seven-sphere 

(Mass)  2 m 
Spin SO(8) content  umts  of  m 2 

2 + (nO00)* n I> 0 (n +3)  2 -  I 
3(1) (nO001)* n >/0 (n +2)  2 
3_(2) (n - 1010) n I> 1 (n  + 4 )  2 2 
1 -(l) (n 100)* n>~O (n + 1 ) 2 -  l 
l + ( n - 1 0 1 1 )  n ~ l  (n + 3 ) 2 -  l 
1 -(2) ( n - 2 1 0 0 )  n~>2 (n + 5 ) 2 -  l 
±(1) 2 (n + 1010)* n ~ 0  n 2 

½(2) ( n - l l l O )  n~>l ( n + 2 )  2 
±(3) ( n - 2 1 0 1 )  n~>2 ( n + 4 )  2 2 
1(4)2 (n - 2001) n ~ 2 (n +6)  2 
0 +(I) (n  + 2 0 0 0 ) *  n ~ 0 (n  -- 1) 2 -  l 

0 -(I) (n020)* n~>0 (n + 1 ) 2 -  l 
0 +(2) (n - 2200) n/> 2 (n +3)  2 -- 1 
0 -(2) (n - 2002 )  n I> 2 (n + 5) 2 -- 1 
0 +(3) (n - 2000 )  n ~> 2 (n +7)  2 - 1 

The states marked by an asterisk contain the zero-mass super-  
mult~plet 
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we have 

E0 = 1 = 3 _ ~_~/m2---'~ 1. (3.12) 

Collecting all our results we get table 3. 

The umversality of  eqs. (3.10) and (3 11) implies that Eo has a dynamical signifi- 
cance. In fact, we know from ref. [24] that the relation (3.10) for spin-0 fields 

characterizes modes which die fast enough at infinity to ensure energy conservation 
in AdS. The reality of  E0 is guaranteed by the fact that m 2 ~ - l ,  the stability limit 
bemg reached in the 0 +°) tower for n = 1 (k = 3) with a multiplet of  112 scalars. For 
n = 2 (k = 4) the same tower again contains conformal massless modes (294 scalars) 
with vamshing energy flow at spatial infinity. However, they must satisfy different 
boundary  conditions, characterized by the + sign m eq. (3.10), than the 35v in order 
not to break supersymmetry In this way they fit indeed as massless members  m the 
"mass ive"  supermuluplet  n = 2. Note that, in contrast to Poincar6 supersymmetry, 
states belonging to the same supermultiplet characterized by n may have different 

masses because of  the non-commutativi ty of  the energy operator  M04 with supersym- 
metry generators. Thus we see that for scalar modes, the supersymmetric spectrum 
is consistent with a Hilbert space of functions with a boundary condition preventing 
energy flow in and out of  AdS and hence admitting well-defined Cauchy data in 
this otherwise unviable space. We infer that such a property holds for all the modes 
because of  the universahty of  eqs. (3.10) and (3.11), a conjecture that could be 
checked explicitly following the method of  ref. [24]. It follows from the reality of  
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E0 that the seven-sphere is stable against small fluctuations belonging to this Hilbert 
space, a fact which also follows from supersymmetry [25]. 

Finally, we remark that the group theoretical calculation based on the analysis 
of  Osp(8, 4) multiplets which leads to (3.9) is essentially quantum mechanical. In 
contrast, the method used in sect. 2, which is based on harmonic expansions on S 7, 
yields the classical mass spectrum only. The agreement between the final results 
motivates the conjecture that the results of table 3 are, in fact, valid to all orders 
in perturbation theory, if the quantizatlon procedure respects N = 8 supersymmetry. 
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