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We describe a new type of multiplet shortening in Osp(N, 4) which resolves a long-standing 
puzzle in Kaluza-Klein supergravities. Multiplet shortening implies quantization of mass eigenval- 
ues in units of the inverse AdS radius. While detailed proofs are presented only for N = 3, we 
discuss implications for N = 8 supergravity and derive the SO(8) assignments of all higher modes 
on the round seven-sphere. 

1. Introduction 

The work described in this paper is largely mathematical but the motivation 
comes from the following puzzle in spontaneously compactified supergravity theo- 
ries. The l l-dimensional supergravity [1] theory has a classical solution with back- 
ground metric (ADS) 4 × S 7, full N = 8 supersymmetry, and SO(8) internal symmetry 
[2, 3]. The massless excitations are known to constitute a standard N = 8 representa- 
tion with maximum spin 2 [4, 3]. There is also an infinite set of massive excitations 
with maximum spin 2. Relatively little is known about them, but it is clear that they 
should form massive representations of N = 8 supersymmetry and maintain SO(8) 
invariance since the vacuum state has these symmetries. In Poincar6 supersymmetry 
massive N = 8 representations require either Sma x = 4 with no central charges or 
Sma x = 2 with central charges that break SO(8) [5]. Clearly, neither has the correct 
structure. Of course, in the anti-de Sitter spacetime of compactified supergravity the 
relevant superalgebra is Osp(N, 4), not Poincar6 supersymmetry. Therefore a sep- 
arate study of the massive representations of Osp(N, 4) is required to understand the 
higher modes. 

We report here recent results on the structure of massive representations of 
Osp(N, 4) which indicate that there is a new type of multiplet shortening due to the 
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internal symmetry generators in the algebra. This resembles the shortening due to 
central charges in Poincar6 supersymmetry, but here the SO(N) automorphism 
group is maintained. To minimize algebraic complexity representations are explicitly 
constructed only for N = 3, and we show that Osp(3,4) has a series of short 
representations with maximum spin 1 whereas the typical long representations 
require at least spin 3. The analysis is considerably more complicated than for the 
Poincar6 supersymmetry algebra, but it is facilitated by the following two basic 
observations. 

(i) Any irreducible representation of Osp(N,4) is decomposable in terms of the 
Osp(1, 4) multiplets which have been given in [6]. 

(ii) In the limit where the radius of anti-de Sitter space becomes infinite and the 
Osp(N, 4) algebra contracts to the N-extended Poincar6 superalgebra, all irreducible 
representations of Osp(N, 4) become massless representations of Poincar6 supersym- 
metry. This implies that all Osp(N, 4) multiplets can be obtained from products of 
(possibly reducible) representations of SO(N) with massless multiplets of Poincar6 
supersymmetry. 

After giving the proof for N = 3, we extract a simple procedure which correctly 
accounts for the spin and SO(3) structure of the short representations. A natural 
generalization of this procedure to N = 8 is conjectured. It appears to describe the 
short representations with Sma ~ = 2 which are required in ll-dimensional supergrav- 
ity. As a consequence, we derive the SO(8) assignments of all the massive modes on 
S 7 in terms of SO(8) Dynkin labels. 

Readers should note that the finite-dimensional representations of Osp(N, 4) are 
completely known [7]. However, it is the infinite dimensional representations which 
describe particles in supersymmetric field theories. Here there is a complete treat- 
ment only of the simplest case, N = 1, in [6]. The general construction of unitary 
irreducible representations of non-compact supergroups has been studied in ref. [8], 
but the phenomenon of multiplet shortening has not been previously discussed. 

2. Known structure of irreducible representations 

For the convenience of the reader, we briefly review here what is known about 
irreducible representations of supersymmetry. For Poincar6 supersymmetry, their 
structure is well-known [5]. There are massless representations with 2 u helicity states 
and helicity at least up to ¼N for even N or ¼(N + 1) for odd N, and there are long 
massive representations without central charges with at least 2 2N helicity states and 
spins at least up to ½N. With central charges there are short representations with the 
same spin limits as in the massless case. The general massless Poincar6 representa- 
tion with a non-trivial Fock vacuum acted on by 2 u creation operators plays an 
important role in our work. (See sects. 9, 10). 

It is perhaps less widely appreciated that the particle representations of Osp(1, 4) 
are also completely known; they have been constructed by Heidenreich [5]. They 
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decompose  into positive energy representations of the covering group of SO(3, 2 ) -  
Sp(4). These particle representations and their relation to wave equations in anti- 
de Sitter space were studied by Fronsdal [9]. A representation is denoted by 
D (E  o, s) where E o is the lowest energy eigenvalue which occurs and s is the total 
angular momentum quantum number of the lowest energy state. The representation 
is unitary provided that E 0 >/s + 1 for s = 1, 3 . . . .  and E 0 > s + 1 for s = 0, ½. The 
representations are all infinite dimensional and weight diagrams for s = 0, ½, and 1 
are shown in fig. 1. It is important that the notion of particle mass be interpreted in 
the context of anti-de Sitter space. A particle is massless if E 0 = (s + 1) for 
s = ½,1 . . . .  or E 0 = 1 or 2 for s = 0. It is known [9] that the corresponding wave 
equations are conformal invariant for s = 0, ½ and 1 and gauge invariant for s > 1. 

Note  that the vector weight diagram contains a set of  scalar states (denoted by x 
in fig. 1) which mix with the other states for E 0 > 2 but decouple for E o = 2. This 
corresponds to the decreased number of states which occur in the presence of gauge 
invariance and is suggestive of the Higgs mechanism. In the limit that the radius of 
the anti-de Sitter space becomes infinite with E 0 fixed, all representations approach 
massless representations of the Poincar6 group. For s = 1 and E 0 > 2, this Wigner- 
InOnb contraction gives both helicity-1 and helicity-0 states. 

Heidenreich found several types of representations of Osp(1, 4), and we now give 
their SO(3, 2) decomposit ion in a designation convenient for our purposes. 

Type A: Wess-Zumino representations: E 0 > ½ 

D( Eo,O ) @ D( E o+ ½,½) @ D( E o+ 1,0). 
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F i g .  1. Weight diagram of the SO(3,2) representations D(Eo,s ) for s = 0 , ½ , 1 .  Each dot or cross 
indicates a rotational multiplet of 2 J  + 1 states. Each representation is infinite dimensional so that the 
indicated patterns actually extend upward without bound. The crosses in the s = 1 weight diagram 
indicate states of the scalar representation D(E o + 1,0) .  The states are coupled with the others for E 0 > 2 

but decouple for E 0 = 2 which corresponds to a massless gauge invariant vector field. See the text a n d  [9] 

for further information on the particle representations of SO(3 ,  2). 
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Type B: Massive higher-spin representations: E o > s + 1, s = ½,1,... 

D(Eo,  s)  (g D(  E o+ ½,s + ½) (g D(  E o + ½, s -  1) (g D(  Eo + 1, s) .  
1 3 Type C: Massless higher-spin representations: s = 7, 1, ~ . . . .  

D ( s  + 1 , s )  (g D ( s  + ~ , s  + ½). 

The free supersymmetric field theories of type A and type C (s = ½) representations 
have been discussed both in superspace [10,11] and component [11,12] formulations. 
The field theory of the type B (s = ½) representation has also been discussed recently 
[13]. For completeness we note that Heidenreich also found an Osp(1, 4) representa- 
tion involving Dirac singletons which we omit here because it does not appear to 
occur in standard field theory. 

Very little is known about the unitary, irreducible representations of Osp(N, 4) for 
N > 1. The structure of massless representations was inferred in [12] by using the 
type C and type A (E  0 = 1), N = 1 representations as building blocks for higher N. 
The same pattern as massless representations of Poincar6 supersymmetry was found, 
viz. one SO(3, 2) representation D(s + 1, s), N representations D(s  + 1, s - ½), etc. 

Thus there is a perfect correspondence between all known Osp(N, 4) representa- 
tions and those of Poincar6 supersymmetry and therefore no answer yet to the 
question of what representations describe the higher modes of compactified su- 
pergravity. In particular the known results give no hints of any new type of multiplet 
shortening. 

3. The Osp(N, 4) superalgebras 

The even elements of Osp(N,4) consist of 10 hermitian SO(3,2) generators 
MA B = - - M B A ,  where A, B = 0,1 . . . . .  4, and ½ N ( N -  1) hermitian SO(N) generators 
T ij -- - T ji, where i, j = 1 . . . .  ,N. The odd elements are 4N Majorana spinor charges 
Q~ where a = 1 . . . . .  4 is a Dirac index. The structure relations of the superalgebra 
are, 

{ Q'o, ) = isiJ(l A") o MA. + iao V'J, 

l a4 = - ½iy a, a = 0 , 1 , 2 , 3 ,  

lab 1 [ ya, yb ] oab, = ~ t  j = ( 1 )  

' 
= - - t ( I A B ) ~ Q  ~, (2) 

[ r ' J ,  = (3) 

[ MAB, MCD] = i(71BcMAD -- 71AcMBD -- •BDMAc + nADMBc),  

n a B = ( +  . . . .  + ) ,  (4) 

[ T ij, T k'] = - i( SJ~'T i t -  a 'kT g ' -  ~J/T ''~ + aitTJk ) . (5) 
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Eq. (3) implies that  the spinor charges t ransform in the N-dimensional  vector  
representa t ion of S O ( N ) * .  Later  when we specialize to N = 3, it is convenient  to 
define T q = eq~Tk; then (3) and (5) become  

= te ~d,, (6) 

[T ~, TJ] = ieqkTk, i, j . . .  = 1 , 2 , 3 .  (7) 

We will use the following y-matr ix  representat ion 

,o (1 0) , ( 0  o) 
= = c = i v % ,  2 . ( 8 )  

0 - 1  ' - o  i 0 ' 

The Majo rana  spinor  Q~ can then be parameter ized  as 

Qi  a~ 0 
= , e = (9) 

1 ~o~8~ ] - 1 ' 

Since Mo4 is the energy opera tor  and Mq where a~ -~ is the adjoint  of  a~. = eqkJ k are 
ro ta t ion  generators,  (2) implies that  

[M04 aX ] = 1 i , - 7aa ,  

[Mo,, ~'o] 1-, = ~a a , 

[J~, a;]  = - - ~ ( o ~ ) o ~ a ~ ,  

[Jk,  81,] = ½8~(Ok)t]~" (10) 

Thus  a~-i and a~,i respectively, raise and lower energy by  ½ unit, and a~-i is a s tandard  
irreducible spinor opera tor  with respect  to spatial  rotations.  

Final ly we write out (1) in matr ix  form as 

( a~, ~/~ } { a~, a~ ) e~ ] 

= ( 6iJ(M04 + 0%)at~ + iTiJO, B 8iJa~(iMok + mk4) (11) 

t ~'~O2~( iMo, - M~a) ~'J(- Mo4 + O% )o. + i r % ~  

* The case N = 8 is special in that there exist three inequivalent 8-dimensional representations. The 
assignment of the spinor charges to any of these is a matter of conventions, 
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This shows that anti-commutators of the odd elements (or, more generally, even 
products of the odd elements which are symmetric under interchange of index pairs 

i 

are related to even elements of the Osp(N, 4) algebra (or products thereof) or vanish 
for particular index values. 

4. Strategy of construction of representations 

The technique used here is a generalization of that of [6]. It is valid for any N, but 
it is convenient for notational reasons to specialize to N = 3 and to use the standard 
notation J, M to designate eigenvalues of the isospin Casimir operator T~T i and of 
T 3. A representation of the even subalgebra SO(3,2)×SO(3) is denoted by 
D ( E  o, s, J )  where, as before, E 0 is the lowest-energy eigenvalue in the multiplet and 
s denotes the total angular momentum of the lowest energy state. J is the common 
total isospin of all states in the representation. A typical state of the representation is 
written as I(Eo, s, J ) ,  o~, j ,  m, M) .  Here, ~ denotes the eigenvalue of the energy 
operator Mo4, which differs from E o by an integer, j and m designate eigenvalues of 
the Casimir operator JkJk and J3 of the subalgebra of spatial rotations, and M the 
eigenvalue of T 3. 

For positive energy representations of Osp(3, 4) there must exist a unique vacuum 
multiplet of (2s + 1)(2J + 1) states I(Eo, s, J ) ,  E o, s, m, J, M )  = [vac, m, M )  with 
the property that they are annihilated by all energy lowering operators a~: 

a~lvac, m, M )  = 0. (12) 

According to (11) all operator bilinears of the form i - J  a,a~ act on the vacuum as 
combinations of the operators M04 , Jk and T ~ and therefore leave the vacuum 
multiplet invariant. Indeed Jk and T ~ have the standard action of SU(2)× SO(3) 
generators on any state. The SO(3,2) energy boosts M~ = i M o k - m k 4  are de- 
termined from (11) as 

(13) 

This means that the bilinears -i { a~, 6~ } either annihilate the vacuum states if i c j  or, 
if i = j ,  they give a linear combination of states I(E0, s, J ) ,  E 0 + 1, j ,  m', M )  of the 
first excited level of the SO(3, 2) representation in which the vacuum lies. Note that 
in general one may have j  = (s + 1), s, or (s - 1) as in fig. 1. Further application of 
the bilinears { 6 ~ }  simply moves us higher in energy among the states of the 
representation D(Eo, s, J )  but leaves the isospin content of the state unchanged. 



348 D.Z. Freedman, H. Nicolai / Multiplet shortening in Osp(N, 4) 

We now introduce the set B which consists of all combinations of products of the 

operators ~ which are antisymmetric under interchange of the index-pairs ( ~ ]. It is 
• . _ _  . _ _  _ _  _ _  . \ a ]  

advantageous to &vide B into subsets B 0 ..... B2N where B, contains products of n 
operators a~. -~ Thus, we have 

B = B 0 W • • • [ " ) ' B 2 N ,  (14) 

with 

B0 (1} ,  B1 {--i 

-B3= {pe~rmba/a~ak), 

etc. (15) 

From (15), it is evident that Bn contains ( 2 N )  operators and therefore B contains 

22N operators. For N = 3, which is the case on which we will concentrate from now 
on, there are 64 such operators. By construction, the symmetric combinations and 
the set B are mutually exclusive, and it is obvious that any product of operators -i a~ 
can be expressed as a sum of products of even elements of the Osp(N, 4) algebra and 
elements of B. 

When an operator of Bn acts on a vacuum state it typically gives a linear 
combination of lowest weight states of new SO(3, 2) × SO(3) representations 

1 ! D(e0+ .,s ,J,), 

where s '  and J '  are any of the several spin and isospin values which are obtained by 
Clebsch-Gordan addition of s and J of the vacuum with the spin and isospin carried 
by the opera tor  of Bn- In addition, as we will see in detail later, there may be 
admixtures of states obtained by applying energy boosts to lowest weight states of 
representations D(E + lm, S',  J') for m < n if such states are generated by opera- 
tors of Bm acting on the vacuum• 

We now define an infinite-dimensional vector space V as the span of all vectors of 
the form 

( m ~  )nl( m f  )n2( m ;  )n3Blvac , m, M), (16) 

where n i are any non-negative integers and where any operator in the set B can 
appear in the last position• A unitary representation of Osp(3, 4) can be defined on V 
by imposing a Hilbert space structure• The vacuum multiplet is assumed to be 
orthonormal. The norms of other states in V are then calculated, in order of 
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increasing energy, by moving a operators to the right of ~ operators using (2, 3,11,12). 
The requirement of nonnegative norm will impose restrictions on the quantum 
numbers E 0, s, J of the vacuum. The typical long representations of Osp(3,4) 
contain all SO(3, 2) × SO(3) representations D(E o + in, s', J') with values of s', J '  
that occur in the Clebsch-Gordan decomposition of operators o f B  n for n = 0,1 . . . . .  6, 
with the SU(2)× SO(3) representations of the vacuum. It is easy to see that 
contains particles with all spins and isospins in the range I s - -32 1 ~< s '  ~< I s + 3[ and 

I J - 2 1  ~ J ' ~  I J +  21. 
If further restrictions are placed on the vacuum quantum numbers, then the norms 

of the vectors in V which correspond to certain SO(3,2)× SO(3) representations 
vanish. This means that the Osp(3, 4) representation does not contain these compo- 
nents. This is the phenomenon of multiplet shortening. 

In the following sections, we describe the calculation of norms in the various B, 
sectors, and the reader will see the structure described above emerge. Actually, a 
complete and systematic calculation of norms in the higher B~ sectors would be very 
tedious and exhausting even for the case N = 3 we are considering; a similar 
systematic investigation for N = 8 along the same lines does not appear possible 
without more sophisticated methods and presumably requires the help of a com- 
puter. Fortunately, for N = 3, we can establish the existence of short multiplets by 
supplementing some norm calculations with rigorous but indirect arguments of the 
type mentioned in the introduction, using the decomposition into known Osp(1, 4) 
multiplets and the Wigner-InOni) contraction. Similar arguments will also be of help 
for N = 8, since they imply rather strong restrictions as will be discussed in the last 
section of this paper. 

5. The B ~ sector 

We use standard Condon-Shortley phase conventions throughout the calculations 
with a non-conventional definition of reduced matrix element, to wit 

(B,j ' ,m'lT~klAJm)=(B,j ' lT~lA, j ) ( j ,m , k , l~ l j ' ,m ' ) ,  (17) 

where the last factor is a standard Clebsch-Gordan coefficient. 
The action of the highest-weight operator ~-  on the vacuum multiplet can be 

represented by 

6{tvac,  rn, m ) =  ~ = l ( E 0 + ½ , s + l ~ , J + u ) , E 0 + ½ , s + / ~ , m + l , m + a )  
/~,1' 

1 1 ×R,~(s ,m ,7 ,71s+t~ ,m+½)(J ,M, l , l l J+u ,M+ l ), (18) 

where the sum extends over the six possible values of quantum numbers s '  and J '  
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which can appear on the right side, i.e. /~ = + ½ and p = 1, 0 , -  1. The R ~  are 
reduced matrix elements. The Clebsch-Gordan coefficients which we use in (18) are 
tabulated in ref. [13]. To calculate the reduced matrix elements in (18), we begin by 
putting m = s and M = J so that only the highest state with s '  = s + ½ and J '  = J + 1 
contributes. We then calculate the norm, using (11), 

IR½,112 -- (vac, s, JI  (a~-)*al-I vac, s, J )  

= (vac, s, JI  (M04 + J3 - Z3)l vac, s, J )  

= E 0 + s - J .  ( 1 9 )  

By taking, in turn, the values m = - s ,  M = J;  m = s, M = J -  1; m = - s ,  M = J -  
1; m = s ,  M =  - J ;  and m = - s ,  M =  - J ,  one finds the reduced matrix elements 
R-1,1;  R½,0; R-~,0; R+_~,-1; and R _ ~ , - 1  in a tedious but straightforward calcula- 
tion. The final result for the reduced matrix elements reads 

[R½,1] 2 = E o + s - J ,  

IR ~,ll 2 = E  0 - s - J - l ,  

2 
IR 01 = E 0 + s +  1, 

I R _  ,ol 2 = e 0 -  s, 

2 
IR~,-I]  = Eo + s + J + 1 ,  

[R ½ _ l l 2 = e o - S + j .  (20) 

The condition for positive norms is (for s v~ 0) 

E o > s + J +  1, (21) 

and, if this condition is satisfied, all of the SO(3, 2) × SO(3) representations in (18) 
are present. When higher Bn sectors are considered, this condition leads to long 

representations. 
One also finds in (20) several possibilities to eliminate states. For example, we can 

take J = 0 and E 0 = s + 1. Then, because R _ ~, 1 = 0 and only isospin 1 can occur, 
the only SO(3, 2 ) ×  SO(3) representation contained in the sector ~ l v a c ,  m, M )  is 
D(s + ~, s + ½,1). Although we do not follow this possibility through higher sectors, 
it seems clear that it leads to the massless Osp(3, 4) representations discussed in [12]. 
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We are primarily interested in massive short representations, and the simplest 

possibility is to take 

s = 0 ,  E o = J .  

In this case, only spin ½ occurs and R ~  = 0. Thus one sees that the only SO(3,2) × 

SO(3) representations contained in the B1 sector are D ( J  + ½, ½, J )  and 
D ( j + ~  1 ~, ~, J - 1). Specifically the amplitude for finding other lowest-weight states 

among 

a~-ilvac, O, M ) ,  

vanishes, which means that such representations are absent. 

6. The B2 sector 

The 15 operators in this sector can be classified according to their spin and isospin 
content as follows, 

A J  = 2, As = 0, 5 operators,  (22a) 

Eijk~j ~k  
~(a"B),  

A J  = 1, As = 1, 9 operators,  (22b) 

A J  = As = 0, 1 operator.  (22c) 

For later convenience, we define 

- +  = 1 - l _ i d 2 )  a g  T-~ f~(a~+ , 

1 1 _ i a  2) a+ = T-~-½ (a~ + , 

( ~ + ) *  = - a ~ .  (23) 

We will also use J +- = 3"1 +/,/2, T +- = T ~ + iT  2. We study first the states obtained by 
applying the AT 3 2 component  of (22a), namely - + - +  = e,,/~a,, a , ,  to the vacuum multi- 
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plet. Such states can be expressed as 

- + - +  [vac, m M )  •afla a a~ 

= I( Eo + I, s, J + 2), Eo + I, s, m, M + 2)R2(  J, M,2 ,21J  + 2, M + 2) 

+ I(E0 + 1, s, J +  1), E0+  1 , s ,  m, M +  2)Rt~J,  M,2 ,21J  + 1, M +  2) 

+ states of isospin J ,  J - 1, J - 2. (24) 

After tedious but straightforward operator manipulations we find the result 

' M '  - + - +  * - + - +  M )  (vac, m , I(evsaya~ ) (e~aa~aa)lvac, m, 

=4{vac,  m ' , M ' l ( ( M 0 4 -  T 3 ) 2 - ( M 0 4  - -J# )lvac, m, M). 

(25) 

We note that the norms of all 2 J  + 1 vectors on the left side of (24) are positive if 
the condition E 0 > s + J + 1 is satisfied. This is the same as the condition encoun- 
tered in the Bt sector which we identified as the condition for a massive long 
representation if s > 0. We now assume the conditions s = 0 and E 0 = J to explore 
further the structure of short representations. For the value M = J only the isospin 
J + 2 state contributes in (24) and we find from (25) that R 2 = 0. We then take 
M = J - 1 for which only the isospin J + 1 state can contribute; then we find that 
R t = 0. This means that the SO(3, 2) x SO(3) representations D ( E  o + 1, O, J + 2) and 
D ( E  o + 1,0, J + 1) do not occur in the short Osp(3,4) multiplets we are construct- 
ing. We postpone until later the study of lower isospin states in (24). 

To simplify further calculations we assume the conditions s = 0 and E 0 = J of 
short representations from now on and denote the vacuum states simply by 
]vac, M ) .  We can now explore states obtained by applying operators of (22b) to the 
vacuum multiplet. Since these states all have spin 1, we call this the vector sector. 

For  the highest-weight operator, we actually have [ a ; ,  ~3]= 2 ~ 3  since the 
ant icommutator  vanishes according to (11). Therefore we consider the states 
a~-~3 Ivac, M )  which can be expressed as 

~-a13[vac, M )  = E l ( J +  1 ,1 , J  + v ) J +  1,1,1,  M +  1 ) R , ( J ,  M,1 ,11J  + v, M +  1) 
P 

+ 6 [ ~ l v a c ,  M +  1}C(J ,  M , I , I l J ,  M +  1}. (26) 

The R,  are reduced matrix elements and the sum extends over the values v = 1, 0, - 1 
for the possible lowest-weight states of the SO(3, 2 ) x  SO(3) representations which 
can occur. The last term in (26) is a possible admixture of the state M+ + ]vac, M + 1) 
which, of course, has total isospin J. The reason such admixtures occur is that an 
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operator of Bn can create a superposition of all states of the appropriate quantum 
numbers from the vacuum including excited states of SO(3, 2)× SO(3) multiplets 
with E o < J + ½n. In the 32 sector such states necessarily have isospin J, which is 
why these admixtures did not occur in the calculation of J + 2 and J + 1 compo- 
nents of (24). Note that the boost admixture is orthogonal to the lowest-weight states 
in (26) because it belongs to a different representation of SO(3, 2) × SO(3). 

The action of SO(3, 2) energy deboosts 

M k - ( M ~ ) * = ( i M o k + M k 4 )  =1 i , = ~ (eok )~a~a  ~, (27) 

can be used to determine the coefficient o. Clearly M k- annihilates the summation 
term in (26) which contains lowest-weight states. We calculate the effect of M~- on 
the remaining terms in (26) using 

[M;  ] ( ) i --i ~ EO k ,~[~aB, , a,~ (28) 

which follows from (2). On the left side of (26) we find 

M k ~-ax 3 [vac, M )  = (eo k)18 { a~, ~3 } ivac, M )  = f~-½ (eo k)11 T+ I vac, J - 1) 

= ~ 7 ( e o k ) n ( ( S + M + l ) ( S - M ) l v a c ,  M + l  ) .  (29) 

From the right side of (26) we obtain 

- --i  - i  Mk alallvac, M +  1)C(J ,  M , I , I I J ,  M +  1) 

= (EOk)l f l (ai .8 ,  a~ }]vac, M-[- 1 ) C ( J ,  M,  1,1 [J, M + 1) 

= (eok)n3Mo4lvac, M +  1 ) C ( J ,  M , I , I I J ,  M +  1). (30) 

Since (29) and (30) must be equal, we find, after inserting the value of 
(J ,  M,I ,  I lJ ,  M +  1), that C =  - f ( J +  1) /9J .  

We must now calculate the norms of the states in (26). A tedious but straightfor- 
ward operator calculation gives 

(vac, M'I (  ~-~3 )* (~{~13 )1 vac, M )  

= (vac, M'I ( (M04 + J3)( M 0 4  -t- J 3  - T 3  -t- 1 )  - 1 Z +  T - }lvac, M ) .  

(31) 

For the value M = J only the isospin J + 1 state in (26) contributes, and one finds 
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R 1 = 0, indicating that there are no spin-1 particles with isospin J + 1 in the short 
representations. For the value M = J + 1 the norm calculation gives 

1 = (R~ + C2(vac, Jla~a{d(d{tvac, J)){J,  J -  1,1,1 l J ,  j ) 2 .  (32) 

The expectation value in (32) can be calculated by tedious but straightforward 
methods, which give the result 

vac, , t l - j - j  M lalalalal Ivac, M )  = 9~vac, M'I (M04 + J3)lvac, M) 9J6M, M. (33) 

When this is inserted in (32) together with the values of C and (J ,  J - 1,1,1 I J, J ) ,  
one finds that R 0 = 0, indicating that there is no isospin J spin-1 particle in the B2 
sector. 

Finally, we take the M = J - 2 and calculate the norm of (26). We obtain, using 
(31), 

3 = R  2 l { J , J -  2, l , l l J -  l , J -  l) 2 

+ C2(vac, J -  1 la{a[d~d{lvac, J -  1 ) ( J ,  J -  2, 1,1 l J ,  J -  1) 2 . (34) 

Inserting values, we find that the second term in (34) is smaller than 2 for all J ~> 1. 
Then R21 is positive, so that the short representations contain a massive vector 
particle in the SO(3, 2)× SO(3) representations ( J  + 1,1, J -  1). This completes the 
analysis of the vector sector. 

We now return to the question of lower isospin spin-0 particles in the sector (22a). 
It is best to consider at the same time the sector (22c), since both sectors can contain 
particles in the SO(3,2)×SO(3) representation ( J +  1,0, J) .  Let us designate by 
E (~), the five AT 3 = ~ components of (22a) with E (2) = e~a~-+-+a~ and the rest 

-i -i denote the operator of obtained by repeated lowering with T - ,  and let F = e,¢a~aa 
(22c). 

There is the possibility that two independent ( J  + 1, 0, J )  representations occur. If 
the vectors 

I'/', M)  = ~ J ,  M -  t~,2,~lJ, ~)E°')lvac, M - 4 ~ )  
/z 

and Flvac, M )  are linearly independent, then one can find coefficients A, B, C, D 
and form two orthogonal lowest-weight states 

I ( J +  1,0, J ) S +  1,0,0, M )  = A I'/', M )  + BFlvac, M ) ,  

I (J+I ,O,J )J+I ,0 ,O,M) '=CI ' t ' ,M)+DFIvac ,  M).  (35) 
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Two copies of the representation ( J  + 1,0, J )  will then be present in the Osp(3,4) 
short multiplets. Note  that there are no boost admixtures in (35) because there are 
no states of the appropriate quantum numbers o~ = E0+  1, j ' =  0 in the weight 
diagram of the scalar representation (E  0, 0) of SO(3, 2). 

Short representations will be all the shorter if the doubling of ( J  + 1,0, J )  
components does not occur, and we now show that this is the case, since the vectors 
I~/", M } and FI vac, M } are linearly dependent. To prove this, we first note that, as a 
consequence of the absence of J + 2 and J + 1 states in (24), and the inverse 
Clebsch-Gordan expansion, the three vectors 

1 
( J ,  J - / z ,2 , /~ l J ,  J}  ~ ' ~z ( ')lvac' J - 2}, (36) 

for ~ = 2,1,0 are actually equal. If we use this and the orthogonality relations of 
Clebsch-Gordan coefficients, we find that 

1 
[~,  J}  = E(2)lvac, Y -  2}. (J, J 2 ,2 ,21JJ )  

(37) 

Hence if we can show that E(2)lvac, J - 2) and Flvac, J}  are linearly dependent, 
the desired dependence of I~, M )  and Flvac, M )  then follows by lowering with 
T - .  

The vectors E(Z)lvac, J -  2} and Flvac, J )  are linearly dependent if there is a 
complex constant A such that the superposition 

I ~  ) = --i --i --+--+ I v a c ,  d - 2} e~a~at~lvac, J}  + Ae,#~a,~ a/~ (38) 

has zero norm. The norm may be calculated using (25) and the analogous relations 

(vac, M'l ( e,~Z~iZ ) *ev~4~lvac, M} 

= (vac, M'I6Moa(2Mo4 + 1) - 8TiT'-  12JkJklvac, M} .  

(39) 

vat,  ' i i -+ -+  = M le,~a,at~e~,sa ~ a~ Ivac, M} - (vac, M ' I 2 T  + T + Ivac, M} (40) 

One then finds 

(OIO}=8{(ReA+½~J(2J-1))e (imA)2 } + (41) 

which vanishes for the real value A = - l~/j(2J- 1).  Thus our vectors are linearly 
dependent, and there is one and only one ( J  + 1, 0, J )  particle in the B 2 sector. 
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Finally, we can complete the study of lower isospin states in (24), and we can now 
write (24) as 

- + -+  Ivac, M )  eaza a a o 

= Y'.I (Eo + 1, s, J + ~ ) E  o + 1,0 ,0 ,  M +  2 ) R ~ , ( J ,  M,2,2IJ  + l l ,M + 2) .  
/x 

(42) 

We already know that R 2 = R 1 = 0 and that R 0 4: 0. To investigate the lower isospin 
components we simply take M = J - 2, J - 3 and J - 4 in turn, and use (25) and 
explicit values of the isospin 2 Clebsch-Gordan coefficients [14] to calculate R0, R 1 
and R _ 2- We obtain positive values for the squares of these reduced matrix elements 
(for J >/2 where the calculation is valid), which indicates that the representations 
( J  + 1,0, J ) ;  ( J  + 1,0, J - 1) and ( J  + 1,0, J - 2) are present in the short Osp(3,4) 
multiplets with positive norm. This completes the analysis of the 82 sector. 

7. The 153 sector:, absence of spin -~ 

The 8 3 sector contains 20 operators which can be classified in three distinct 
representations of SU(2)x  SO(3) (where the first factor refers to spatial rotations 
and the second to isospin), namely A s  = 3, A J  = 0; and A s  = ½, A J  = 2; and A s  = 

AJ = 1. It would be very tedious to study all of these operators, and fortunately we 
will not have to. However, it is important to show that the short representations do 
not contain spin-~ particles and therefore we examine the A s  = 3, A J  = 0 multiplet 
which contains the only operators which can lead to s = ~ states. 

The highest-weight operator of this multiplet is 

eJ*slofd . 

The action of this operator on the vacuum multiplet may be expressed as 

e i J k f f ~  I vac, M )  

--i--i 1 ] j ) j  + l = R I ( J + 3 , 3  j ) j +  3 3 3 M ) + S ( a l a l ) l ( j + ~ , ~ ,  7 , 1 ,  M )  , , ~ , ~ ,  

(43) 

where we have the possibility of a superposition of the lowest-weight state of a new 
spin 3 multiplet and an orthogonal admixture of the known ( J  + 7,1 ~,~ j )  particle 
with the appropriate A J 3 = + 1 component of the energy boost operator applied. 
The energy deboosts Mk- of (29) annihilate the first term on the right side of (43) 
and, just as in the previous analysis of the vector sector, they may now be used to 

determine the coefficient S. 
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We apply Mk- to the left side of (43) and use (28) and some more manipulations 
of a~ operators past aa J operators, to obtain 

M Z eijka{a~ax~ I vac, M ) = 6i(eo k)na~'T m I vac, M ) .  (44) 

By a similar calculation we obtain from the right side of (43) the result 

Mk- - i - i l ( J +  l t / ) , j + l  1 Salal 7, 7, 7 ,7 ,3 ,  M)  

= 3 i S ( e O k ) n ( J + l ) l ( J + ½ , ½ ,  J)J+½,7,7,t 1 M ) .  

(45) 

By using the reduced matrix element R½. 0 of (20) and the isospin Clebsch-Gordan 
coefficients as in (18) one finds that 

d~'T"lvac, M ) = v / - J ( J + l ) l ( J + ½ , ½ ,  J ) J + ½ , ½ , ½ , M ) ,  (46) 

then (44) and (45) can be compared to give the value s = 2vQ- (times an arbitrary 
phase factor which can be ignored). 

We must now calculate the norm of the vectors in (43). By a long but straightfor- 
ward operator calculation, one calculates that the norm of the left side in 

I le,jk6~a{6~lvac, M)I  12 = 3 6 J ( J  + 1). (47) 

The norm of the right side can be calculated by slightly less tedious means to give 
the result 

I Ir.h.s. of (43)112 = IRI 2 + 9 ( J  + 1)ISI 2. (48) 

Inserting the value of S, we find that R = 0 indicating that there are no spin-3 
particles in the B 3 sector. However, it is easy to see that the 6 operators of the B 5 
sector have As = ½ and cannot create spin-3 particles. Hence we may actually now 
conclude that the short representations of Osp(3, 4) indeed have maximum spin 1. 

8. Osp(1,4) decomposition 

In sects. 4-6,  it has been shown that the short Osp(3,4) representations under 
study contain the following SO(3, 2) × SO(3) components: 

B0 sector ( J ,  0, J ) ,  

B isec to r  ( J + 7 , 7 , 1  1 j ) ,  

B2 sector ( J + 1,0, J ) ,  

( J +  1,1, J -  1). 

( J +  ½,½, J -  1), 

( S +  1,0, J -  1), ( J +  1,0, J -  2), 

(49) 
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The B, sectors for n >/3 may contain additional particles. On the other hand, 
Osp(3, 4) certainly contains Osp(1, 4) as a subalgebra and the representations we are 
interested can certainly be decomposed into massive type A and type B representa- 
tions of Osp(1, 4), discussed in sect. 2, each with definite isospin. It is clear that the 
unique way to group the particles above in Osp(1, 4) representations is as follows: 

( J )  X { D(J ,0 )  ~D(J+ ½,½) ¢D(J+ 1,0)}, 

( J -  1) X {D(J+ ½ , ½ ) C D ( J +  1 , 1 ) C D ( J +  1,0) (gD(J+ 3,½}, 

(J-Z) X{D(J+a,O)@D(J+ 3,½)$D(J+2,0)}. (50) 

Note that we have added two spin-½ particles with E 0 = J +-~ and one spin-0 
particle with E 0 = J + 2 to those of the previous list in order to complete the 
OSp(1,4) multiplets. We can be confident that the corresponding lowest-weight 
states are contained, with positive norm, in the B3 and B4 sectors of the Hilbert 
space V. 

We do not know yet whether the higher B, sectors contain additional particle 
states, but it is clear that such states would form new OSp(1, 4) massive multiplets 
which begin with E 0 = J  +-32 or E 0 = J  + 2, i.e. in the B3 or B4 sectors. The 
possibilities are actually fairly limited. For example, a multiplet beginning at the B4 
level would include a particle at the B6 level which necessarily has the quantum 
numbers ( J  + 3, 0, J) ,  and there can only be one such particle since there is only one 
operator in B6 (which has the quantum numbers AJ = As = 0). Thus we have the 
possibility of (2J  + 1) massive Wess-Zumino representations of OSp(1,4), with the 
particle content 

(J) X { D(J + 2,0) C D ( J +  1,½) ~D(J + 3,0)}. (51) 

Each multiplet beginning at the B 3 level would include a particle at the B 5 level with 
possible quantum numbers ( J  + 3, ½, I )  with isospin I = J + 1, J, or J - 1. Such 
particles could be obtained from the set of six operators of Bs, with AJ = 1 and 
As = ½, applied to the vacuum. Thus we have the possibility of type B, s = 
multiplets of OSp(1, 4) with particle content 

( J +  1) x { n ( J +  2 , ½ ) + n ( J +  2,1) +n(J+ 2,0) +D(J+ -52,½)}, 

( J -  1) x {idem}, ( J )  x {idem}. (52) 

Further, since there is at most one particle with quantum numbers ( J  + I, ½, J )  in 
the B5 sector the Wess-Zumino multiplets of (51) and the isospin ( J )  multiplet in 
(52) cannot be simultaneously present. 

At this point the prospects seem dismal. It would take still more tedious (but 
straightforward) calculations in the higher B, sectors to establish whether the short 
OSp(3, 4) representations contain some of the components in (51), (52). Fortunately 
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these calculations can be avoided. There is a simple indirect argument which shows 
that none of the components in (51), (52) are present, as we shall see in sect. 9. 

9. The Poincar6 limit and the general Higgs procedure 

We now use the fact that in the limit that the radius of anti de Sitter space tends 
to infinity any irreducible representation of OSp(3,4) must describe a massless 
representation, possibly reducible, of N = 3 Poincar6 supersymmetry. Since we know 
that the short OSp(3,4) representations contain no spin--~ particles, this limit must 
involve only Sma ~ = 1 Poincar6 representations. Such representations are well-known 
[5] to have the structure of a Fock vacuum of helicity 1 and arbitrary isospin I and 
helicity states, three )~ = ½, three )~ = 0 and one )~ = -  ½ obtained by applying 
anti-symmetric contributions of three creation operators. After the usual CPT 
doubling one sees that this representation contains the following particles 

spin I I × 0 = I ,  

spin½ I×(O$l)=I+l$I~I- l~I ,  

spinO I×( l~ l )=I+l¢I@I- l~I+l~I@I-1 .  (53) 

To compare this list of particles with those of a massive Osp(3, 4) representation we 
must combine an I of spin-0 states with the I of spin-1 states to account for all the 
states in the spin-1 weight diagram. 

We now compare the list (53) with the list (50) of particles obtained from the low 
Bn sectors of short Osp(3, 4) representations together with the particles necessary to 
give complete Osp(1, 4) multiplets. Clearly we must take I = J - 1 so that the spin-1 
states agree. We then see that the remaining nine particles in (50) and (53) agree 
perfectly in spin and isospin. 

Since the particles in (50) already limit properly to an irreducible Sma ~ = 1 massless 
representation of N = 3 Poincare supersymmetry, any additional particles in (51) 
and (52) must separately limit to a similar representation. However, it is easy to see 
there are simply too few possible spin-0 particles in (51), (52) to obtain a combina- 
tion of the representations (48) in the limit. This means that none of the possible 
particles in (51), (52) are actually present in the short OSp(3,4) representations, and 
the OSp(1, 4) decomposition in (50) actually gives the complete particle content. 

Since the argument based on the Poincar6 limit is somewhat indirect it is desirable 
to check the important conclusion that the possible multiplets of (51) and (52) are 
absent. To do this we note that all these Osp(1,4) representations contain D ( J  + 7,5 7)1 
components whose lowest-weight states would be contained in the 35 sector of the 
vector space V. We have therefore studied the operator a 1---3-3ala2al-+-+a2 applied to 
vacuum states. This operator is not totally antisymmetric, but it certainly can be 
expressed as a sum of a non-zero operator in 35 plus sums of products of two energy 
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boosts and single operators as.-i As in previous sections the action of this operator on 
the vacuum multiplet may be expressed as superpositions of possible lowest-weight 
states of representations D ( J  + ~, ½, J + 1), D ( J  + I, ½, J )  and D ( J  + 5 >½, J - l )  
of SO(3, 2 )×  SO(3) plus possible boost admixtures. After some norm calculations 
one can show that the isospin J + 1 and J states are absent. This limits the remaining 
OSp(1, 4) multiplets in (51) and (52) to a single multiplet of isospin J - 1 in (52). We 
were unable, because of time constraints, to show that the last multiplet is absent, 
but the partial check of the indirect argument based on the Poincar~ limit is already 
non-trivial. 

Thus we have obtained an infinite set of short massive representations of Osp(3, 4) 
with Sma ~ = 1. Each representation is built on a vacuum multiplet D(J,O, J )  of 
SO(3,2) × SO(3), so that the energy is quantized in terms of the isospin. Note that 
this fact is in accord with expectations in a Kaluza-Klein theory. There one expects 
an infinite tower of massive states with masses determined by the eigenvalues of 
certain differential operators (e.g. the laplacian) on the internal space. Note also that 
isospin does not increase with increasing spin in the short representations. Instead, it 
tends to decrease, and the Sm~ x = 1 particle occurs with unique isospin J - 1. 

Although we have used the term massive to describe the short Osp(3, 4) represen- 
tations, it is strictly true that only for vacuum isospin values J = 3, and J > ~ that 
the representations contain only massive particles with mass interpreted in the sense 
of the group SO(3, 2). For the value J = 2 inspection of (50) reveals the curious 
feature that the representation mixes massive and massless particles. This phenome- 
non is not new; it is already contained [6] in the type A representation of Osp(1, 4) 
with E 0 = 2. For J = 3 one should note that the isospin J - 2 particles in (50) are 
absent, thus giving a rather short representation involving massive particles. For 
J = 1 the representation again appears to mix massive and massless particles; but 
here there is a subtlety since the type B representation in (50) is not correct for J = 1. 
We believe that the norms of the D ( J +  1,0, J -  1) and D ( J +  3,½, J -  1) compo- 
nents of (50) vanish for J = 1, and the representation is purely massless in this case. 
For J = ½ only the isospin J particles are present in (50) and we seem to have a 
representation which contains boson and fermion Dirac singletons. Although this 
discussion seems correct, it is desirable to study the J = ½, J = 1 and J = 3 cases 
further since the determination of the scalar states in the B2 sector was strictly valid 
only for J >/2. 

The Poincar6 limit has provided a very simple procedure to ascertain the spin and 
isospin structure of massive Osp(3,4) representations. We simply take a massless 
representation of N = 3 Poincar6 supersymmetry, and use the Higgs mechanism to 
absorb some of the lower-spin states. With this in view we return to the fact that in 
the analysis of (16) we did not consider all the possibilities for eliminating states. For 
example, we could take a vacuum in the representation D(s  + J  + 1, s, J )  which 
would eliminate one component of (20). This is again a condition which quantizes 
energy in terms of isospin (and spin). It seems reasonable to speculate that this leads 
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to a representation of Osp(3, 4) which limits to a single Poincar6 representation with 
Fock vacuum of helicity s + 1 and isospin J. Such a massive representation of 
Osp(3,4) would then contain particles of spin s + 1, s + ½, s, s -  ½, which is still 
shorter than the expected spin range of long representations. 

10. Muitiplet shortening in Osp(8, 4) 

Although the existence of short massive representations was established only for 
N = 3 in the previous sections, our primary motivation was to understand the 
massive modes in 11-dimensional supergravity compactified on the round 7-sphere. 
The invariance group of this Kaluza-Klein background is OSp(8, 4) [15]. Thus one 
needs to know that this superalgebra has massive short representations with Sm~ = 2. 
Although this can, in principle, be demonstrated using the techniques developed in 
the earlier sections for N = 3, it is a far more tedious task. The results obtained for 
N = 3 do make it extremely plausible that the desired representations do exist for 
N = 8, and we will assume that this is the case. In the Poincar6 limit these 
representations must approach a massless representation of N = 8 Poincar6 super- 
symmetry with Sm~ = 2, and we will make the simplifying assumption that it is a 
single irreducible representation which is obtained. If the lower helicity Higgs states 
in this limit are suitably combined with maximum helicity, as is required for massive 
representations of SO(3, 2), this limit then determines the spin and SO(8) structure of 
the desired short representations. This procedure was first used in [16] to determine 
the structure of the lowest massive level of compactified supergravity. In this section 
we will determine the structure of all the short OSp(8, 4) representations which seem 
to be relevant. 

The irreducible representations of SO(8) are uniquely characterized [17] by the 
Dynkin label (a 1, a 2, a 3, a4), where the a i are non-negative integers. The simplest 
massless representation of N = 8 Poincare supersymmetry has the spin and SO(8) 
structure (for definiteness, we assign the spinor-charges to the 8s representation) 

s = 2 ,  1 =  (0 ,0 ,0 ,0) ,  

Ss= ( 0 , 0 , 0 , 1 ) ,  

s = l ,  2 8 -  ( 0 , 1 , 0 , 0 ) ,  

s = ½, 56 S = ( 1 , 0 , 1 , 0 ) ,  

s = 0 ,  35v = (2 ,0 ,0 ,0) ,  

35c = (0 ,0 ,2 ,0) .  (54) 

The general Sma ~ = 2 massless representation is obtained by computing the direct 
product of the SO(8) representations above with an arbitrary representation 
(al ,  a2, a3,a4) describing an s = 2 Fock vacuum. 
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The Higgs procedure gives a strong constraint on the representations we are 
interested in, because we require that lower-helicity states for spin-2, spin-3, and 
spin-1 particles occur in exactly the same SO(8) representations as the highest 
helicity states for these particles in order to combine states to get massive SO(3, 2) 
representations for s = 2, s = 3, and s = 1. Not all Fock vacuum representations 
satisfy these constraints. For example, if we take the Fock vacuum in the representa- 
tion 8~, then the massive spin-2 particle is in 8~ but the spin-0 particles are in 

8~ × 35 v = 56~ • 224 w , 

8s × 35~ = 56 s ~3 224~. (55) 

Thus there are no spin-0 modes in 8 s which would be necessary for a massive spin-2 
representation 

D ( Eo, 2, 8~) of SO(3,2) × SO(8). 

Fortunately, the general theory of massive modes in Kaluza-Klein theories [18] as 
well as specific calculations for the internal space S v [3, 4] tell us that the SO(8) 
representations which describe massive spin-2 particles correspond to heptospherical 
harmonics on S 7, i.e., to n-fold totally symmetric tensor products of 8 v with Dynkin 
labels (n,0, 0, 0). It is these representations which we take for the Fock vacuum. 

The relevant direct products of (n, 0, 0, 0) with the representations of (54) decom- 
pose as 

( , , o , o , o )  × (o ,o ,o ,o)  = (n,O,O,O), 

(n,O,O,O) × (0 ,0 ,0 ,1)  = (n,O,O, 1) ¢ ( n  - 1 ,0 ,1 ,0 ) ,  

(56) 

(57) 

( . ,o ,o ,o)  x (o, 1,o,o) = ( . ,  1,o,o)- ¢ ( . ,o ,o ,o)*  

¢ ( n -  1,0,1,1) + ¢ ( n -  2,1,0,0)-, (58) 

(n,0,0,0)  ×(1 ,0 ,1 ,0 )  = (n + 1 , 0 , 1 , 0 ) @ ( n -  2 , 0 , 0 , 1 ) @ ( n -  ! ,0 ,1 ,0)*  

¢(n-2,1,O,1)¢(n,O,O,1)*¢(n-1,1,l,O), (59) 

(n ,0 ,0 ,0 )  × (2 ,0 ,0 ,0 )=  (n + 2,0,0,0)~9 (n ,0 ,0 ,0)*  ~ ( n  - 2,0,0,0)  

~(n-2,1,O,O)* ~(n-2,2,0,O)~(n,l,0,O)*, (60) 

(n,O,O,O)×(O,O,2,0)=(n,O,2,0)~(n-2,0,O,2)~(n-l,O,l,1)*, (61) 
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where, whenever an integer in (56)-(61) becomes negative, the corresponding 
representation is defined to be absent. The results (56)-(61) were obtained partly by 
use of the general rules given in [17] and partly by use of the Young tableaux [19]. 
The latter technique can be employed whenever only one kind of index is involved, 
and it is useful to note the following correspondence between the Young tableaux 

( n , 0 , 0 , 0 ) =  I Y , , , I  , 

(0 ,1 ,0 ,0)=  • =28 ,  

( 0 , 0 , 2 , 0 )  = = 35c  

and Dynkin labels: 

(62) 

where, in the last line of (62), we have invoked the equivalence of 35 c and the 
self-dual antisymmetric four-index tensor with vectorial indices. The decompositions 
(58), (60) and (61) are then immediate consequences of the general rules for 
multiplying the Young-tableaux. More importantly, all of (56)-(61) can be checked 
by verifying the following two sum rules {17}. If the product of two irreducible 
representations R 1 and R 2 decomposes into irreducible representations R 3 . . . . .  R N 

according to 
N 

R 1 X R 2 = t~  R i ,  (63) 
i=3 

then 
N 

D(R1)D(R2) = E D(Ri) ,  (64) 
i=3 

N 

/(R1)D(R2) + / (R2)D(R1)  = Y'~ I(R,), (65) 
i=3 

where D(R) denotes the dimension and/(R) the index of the representation R [17]. 
Now, for the irreducible representation (a 1, a2, a3, a4) of SO(8), these two quantities 
are given by 

D(a 1, a2, a3,a4) = (1 + a l ) ( l + a 2 ) ( 1  +a3)(1 +a4) 

X (1 + }[a t + a2l)(1 + ½[a 2 + a31)(1 + ½[a 2 + a41 ) 

x (1 + ½[a  1 q- a 2 if- a 3 1 ) ( 1  q- l [ a  1 q- a 2 q- a41 ) 

X (1 + }[a 2 --}- a 3 + ag] ) 

X (1 + ¼[a 1 + a 2 + a 3 + a41)(1 + ½[a, + 2a 2 + a 3 + a41), 

(66) 
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l ( a  1, a 2, a 3, a4) = ~sD(a 1, a 2, a 3, a4) { a l ( a  1 + a e + ½[a 3 + a41 + 6) 

+ a 2 ( a  I + 2a 2 + a 3 + a 4 + 10) + a3[½(a 1 + a4) + a  2 + a 3 + 6] 

+a4[½(a l  + a 3 ) W a 2 + a 4 + 6 ] ) .  (67) 

Formulae (65) and (67) can be derived with the help of the formulae and tables of 
[17]. Inserting the various representation labels of (56)-(61) into (66) and (67), one 
verifies that (64) and (65) are indeed satisfied*. 

A final test for the validity of (56)-(61) is provided by the relation 

c ( R 1 ) + c ( R 2 ) = c ( R i ) ,  i = 3  . . . . .  N 

for the congruence classes c(R) [20]. For SO(8), c(R) is a two-component vector 
defined by [20] 

c(al ,  a2, a3, a4) = ( (a  3 + a4)rood2,  (al  + a3) mod2 ) . 

The results (56)-(61) pass this test, too. 
It is gratifying that (56)-(61) contain precisely the required number of helicity 1, ½ 

and 0 states to give masses to the spin-2, spin-3 and spin-1 states. These Higgs states 
have been marked by an asterisk in (56)-(61). Removal of the Higgs states leaves us 
with the following table for the excited modes on S 7 and their Dynkin labels: 

spin 2: ( n , 0 , 0 , 0 ) ,  

spin 3: ( n , 0 , 0 , 1 )  • (n - 1 ,0 ,1 ,0 ) ,  

spin1: ( n , l , O , O ) - @ ( n - l , O , l , 1 ) +  e ( n - 2 , 1 , 0 , O )  , 

spin ½: ( n + 1 , 0 , 1 , 0 ) @ ( n - l , 1 , l , 0 ) @ ( n - 2 , 1 , 0 , 1 ) @ ( n - 2 , 0 , O , 1 ) ,  

spin 0+ : ( n + 2 , 0 , O , O ) ~ ( n - 2 , 2 , 0 , O ) ~ ( n - 2 , 0 , O , O ) ,  

spin 0 -  : ( n , 0 , 2 , 0 )  @ (n - 2 ,0 ,0 ,2 ) .  (69) 

In principle, (69) contains the solution to the problem of finding all higher modes on 
S v, but we emphasize once more that a complete proof is still lacking. In particular, 
the associated energy labels (or mass eigenvalues) are not completely known. 

* We are grateful to C.B. Lang for helping us with an algebraic computer program to facilitate this 
calculation. 
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Note added 

After  this work  was completed,  we learned that  the full bosonic  mass  spect rum of 
the round  S 7 compact i f ica t ion  of l l - d imens iona l  supergravi ty has been very recently 
calculated by  Biran, Casher,  Englert, R o o m a n  and Spindel, Phys. Lett. 134B (1984) 
179. In the region of overlap the results agree with those of sect. 10. 

Note added in proof 

As was poin ted  out  at the end of sect. 9, the case J = ½ requires separate  study. 
F r o m  (50), one would conclude that  the corresponding N = 2 mulfiplet  contains the 
representa t ions  D(~,I 0, ~),1 D(1, ~,1 3)1 and D(~,  0, 3)- However,  the last representat ion 
is, in fact, absent  as one can easily verify by  inserting the values E o = J = ½ and 
s = 0 into (25) and (39). Therefore,  the N = 2 singleton representat ion is 

D(½,0 ,  ½) ~ D(1 ,  ½,½). 

Obviously,  it can not be obta ined  f rom the general Higgs procedure,  which is 
consistent  with the fact that  these states have no proper  Poincar6 limit [21]. We have 
since learnt  that, for N = 8 as well there exists a singleton representat ion given by  
([22] and second reference in [8]) 

D(½,0 ,8c )  ¢ D(1 ,  ½,8v). 

Hence,  the singleton representat ions correspond to extreme cases of mult iplet  
shortening. 
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