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Using the parallelizing S 7 torsion as an ansatz we investigate two solutions of gauged N = 8 
supergravity with SO(7) invariance. Supersymmetry is uniformly broken. We calculate the masses 
for these .solutions which are both unstable. Certain apparent discrepancies with the results 
obtained by spontaneous compactification of d = 11 supergravity are discussed. We establish that 
the compactification on the parallelized S 7 has an SO(7) invariancc and clarify the issue of 
supersymmetry breaking. The lack of stability in d = 4  indicates that this d = 11 solution is 
unstable. 

1. Introduction 

Recently, it has been demonstrated that the spontaneous compactif icat ion of 

eleven-dimensional supergravity [1] on the " r o u n d "  sphere S 7 leads to a four-dimen- 

sional theory whose massless sector coincides with gauged N = 8 supergravity [2], at 

least at the linearized level [3,4]. Alternative solutions of  the eleven-dimensional 

theory are possible in which the seven compact  dimensions parametrize a different 

manifold, and some of  those may also be interpreted within the context of gauged 

N = 8 supergravity. For  example, this must be the case for the compactif icat ion on 
the parallelized sphere [5], as was argued in refs. [3,6], but not on the squashed 
sphere [7]. In fact, it is the exception rather than the general rule that alternative 

compactif ications can be interpreted in this way. Although any spontaneous com- 
pactification represents a spontaneously broken realization of  the full eleven-dimen- 
sional theory, the fluctuations about  the corresponding background are usually not 
related to those of  the round S 7, because they have a different dependence on the 

seven extra coordinates. 
The aim of  this paper is to investigate the solutions of  gauged N = 8 supergravity 

that correspond to the compactif ication on the parallelized sphere, as a first step to a 

full understanding of  the relation between four- and eleven-dimensional supergrav- 
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ity. The torsion which parallelizes S 7 is the relevant order parameter that induces the 
breaking of supersymmetry. Hence we consider solutions where the (complex) 
scalars of gauged supergravity acquire a vacuum expectation value that is propor- 
tional to this torsion tensor. The exact expression for such a vacuum expectation 
value was already given in eXl. (28) of ref. [3]. 

It is well-known that the gauging of internal SOON) symmetry in extended 
supergravity with N >/4 necessitates the introduction of a scalar field potential. 
However, any study of this potential is hampered by the fact that it is a highly 
non-linear function on the 70-dimensional E7/SU(8 ) coset space [2], and therefore 
rather complicated. Recently, a systematic investigation was initiated by Warner [8]. 
Owing to the local SO(8) invariance the relevant scalar manifold is only 42-dimen- 
sional, and it can be represented by the 35-dimensional SU(8)/SOO8) coset space 
and by seven canonical four-forms (which are related to the Cartan subalgebra of 
ET) from which all 70 four-forms can be generated by the action of SU(8). This 
approach has led to the discovery of several stationary points of the N = 8 potential 

[9l. 
We investigate the solutions where either the scalars or the pseudoscalars acquire a 

vacuum expectation value proportional to the S 7 torsion tensor. The mixed case 
where both scalars and pseudoscalars have vacuum expectation values constructed 
from the same torsion tensor will not be considered, because it is not related to the 
parallelized solution. This follows from symmetry arguments that we will discuss 
below. An independent and more practical argument for this restriction is that only 
in the first two cases the exponentiation required for the evaluation of the 56-bein 
that characterizes the E7/SU(8 ) coset space can be done in a very elegant way, 
owing to the special properties of the torsion tensor. It is then straightforward to 
obtain two stationary points of the potential, as well as explicit expressions for the 
mass matrices of the various particles. These results coincide with two of the 
stationary points that have previously been identified in [9]. 

The S 7 torsion tensor can be expressed in terms of a seven-dimensional spinor, 
which has SO(7) + as its stability group. Hence, the four-dimensional solutions 
exhibit an SO(7) symmetry. It has been stressed in [9] that therefore the compactifi- 
cation must have an SOO7) ± symmetry as well. Previously it was claimed [3, 10] that 
the parallelizing torsion breaks SO(8) to G 2, because the SO(7) : rotations that leave 
a spinor invariant do not coincide with the stability group of a point on S 7, which is 
a different SO(7) group. Since the common subgroup of SO(7) -+ and SO(7) is G 2, the 
latter is therefore an obvious symmetry of the parallelized solution. However, it is 
possible to identify an SOO7) extension of this group which leaves both the torsion 
tensor and the standard S 7 metric invariant. The corresponding Killing vectors, 
which will be given explicitly in this paper, coincide with those of the SO(7)+-/G 2 
coset space. 

Of course, one should be able to obtain the results in four dimensions by starting 
directly from the compactification of d = 11 supergravity, but this requires a more 
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complete clarification of its non-linear aspects. The purpose of this work is to shed 
some more light on this problem, and as we will show, our results do have a number 
of implications which we will discuss at the end of this paper. A full analysis of the 
compactification will be given elsewhere [11]. 

The plan of this paper is as follows. In sect. 2 we will briefly review the basic 
definitions and some new results that are relevant for the N = 8 theory; for details 
we refer the reader to ref. [2]. In sect. 3 we give the identities for the torsion tensor, 
which are required for the calculation of the four-dimensional quantities. These 
identities also allow us to show in detail how the various SO(7) groups are embedded 
in SO(8). We then proceed to calculate all relevant four-dimensional quantities, such 
as the 56-bein and the T tensor, in sect. 4. Furthermore, we present the various mass 
matrices and discuss the stability of the solutions. In a concluding section we discuss 
the four-dimensional interpretation of broken solutions obtained by spontaneous 

compactification. 

2. Gauged N = 8 su~rgravi ly 

In this section we recall some of the essential features of gauged N = 8 supergrav- 
ity [2], and present some new results. It is well-known from the work of Cremmer 
and Julia [12] that the 70 scalars of N = 8 supergravity live on the coset space 
Ev/SU(8 ) and are therefore described by an element ~ ' (x )  of the fundamental 

56-dimensional representation of E 7 

]. 
Lo"''(x) 

(2.1) 

Here, the SU(8) index pairs [0] . . . .  as well as the SO(8) index pairs [IJ] . . . .  are 
anti-symmetrized; consequently, u and v are 28 × 28 matrices. Complex conjugation 

is effected by raising (lowering) indices, e.g. 

(uJJ)  * (2.2) UtJIj  " 

Under local SU(8) and local SO(8), the matrix ~,c transforms as 

e su(8), O(x) so(8), (2.3) 

where the matrices U and O are in the appropriate 56-dimensional representations. 
The SU(8) gauge freedom may be used to impose a special gauge in which the 
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56-bein takes the form 

where 

0 - -', %k,(x)  ] 
W(x) = exp _ o ' (2.4) 

~*jkl (x)=l~f . i jk lra"pqfpranpq(X) ,  ('0 = +__1). (2 .5)  

The real and imaginary parts of the field ¢,jkl are the 35 scalars and 35 pseudo- 
scalars, respectively, of N = 8 supergravity. After fixing the gauge, one no longer 
distinguishes between SO(8) and SU(8) indices. The remaining local SO(8) invari- 
ance which does not affect the gauge choice (1.4), is realized on CVas 

e'er(x) --* O ( x ) W ( x ) O - l ( x ) ,  O ( x )  • SO(8). (2.6) 

For future use we record the relevant terms of the N = 8 supergravity lagrangian in 
the following form 

~ =  - ½eR( oa, e) - ½ # , o o ~ y , ~ o  ~p°, _ ~ e ~ , 2 k b X , j k  _ ~e ] i ~  ,Jkt]2 

-- ~ { F~+I2(2S '2'KL - ~$'2KL ) F-~"KL + h. c.} + interaction terms, (2.7) 

where we have used the notation 

8.~, i y =  - 2~Q ( uiJtjO~,vk'tJ - viJtJOuuk'is ),  (2.8) 

F ~ y =  O~,A/J - O.A~, u 

= F~+,, + F~; 's , (2 .9)  

( u, j ls + vii1] ) SIJ. Kt. = UiJKl.  (2.10) 

We note that (,{ ijkt is fully antisymmetric and satisfies the self-duality equation (2.5). 
There are g-dependent terms required by the introduction of local SO(8) gauge 

interactions. Apart from the standard minimal coupling these are parametrized in 
terms of the so-called T tensor [2] 

TiJkl= ( uk l l j  + ukllJ )(  . i /K igJraKl  -- UimdK v j"K')  (2 .11)  

which admits the following decomposition into SU(8) irreducible components 

T / k l =  -- 3 A2/kl"t--- 3-R[kalllJ2vi , q  , (2.12) 
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where A2/kt is antisymmetric in the indices [jkl] and traceless and corresponds to 
the 420 representation of SU(8) while A~ ~j is symmetric in i and j and therefore 
corresponds to the 36 representation of SU(8). The potential of gauged N =  8 
supergravity has a simple form in terms of At ~j and A2~k/, viz. 

6p(%') = ~4g21A2~,,12 _ ¼g21A,212 (2.13) 

Apart from the potential there are masslike terms 

Cmass = v~ geAl, j ~ ° ~ v ~  d "l- ~ geA 2/kl(k-~iY~'X jkt 

1 [~- ijkpqrlm A n - -  + ~V,: ge*le A2 pqrXijkXImn "}- h. c. (2.14) 

Furthermore, we have the standard minimal coupling terms of the SO(8) gauge 
fields; for instance, in ~ jk /we  now have 

A,~J*' = -2v~(ui;tjO~,ok'tg-vi;tJa~,uktts) 

+ 4v~gA~tJ( u'Jtx (2.15) 

To determine the condition for stationary points we first consider the effect of 
changing the 56-bein according to an infinitesimal E 7 variation, but now acting on q:" 
from the left. Since the SU(8) acts trivially according to the index structure of the 
quantities involved we concentrate on variations orthogonai to SU(8) in the E 7 Lie 
algebra, namely 

3~:= -¼v/-i[F,?,pq "~0~t]~, ', (2.16) 

where 2Y jk~ satisfies the self-duality condition (2.5). Under (2.16) the components of 
the T tensor transform as 

~AI i ) =  ~4~[2 ( A2iklm zjklm + A~klrn~-~iklm), (2.17) 

~A2[ kt= l ~l~ Alim~,mjkl + ~Vl2 ~,mn[JkA2llimn 

+ 1¢~7,'~""IJ3)A2'I,.,,, (2.18) 

which shows, incidentally, that A~ ~j and A2jkl together with their complex conjugates 
transform as the irreducible 912 representation of E 7 under the full E 7 transforma- 
tions that contain (2.16). 
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Observe that the quantity ~_ijkl which occurs in (2.16) is non-linearly related to the 
actual variation 8cO 'jkt of the scalar fields at a given point q~,jkt on the coset manifold 
ET/SU(8 ). Therefore, (2.17), (2.18) and similar expressions below cannot be identi- 
fied directly with variations of the corresponding quantities with respect to #,,jkt. One 
easily sees, however, that the parametrization in terms of Z ~jkt is more convenient 
than one in terms of 3#~ukt. For instance, a straightforward calculation shows that 
the variation of ~,jkz about a constant background takes the form (cf. (2.15)): 

8~ ,j,i = O~X,kl + 0 (2: 2), (2.19) 

where we have ignored the optional SO(8) covariantization. From (2.19) it follows 
that the kinetic term in the fluctuations Z ukt is always canonically normalized at any 
stationary point of the N = 8 potential in this parametrization. Therefore the choice 
of Z,jkt to parametrize the fluctuations, corresponds to choosing a "locally inertial 
frame" at the point ~ukl on the E7/SU(8 ) manifold. 

Using (2.17), (2.18) it is now straightforward to determine the variation of the 
potential (2.13): 

36.P(c'¢ ) = ~ v ~  g2OUk'(c'~ )Z,jk, + h .c . ,  (2.20) 

where the tensor Q,jk/(q:) is defined by 

Qij, l(Gr) = _3A,..2,. .lun..z.all,. _ Al,"t,A 2d*q" (2.21) 

Clearly, it follows from the self-duality of G,jk/that QUkt must be antiself-dual at a 
stationary point of the potential. Hence an extremum is characterized by [13] 

Q,jk,( ~ ) = _ ~4.oEukl,"npqQ,"npq (eV ) " (2.22) 

Inserting (2.17), (2.18) into (2.21) one may also compute the second variation of the 
potential. One first derives 

3QUkt( c~ ) = ¼ ~/~ ( A iv," A 2 : [ ' j  - AlPDA ~p,"n ) zkl],"n 

-}- [2 v/2 a ln[ ta lnm~ fl~l]m -b ~ vI2 a2Pq,"na2pq[iy~ kl],"n 

14 q ~1 [ilk )~ll ,"np + ~l~(3A2pq[UA2kqmn + 6 " 2  mnp''2q 

12 V/-2 A 2D,"np h jkl]q~mnpq . (2.23) 

Using the identity for self-dual tensors [141 

9_~[1~, ~'mn]pq _l~lmn'~ ~'pqrs + (2.24) ~ i j k p ~ l m n p =  -- 16Vijk "a"pqrs~-~ 4v[l~jk]pq~ , 
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we find that the terms quadratic in the scalar fluctuations about 
constant background take the form 

an arbitrary 

96e- 1 £ (Z2) = - -  Ol~Zijkl a~z i j k l  

_ g2(]@(c,q') + ~lA2mnpql2) , ,~ i jk t~ i jk t  

_ g 2 (  6 A 2 , . % , A  i . , , ,  I _ a .~ ,,,,.in . ~ v v l . p q  2zx 2 n ~ 2  rnkll~-tijpq~-~ 

"k- ~g2A2'mnpA2q)kl~mnpq.~ijkl.  (2.25) 

The last term in (2.25) cannot be simplified by using eq. (4.27) of [2], because the 
latter identity contains no information when contracted with self-dual tensors. Eq. 
(2.25) gives the master formula for the scalar mass matrix at any value of the scalar 
fields. Its further evaluation requires specific information about the T tensor at the 
stationary point under consideration. An example of this will be presented in sect. 4. 

We observe that the scalar fluctuations are massless if  A2i j k l  = O. The remaining 
masslike term in (2.25) proportional to the potential (2.13) then coincides with the 
standard improvement term proportional to the curvature scalar. To see this we note 
that the latter is related to the cosmological term, i.e. the potential evaluated at the 
background, by Einstein's equation for the background field. The exact result is 
R = -4gE@(C~f). The masslessness of the scalars can also be understood from 
supersymmetry considerations alone, b e c a u s e  AEajkl is the order parameter for 
supersymmetry breaking [15]. Hence i f  A2ijkl = 0 all fluctuations should be massless. 
Residual supersymmetries are governed by the condition 

A 2 ~ k :  , = O. (2.26) 

3. The torsion ansatz 

In sect. 4, we will look for stationary points of the potential (2.13). Guided by the 
results of [3] (or, more precisely, by eq. (28) of [3]), we investigate ans~itze for the 
vacuum expectation value of the scalar or the pseudoscalar fields which contain a 
certain tensor C m'p  ( m ,  n , p  = 1 . . . . .  7). This tensor arose in the discussion of 
spontaneous compactification of eleven-dimensional supergravity in which the extra 
coordinates parametrize the sphere S 7. The eleven-dimensional theory [1] contains 
the tensor gauge field A#~ which, for the spontaneously broken solution of [5], gets a 
non-trivial vacuum expectation value if the indices/i, ~, ~ take values in the seven 
dimensions. This vacuum expectation value is proportional to the tensor C " " ?  *, and 

* I n  the  g a u g e  Am"P:., l O. 
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it has been shown that C '~p  provides the torsion that parallelizes S 7. The tensor 
C " ~ '  is most conveniently parametrized as a bilinear expression in terms of a 
commuting Majorana spinor ~ according to 

C m~p = i~kF"nP~,  ~k6 = 1,  * (3.1) 

where F ""p is the antisymmetrized product of three F-matrices, i.e. 

F m"p = F t ~ F " F  pl. (3.2) 

We use hermitean 8 × 8 F-matrices which satisfy 

{ F " ,  F" ) = 28"" ,  m , n = l , 2  . . . . .  7, 

F m n p q  rst = _ i ,o temnpq rst " (3.3) 

We remind the reader that the charge conjugation matrix is symmetric in seven 
dimensions. We should also point out that in d = 11 supergravity C '~p  and thus 
will be functions of the extra seven coordinates. However, in this section we remain 
entirely within the context of d = 4 supergravity, so that C ""p and ~ are constant. 
We shall return to the relation with the d = 11 theory in sect. 5. 

Under  SO(7) transformations with parameters ,,,~, the eight-component spinors 

transform according to 

~sot7)q~ = ¼e"nF, ,n~.  (3.4) 

As is well-known (see e.g. [12]), the group of SO(7) transformations can be enlarged 
to the group SO(8) in two different and inequivalent ways by including the seven 
generators F" .  The 28 generators which we get in this manner are labelled as 

F M N = F  "~ ,  M , N = I  . . . . .  7, 

r ' S =  + i t  m, (3.5) 

and form a complete basis for the 8 × 8 antisymmetric matrices. The two signs which 
appear  in (3.5) correspond to the two inequivalent spinorial representations of 
SO(8), which we henceforth denote by SO(8) ± 

The remainder of this section will be devoted to a detailed discussion of the 
properties of C "rip. Let us first list several useful identities for C "np which may be 

* It is known that C " ' p  is just  the octonion multiplication table a ' 'np  [16]. This is most  easily seen 
from (3.1) in a representation of F-matrices where 

( r ' )  ,s = i8, ' ,  (rm)np=iam=p, ~o = a~s. 
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derived by Fierz-rearrangements of the spinors I/': 

c m n P C q r  s - 3c [m[qrCnP]s]  = - "qt~.[mnqrstufP]tU, (3.6) 

1 + mnpq[r  .'-.s]tu (3.7) c [ m n p f q ] r s  ~ - ~1~ ~. tul.. , 

c m n P C q r p  = 265 "-xg71 . . . . .  ~. qrstu~" tu .  ( 3 . 8 )  

Cm.e d/ + ½cqrtmF.pl~b = -iFm.pq~, (3.9.) 

Cm.pFe~p = iF~.~b, (3.10) 

C~.pF"P~ = - 6 i F ~ b ,  (3.11) 

C m n p ~  - l~f'qrsr48 w - m n p q r s r d ' + ¼ c q r I m F ,  p l q r ~ +  3 c q i m , F p l q ~  =0 , (3.12) 

CPq'Fm,pqAb - 6cPq[,,F, lpq~k + 36CP,..I',~/= O. (3.13) 

In complete analogy with the embedding of SO(7) into SO(8) ±, the tensor C mnp can 
also be assigned to a representation of SO(8) in two possible ways. One simply 
defines 

C MNP8 ~ c m n p ,  

c M N P Q  ~ 1 • t/ mnpqrs t~ .  "6~ 71 ~" f~"rst' (M,  N, P,  Q = 1 . . . .  7), (3.14) 

and the ambiguity is reflected in the two possible choices for the duality phase 
r/" = + 1. The four index tensor C MNeO is self-dual and thus belongs to one of the 
three 35-dimensional representations of SO(8): 

c M N P Q  __ ~ t ~ t t ~ M N P Q R S T U p  
- -  24f f  ff  ~ ~ R S T U "  (3.15) 

For our purposes, it is convenient to cast some of the identities (3.6)-(3.13) into a 
manifestly SO(8) covariant form. For instance, (3.7) and (3.8) correspond to 

CMNPrCQRsT= 6 8 ~  e -- 9r/"8[ScNP1Rs l, (3.16) 

which, after contraction over one index pair, becomes 

CMURsCpQRS = 128e~ u - 471,'CMUpO" (3.17) 

Furthermore, one derives from (3.10)-(3.13) 

CMUeQFeQd/= q: (2 +_ 4~")FUUq~, ( M , N = I  . . . . .  7), 

CZUeO/ 'poq+ = T 6 r Z % ,  ( M o r N =  8), (3.18) 

where the sign factor corresponds to the convention adopted in (3.5) for F MS. 
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Choosing F Ms = i~f'F", one verifies that the generators 

G MN _ ~ ( ~ MN + 16 ~f'C MNpQ) FPQ (3.19) - -  8 ~ vpQ  

leave the spinor ~k invariant. Obviously the stability group of the spinor ~k, and thus 
of the tensor C ""p, is a subgroup of SO(8)±. As we have just shown, this can be 
expressed in an SO(8) covariant way, if the SO(8) ± representations to which ~b and 
C ""v  are assigned, are related through F Ms= i~"F" .  The  invariant tensor C MNPQ 

transforms under the group generated by (3.19) in the vectorial representation. The 
generators in this representation are 

(GMN)p  Q = ~( SeMQ u + ~"CMNpQ ) . (3.20) 

TO determine the dimensionality of the group corresponding to (3.19), (3.20), we 
note that 

p MU _ ! ( ~ M N  1 pQ --  4 \ VpQ "[- 16 I~PtC MNpQ ) ,  

l [ ~ MS _ ~rf,CMNpQ) (3.21) P 2 M N pQ  = 4 ~, v p Q  

are two invariant projection operators in the 28-dimensional space whose vectors are 
labelled by antisymmetric index pairs [MN] . . . . .  In this space, cMNpQ acts as a 
traceless matrix which has two distinct eigenvalues. The first projection operator 
projects out the eigenspace with eigenvalue 2~/", while the second projects out the 
eigenspace with eigenvalue - 6 ~ " .  Since CMNpQ is traceless, we can easily derive the 
dimensionality of the two eigenspaces by taking the trace of the associated projectors 

dim P1 = 21, dim/'2 = 7. (3.22) 

From (3.22), we conclude that the number of generators in (3.19), (3.20) is 21 and 
therefore the group defined by (3.19), (3.20) is SO(7). Observe, however, that (3.19) 
differs from the usual SO(7) subgroup of SO(8) from which we started in (3.4). The 
latter is defined as the stability subgroup of SO(8) of the vector representation, 
under which an eight-dimensional vector splits according to 8 --, 7 + 1, whereas in 
the two spinor representations (3.5) we have 8 --, 8. Depending on the choice of 71" in 
(3.19), we now find two different groups which we denote by SO(7)±. Under these 
groups the vector representation of SO(8) splits according to 8 ~ 8, as can be 
verified by evaluating the Casimir operator GMNGMN; in the representation (3.20), 
GMNG MN is indeed proportional to the unit matrix, owing to (3.16). On the other 
hand, in the two spinor representations (3.5) we find 

G M N G  MN -421 I _ . , t f ' P Q R S I "  
- -  8'1 ~'~ * PQRS 

= -421 + ½i(1 + .")Cm"Prm.p. (3.23) 

The sign factor again indicates the spinor representation of SO(8), and obviously for 
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F ~t8 = - i~q"F" the second term in (3.23) cancels. Therefore this representation also 
splits according to 8---, 8. However, in the second spinor representation, where 
F M8 = i ~ " F " ,  we find that (3.23) is equal to 

GMUG Mu = - 421 + i C " " P F " , p ,  (3.24) 

which according to (3.11) has a zero eigenvalue associated with the spinor q,. Hence, 
this representation splits according to 8 ---, 7 + 1 in accordance with what we have 
found before in (3.17). The fact that SO(8) representations occur in three inequiva- 
lent varieties which split differently under the action of an SO(7) subgroup is called 
"triali ty" [16]. 

Let us now exhibit the action of the group G z, which is a 14-dimensional 
subgroup of SO(7). To that order we rewrite the SO(7) ± generators of (3.19) in 
seven-dimensional notation. The result is 

..L t " n p q r s t , " ,  1", __ G " ' = z 3 F " ' +  36*le t~rstlpq-r14CrnnP(iFp q-~CpqrFqr), 

Gin8 = a4Tt'( i F "  + z6cmeqFpq) .  (3.25) 

The corresponding transformations leave the spinor ~k invariant. A similar but 
inequivalent group of transformations which do not leave q, invariant is generated by 

, , m , p q , , r  r _ ¼ C " " ' ( i F p -  l e  r'qr] G " " = 2 F " "  + ~  e ~'~rst 'pq 6~"pqr L 1 ,  

G "s  = - ~ l ' ( i F "  - ~c mPq Fp q ) .  (3.26) 

The maximal common subgroup of the various SO(7) groups is thus generated by 

_t_,  "~pqrs,,~ ~ (3.27) ~ " n  = F " n  .~ 247 e t .~rs t lpq  , 

This is the group G 2, whose defining condition is given by 

C",pCff "p = O. (3.28) 

For future use we record that the commutator of G "8 and G "8 is not entirely 
contained in the G 2 subalgebra, because 

[G"" ,  G "8 ] = - ~'C"pG p8 - ~"n. (3.29) 

A similar result holds if we embed G 2 in the SO(7) group defined by (3.4), by 
including seven generators ¼ C " " P F , , .  

Finally, it is possible to construct a second self-dual tensor from C ""e but now 
with eight-dimensional spinorial indices by suitable contractions with r-matrices 

C a e c o  l;r-  r m ,  r p  (3.30) "~-- 2 t ~ ' ~ " n p X  [AB] z [ C D ] '  
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or, equivalently, 

CA nCD = ~ TI"CMNpQFMU,4 nFI'QcD, (3.31) 

where the SO(8) generators are defined such that F Ms= - i ~ " F  m. This is necessary 
for the duality phases of CMNeQ and of the F-matrix indices to match, because the 
expression FIMNiABFeQlcD 1 is self-dual in both [MNPQ] and [ABCD]. The duality 
phase with respect to the indices [ABCD] is not affected by these considerations and 
therefore arbitrary [12]. It is now straightforward to prove from (3.16) and from the 
self-duality of CABCD, that 

= ~.4Bc + 9T/,Sf~#Bcl (3.32) cABCGCDEFG v~OEr EF]' 

which is the analogue of (3.16) in the spinor representation. 

4. Two stationary points 

From [2] we have learned that the dependence of the N = 8 supergravity lagrangian 
on the scalar fields is entirely expressed through the 56-bein c-\~(q~) in the special 
gauge (2.4). For general qpkl it is, however, essentially impossible to calculate cV(q~) 
in closed form, and this circumstance makes it exceedingly difficult to determine the 
extremal structure of the N = 8 potential completely. Guided by spontaneous 
compactification on the parallelized S 7, we will now use the results of the foregoing 
section and consider ans~itze for the vacuum expectation values of the scalars and 
pseudoscalars of the form 

< A IJKL> or. C IJKL , (scalar case), (4.1) 

o r  

< B zJrL ) o~ C zJrL, (pseudoscalar case). (4.2) 

The self-dual real tensor C tJrL is the SO(7) ± invariant tensor of the preceding 
section, which we normalize such that 

c u r e r  _ g s , J r  + 981~.cSKI (4.3) ~"LMNP -- VVLMN MN]" 

Since we adopt the gauge choice (2.4) we will no longer distinguish between SU(8) 
indices i, j ,  k . . . .  and SO(8) indices I, J, K . . . .  

Actually, the duality of the scalar case (4.1) and the pseudoscalar case (4.2) should 
be taken opposite, but since we will not consider the combined case where both 
scalar and pseudoscalar fields acquire a vacuum expectation value, it is not necessary 
to make a distinction. Therefore the two cases can be dealt with at the same time. Of 
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course, if both scalar and pseudoscalars have a non-vanishing vacuum expectation 
value, the symmetry will be smaller than SO(7)±; according to the previous section 
the ans~itze (4.1), (4.2) in the combined case should have a residual G 2 invariance, 
and it is known from [9] that such a solution exists. From (4.1) and (4.2) it follows 
that we must evaluate the exponential functions for the 56-bein, 

0 atC tJKL ] (4.4) 
c'\:(t) = exp a.tCMUeQ 0 ' 

where C tJrL is now regarded as a 28 × 28 matrix in the vector space labelled by 
antisymmetrized index pairs [I J]. The phase factor a is given by a = 1 for the scalar 
case and a = i for the pseudoscalar case. Comparing (4.4) to (2.4), (2.5) shows that 
the duality phase of C IJxL is given by 

C ,:xL = ~4'1 a* etJKLMNeQCMuPO" (4.5) 
Ot 

The explicit evaluation of (4.4) and of subsequent relevant quantities can be done in 
closed form, owing to the identity (4.3). From (4.4) we obtain straightforwardly 

~ r ( t ) =  
cosh(tC) asinh(tC)] (4.6) 

a*sinh(tC) cosh(tC) ' 

and from (4.3) we deduce that 

cosh(tC) = f ( t ) !  + g(t)C, 

sinh(tC) = f ( t ) l  + ~,(t)C. 

(4.7) 

(4.8) 

The functions f ,  g, )? and g can be determined straightforwardly. Differentiating (4.7) 
once and twice with respect to t, we get 

Csinh(tC) = f ' ( t ) !  + g'(t)C, (4.9) 

C2cosh(tC) = f " ( t ) !  + g"(t)C. (4.10) 

We then resubstitute (4.7) and (4.8) in the left-hand side of these equations, and 
obtain 

C ( f ( t ) l  + ~(t)C) = f ' ( t ) |  + g'(t)C, (4.11) 

C2(f( t ) l  + g(t)C) = f " ( t ) l  + g"(t)C, (4.12) 
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where we recall that we are dealing with 28 x 28 matrices expressed in terms of the 
unit matrix and the symmetric matrix C ttJlt~Ll. Using (4.3) once more we decom- 
pose the left-hand sides of (4.11), (4.12) into the identity matrix and C; the result is a 
set of differential equations for the coefficient functions f ,  g, f and g, which can be 
solved. The solution can be summarized as 

cosh(tC) = ¼(cosh6t + 3 cosh2t)!  + ~(cosh6t - cosh2t)C,  (4.13) 

sinh(tC) = ¼ (sinh6t - 3 sinh2t)!  + ~(sinh6t + s inh2t)C.  (4.14) 

The elements of the 56-bein (4.4) are now expressed through (4.6) in terms of (4.13) 
and (4.14). 

We can now proceed with the calculation of the T-tensor, which can be parame- 
trized as follows 

T/k t (  t ) = _ ~A2(  t )Cuk , + azAl ( t )Skt  , 

T jkl(  t ) = 3 . ' a A 2 ( t ) C ,  ykt + ~ A ~ ( t ) 6 ~  t, (4.15) 

where we recall that A~ and A z may be complex while C is real. After a little 
calculation we find the following result for the functions A 1 and Az: 

A t ( t  ) = ¼ {3(coshZt-  a*sinhZt) + cosh(8t)(cosh6t + a*s inh6t )} ,  (4.16) 

Az(t ) = 41 { ( c o s h Z t -  a*sirth 2t) -cosh(St) (cosh6t  + a*sinh6t)  }. (4.17) 

From (4.16) and (4.17) it is clear that A l ( t  ) and A z ( t  ) are real in the scalar case (4.1) 
(a = 1), and complex in the pseudoscalar case (4.2) (a  = i). 

The tensor Qu~t("V), which appears in the variation of the potential, now takes 
the form 

QOkt( qf  ) = Q (  t )C, jk t ,  (4.18) 

with 

Q ( t )  = ( A l ( t )  + 3 A 2 ( t ) ) A 2 ( t  ) , (4.19) 

and the condition (2.22) for stationary points reduces to 

a Q (  t ) = - [ otQ( t ) ] * (4.20) 

Apart from the trivial stationary point at t = 0 we find two solutions of (4.20), 
namely 

scalar case (a  = 1): t = ~ l n 5 ,  (4.21) 

pseudoscalar case (a  = i) : t = + ¼ artanhv~(. (4.22) 
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We observe that the degeneracy in the pseudoscalar solution is due to the invariance 
under parity reversal. The values of the functions A 1 (t) and A 2 (t) at these stationary 
points are straightforward to calculate. One finds 

a = l "  A1 = { ' 5  -1/8, 

A 2 -- - ½" 5 -1/8, (4.23) 

3_ I ¢~-)1/z[3 + ~/~- + 2 i ( 2  _ ~ - ) ]  ' or=i: A 1 = ,6(~+ ½ 

A z =  a - t l +  ½C~)a /2[ - -5  + C~ + (4 .24)  

Remarkably enough A 1 and A 2 have the same relative strength for both solutions, i.e. 

I,'1, I = 31A21, (4.25) 

which will lead to direct similarities in the mass spectra of the two realizations, it 
also implies that their stability properties must be the same, as we shall discuss at the 
end of this section. Eq. (4.25) seems to indicate that the two solutions are closely 
related; this may become more transparent when viewed in the context of d = 11 
supergravity. 

The potential, which in the parameterization (4.15) takes the form 

P ( t )  = 1 4 g 2 l A 2 ( t ) l  2 - 6 g 2 1 A , ( t ) l  2, (4.26) 

leads to the following cosmological constants 

Asymm = ~ ( t  = O) = --6g 2, (4.27) 

A~_ 1 = ~ ( t  = ~ ln  5) = - 2 "  5 3 / 4 g  2 , (4.28) 

A , , _ , =  P ( t  = + a r t a n h ~ / ~ ) = -  ~¢3-g 2. (4.29) 

The solutions (4.21), (4.22) break all supersymmetries, because (2.26) leads to 
CUk/e, = 0 which cannot be satisfied for non-vanishing e,. Therefore one expects 
eight massive gravitinos in accordance with the super-Brout-Englert-Higgs effect. It 
is not difficult to determine the masses of the fermions. The spin-~ fields are 
decomposed into the 48 and 8 representation of SO(7) according to 

where 

X 'j* = X i j* (48) + -~ c u k t x ,  (8), (4.30) 

C, j , ,Xu*  (48)  = 0 ,  x , ( 8 )  = ~C,j,,x j*'. (4 .31)  
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The fields Xi(8) are associated with the Goldstone fermions of supersymmetry, as is 
obvious from the inhomogeneous term in their supersymmetry variation: 

3Xi (8) = - lagA 2 ( t )  g .  (4.32) 

Therefore X,(8) may be eliminated by a suitable local supersymmetry variation. The 
fermion fields then have the following kinetic and masslike terms 

el* 
~2vt2 g---~ - [ A2( t)~iJk(48)Xqk(48) + h . c . ] .  (4.33) 

Hence we find the following masses 

m3/2(8 ) = 2v~ glAl( t )l = 6¢~ glA2( t )l , 

ml/2 (48) = ¢~ glA2 ( t)l . (4.34) 

We should point out that the gravitino mass includes the so-called de Sitter mass, 
which is equal to 

mde Sitter = 4~i~glA2(t) l .  (4.35) 

The calculation of the boson spectrum is more involved. We first determine the 
terms in ~qk t  that are linear in the fields. The result is 

6~ ~jk' = 0 ~  ijkt + v~ a*g sinh(8t ) A Z licJkllm. (4.36) 

Squaring this term leads to the vector boson masses, which can be decomposed in 
terms of the projection operators (3.21). The mass term then reads 

e-1~ m = - ½g2sinh2(8t ) A,tjP2tJxL A "xL, (4.37) 

which shows that the 21 gauge fields associated with SO(7) remain massless. Eq. 
(4.37) does not yet allow a determination of the mass for the seven gauge fields, 
because the normalization of the kinetic term depends on the solution in question. 
Decomposing the expression 2S t s ' x L -  3HXL into the projection operators (3.21) 
yields the kinetic terms 

e-  l~ki n = -- -~ F~vtj { [cosh at - ½ (or + a* )sinh 4t ] -1 plZjxL 

+[cosh l2 t+½(a+a*)s inh l2 t ] - IPJSKL}F~ 'KL ,  (4.38) 
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as well as a CP-violating term 

 -cP = - - 

× { (3 artanh 4t - artanh 12t ) PltJx£ 

+ ( - artanh 4t + 3 artanh 12 t) P2tJK£ }. (4.39) 

The latter only contributes in the case a = i, but since the supergravity lagrangian 
has been determined by requiring supersymmetry modulo a total divergence, it is not 
clear what its significance is. The mass of the seven vector fields follows directly 
from comparing (4.37) to (4.38). One finds 

m1(7 ) = ~/2glsinh8tl(coshl2t + ~(ct + a*)sinh 12t) 1/2. (4.40) 

In view of the relation (4.25) all the masses and the cosmological constant except 
(4.40) are determined by A2(t ), and the different mass scales of the two solutions 
(4.21) and (4.22) can thus be accounted for universally by an appropriate rescaling 
of the gauge coupling constant. Remarkably enough the same comment applies to 
the mass of the spin-1 fields, because the vector boson masses in the two solutions 
occur in the same ratio as the values for IA2(t)l. Therefore, apart from different 
parity assignments the two spectra are completely identical. 

Finally, we turn to an evaluation of the mass matrix for the scalar and pseudo- 
scalar fields. Inserting (4.15) into (2.25), using (4.3), leads to 

96e-]E (,v2) = _ i 0.2~.jk,12 _ g2(~(;~(t) + ~IA2(t)I2)IZ.j~;!2 

- 18g 21A2 (t)12fuk/~ijpq~k/pq -[- 2 9 2 1 A 2 ( t ) 1 2 6  . . . .  p ~ m n p q f q j k l ~ i j k l "  

(4.41) 

We now decompose the complex field 27 ~jkt into two real fields, one with the same 
and the other with opposite duality compared to C ~jk;, 

z i j k l  = ~.ijk; J r  iX 'j*; (4.42) 

where 

1 * 

Z;j k;= ½iaZ;J*; + l" • - -  2 ta  ~ ' i j k / "  

Note that the parity assignment of ~ .  and ~_ depends on the value for a, and that 
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the vacuum expectation value of Z_ vanishes. We first note the following identities 
for contractions of (anti) self-dual tensors [14] 

cPqij~_k+lpq --  c p q k l ~ i J P q  --  2_J~Ik[ t'-'llpqr~' _ P S'/]pqr~ 
= 3v[i \ " "  ~ + j l p q r  ""j]pqrk"~+ ] ' 

c p q i j ~ _ k l p q  .~_ c p q k l ~ t j p q  = 2~[k(cl]pqr~_~_j]pqr  _~ Cj]pqr~,(]_pqr ) , 

c i p q r ~ y +  pqr .-t- c J p q r ~ +  pqr = zvJ  ~it,',pqrs~'pqrsk..~ + , 

c i p q r ~ j  pqr - -  c J p q r ~  ipqr = O,  

cPqr s~p_  qrs = O.  (4.43) 

Using these identities we rewrite (4.41) as 

~ ( ~ 2 ) = ~ + + ~ ,  

with 

-tz--~- ! 8 2 u k  I 2 96e- 'E+= - ( ~  ~ukt~2-g2(Z3P(t)+71A2(t)l )(Z+ ) 

-12g21A2( t)I2C'YZ~pqZk+ lpq- ~g21A2( t )12( CUktz'/k')2, (4.44) 

96e- 'E_ = - ( 0 , , ~  kt )2 _ g2( ~qP(t ) + 3~1A2 (t)12 )(~,Uk/)2. (4.45) 

Clearly Z_ remains irreducible under the SO(7) subgroup and we find a mass equal 
to 

m2o(35) = _ 16g2lA2(t)l 2, (4.46) 

which does not represent the actual mass in anti-de Sitter space. Since the sign in 
(4.46) is negative one has to investigate whether the solutions are stable under small 
disturbances. Stability requires that m 2 is not too negative. The precise requirement 
is I17] 

m2/~(c-V ) < 3, (4.47) 

for each of the possible fluctuations with negative m 2. Since o p(t) = - 40g 2 I A 2 (t) 12 
for the solutions investigated here, we see that the condition (4.47) is satisfied, since 

rn~(35)/P(t) = ~ < ~. (4.48) 
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Hence we have stability with respect to small disturbances associated with the 35 
representation. Incidentally, from (2.25) one sees that this ratio is equal to ~ for the 
supersymmetric solution where A2~jkt = O. In fact in that case one has complete 
stability [18]. 

The mass matrix for the fields y,~kt is somewhat more difficult to disentangle. 
Under SO(7) these fields split according to 

Z ; J k t "  35 --* 1 • 7 • 27.  -t- (4.49) 

In order to exhibit this decomposition we first note that the 7 is associated with the 
Goldstone bosons that emerge in the breaking of SO(8) to SO(7). They are projected 
out by the coupling of the massive gauge fields to the scalar fields which follows 
from taking the square of (4.36). This leads to the identification 

7: C"'~PtiZ~ I' ' 'p . (4.50) 

That this is indeed the 7-dimensional representation is confirmed by applying the 
projection operators (3.21) 

p i j  t " ~ m n p [ k ~ ' l ] m n p  = O ,  
1 k l " "  k.,~+ 

p2'Jk iC'"PtkZI l+""P = C " " p t , Z O ' , p .  (4.51) 

This representation can now be rewritten as a four-index self-dual tensor: 

1 i ~ t i k l t  ,~ ~?pqrs c p [ i j k (  C p q r s ~ - , l ] q r s -  f l ] q r s z P q r s )  = - 1 2 2 ; +  ' y k t -  18Cpq[ij~-Ik+ `]pq  -~ 4 ~ ~'~pqrs--+ " 

(4.52) 

Obviously the singlet is obtained by contraction with C ijkt, and the 27 is given by a 
linear combination similar to (4.52). Hence the decomposition is 

V O k t t , ~  _ _ L r ' i J k l [  f" ~pqrs~ 
dCd ~ A ] - -  336  ~ ~ ~'~pqrs~ + ] ' 

- -  4 ~ +  - -  2 ~-~pq ~ 4- 48  ' , - ~  ~--rnnpq k'd . ] 

Z,Jkl(27) - -  ~ i  z i J k l  - -  ! r  [ i j ~ , k l ] p q  .~ _ L _ t ~ i j k l l  ~ ~'mnpq~ (4.53) 
- -  4 ~ + 2 ~"pq + 336 ~ ~ m n p q ~  + ] ' 

such that 

Z'I k '= Z'Jk'(1) + Z'~k'(7) + ZiJk'(27). (4.54) 
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The irreducibility of (4.53) under SO(7) is expressed by the conditions 
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C,,,bG~g'I,-~(I ) = 4ZiJk ' ( l ) ,  

C""t iJ~  *'1"~ (7) = 2,~'J*'(7), 

Cm""JZ*' m"(27) = - (4.55) 

It is now straightforward to derive the masses associated with the three representa- 
tions. Using 6-Y(t)= - 4 0 g 2 1 A 2 ( t ) l  2 we find that the seven fields remain massless; 
they correspond to the Goldstone bosons needed to give masses to the seven vector 
fields. The masses of the other representations are given by 

mE(l)  = 80g2[A2(t)[ 2, m20(27) = - 32g21A2(t) l  2 . (4.56) 

This shows that the potential is stable in the singlet direction. This can also be 
deduced directly from the extremal structure of °~(t), which has a local maximum at 
t = 0 and local minimum given by (4.21) or (4.22). To examine stability in the 27 
directions we calculate 

mg(27)/ ( t ) = > . (4.57) 

Hence the Breitenlohner-Freedman criterion is violated, so that both stationary 
points are unstable against small fluctuations corresponding to the 27 representation. 

5. On the relation between d = 4 and d = 11 supergravity 

In this paper we have used the existence of non-trivial solutions of the d = 11 
theory to construct corresponding solutions of broken N = 8 supergravity. Guided 
by the results of [3], we have found two non-trivial stationary points of the N = 8 
potential in this way. However, many aspects of the relation between the solutions in 
eleven dimensions and these stationary points remain somewhat obscure. For 
instance, it has been argued previously that the obvious invariance group of the 
parallelized S 7 in eleven dimensions is G 2, whereas in the four-dimensional context 
one finds SO(7) invariance [9]. Furthermore, the work of [3] indicates that supersym- 
metry is broken for the parallelized S 7 according to 8 --, 7 + 1, with two symmetry 
breaking scales both proportional to the inverse S 7 radius. Again this seems in 
contradiction with the four-dimensional solutions, where supersymmetry is broken 
uniformly. Another obvious discrepancy concerns the value of the cosmological 
term. The cosmological constant of the parallelized solution is reduced by ~ as 
compared to its value for the compactification on the round sphere. This is in 
obvious disagreement with the results of sect. 4. In this section we shall try to clarify 
some of these difficulties, and state the remaining questions in as clear a fashion as 
possible. 
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The first thing to note is that. contrary to some previous claims in the literature, 
the ansfitze for the massless states as identified in [3,4] do not correspond to a 
consistent truncation of the eleven-dimensional theory. To see this, one must 
carefully analyze the transformation rules of this theory. If we collectively denote the 
fields of eleven-dimensional supergravity by gO(x, y), where x ~ and y "  denote 
the coordinates of the four- and seven-dimensional subspaces, the variations take the 
form 

8gO(x, y ) =  F(gO(x, y ) ,  e(x, y ) ) .  (5.1) 

Here E(x, y)  denotes the supersymmetry transformation parameter in eleven dimen- 
sions, and F a function of both e and the fields go. We now expand the go(x, y)  in 
terms of a suitable complete set of eigenfunctions Y~")(y) of an appropriate set of 
operators on S 7 as follows 

gO(x, y)  = ~f'~ gO(")( x ) Y(")( y ) . (5.2) 
n 

The four-dimensional fields are related to the coefficients go(") in this expansion, and 
a subset of {go"(x)} for which the Y(")(y) have certain eigenvalues will constitute 
the massless sector of the theory. The functions y(n)(y) are usually expanded in 
terms of the Killing spinors associated with S 7. We now restrict the y dependence of 
the supersymmetry parameters e(x, y)  such that the ground state is left invariant. 
For the round S 7 this implies that e(x, y) must be proportional to a Killing spinor. 
There are two kinds of Killing spinors satisfying 

(D,,+½iml' , , )71t(y)=O, ( I =  1 . . . . .  8), (5.3) 

which can be normalized such that 

qt( y )71J( y ) = 6 tJ. (5.4) 

The two sets of Killing spinors are distinguished by choosing different signs for the 
parameter m, which is inversely proportional to the S 7 radius. The relevant super- 
symmetry parameters thus take the form 

(5.5) 

If one now inserts (5.5) and the ans~tze for the massless modes in the right-hand side 
of (5.1) one may verify whether the y dependence of 8go(x, y)  coincides with that of 
the massless modes. A straightforward calculation using the results of [3, 4] shows 
that this is not the case, which means that under supersymmetry transformations of 
the form (5.5), the massive modes transform into the massless ones. Therefore, it is 
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not possible to put the massive modes to zero in a consistent manner, because this 
restriction is not preserved by the supersymmetry transformations. 

We conjecture that the resolution of this puzzle lies in the fact that a proper 
identification of the eleven-dimensional fields with the massless ansiitze involves 
non-linear modifications. Hence, rather than specifying the y dependence of q,(x, y), 
we are specifying the y dependence of f(c~(x, y))ck(x, y) where f is some unknown 
function. In the supersymmetric background of the round sphere q~(x, y)  vanishes, 
and the func t ionf  is simply a constant. Therefore, the non-linear aspects do not play 
a role in the analysis of the massless modes, because one then considers only small 
fluctuations: f(q,(x,  y))~(x, y) tx q,(x, y). However, if one uses the results of this 
analysis to deduce the full y dependence of the various fields one should expect 
inconsistencies of the type described above. These non-linear aspects of the proper 
identification of the fields of N = 8 supergravity may also explain why the three- 
index gauge field, which leads to massless fluctuations associated with the d = 4 
pseudoscalar fields, occurs at most cubically in d = 11, whereas the pseudoscalar 
fields appear in d --- 4 supergravity in a non-polynomial way. 

Although similar considerations will be relevant for explaining the discrepancy 
between the cosmological constants for the d = 4 and d = 11 solutions, there is also 
another aspect that plays a role here. When one compares the cosmological con- 
stants for two different compactifications on S 7 the radius of the sphere is kept fixed. 
On the other hand, the comparison of the cosmological terms for the d = 4 solutions 
presupposes a constant gauge coupling constant g. Despite the fact that the inverse 
S 7 radius determines the SO(8) gauge coupling, it is possible that the precise relation 
is not quite the same for the symmetric and the broken realization. We remind the 
reader that the standard definition of the gauge coupling constant is based on a 
Yang-Mills action with the canonical normalization; in N = 8 supergravity this 
normalization factor depends on the scalar fields, and will therefore change from 
one solution to another. For instance, the normalization factor of the gauge field 
lagrangian has the standard value for the symmetric solution, whereas for the 
solutions described in sect. 4 the normalization of the lagrangian of the SO(7) gauge 
fields acquires an extra factor 5 ~/4 and 2- 5 ~/2 (cf. (4.38)). In order to obtain the 
SO(7) gauge field lagrangian with canonical normalization one must rescale the 
fields and the coupling constant. The correct SO(7) coupling is then given by 

gsot7) = 5 - 1/8g, (a  = 1), 

gso~7)= (~)1/4g, (a  = i ) ,  (5.6) 

in terms of which the corresponding cosmological constants are expressed by 

A ,,_ 1 = - 10g~o~7), 

A ~_ ,  25 _2 ( 5 . 7 )  
= - -  T ~ S O ( 7 ) "  
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For the symmetric solution one has, of course, gso~7~ = g, so that (4.27) remains 
unaffected. 

The above argument shows that it is not obvious how one should compare the 
cosmological constants for two different solutions. Also (5.7) is not yet compatible 
with what one would naively expect on the basis of the two spontaneous compactifi- 
cations, but in that case one expects that similar redefinitions should be made as 
well. The present discrepancy is therefore just another indication that the non-linear 
aspects of the compactification are not well-understood. 

Because the.symmetry aspects of a compactification are completely determined by 
the background solution of the d = 11 fields the above complications should not play 
a role in the identification of the invariance group of the parallelized sphere. This 
group must coincide with the invariance group of a corresponding solution of 
gauged N -- 8 supergravity, and the obvious candidate for this solution is the second 
one (a  = i) described in sect. 4, which has a manifest SO(7) invariance. Therefore, it 
has been conjectured that the parallelized sphere must exhibit an SO(7) invariance as 
well [9]. We will now show that this is indeed the case by explicitly exhibiting the 
corresponding Killing vectors that leave both the S 7 metric and the parallelizing 
torsion invariant. 

Under infinitesimal reparametrizations of S v the metric transforms in the standard 
way 

~g, . ,  = D,.~, + D,~, . .  (5.8) 

It is easy to find a set of vectors ~,, for which (5.8) vanishes. These so-called Killing 
vectors can be expressed in terms of the Killing spinors (5.3) according to [4] 

Owing to (5.3) we derive 

~,, tJ  = i~li F,,,~lJ . (5.9) 

D, , ,~ .  ' J  = - m ~ l  F, . . ,1  s 

= rn~ , , ,KI t~ .  J l x ,  (5.10) 

so that the Killing condition Dt,,~,~= 0 is satisfied. As indicated by (5.10) the 
reparametrizations corresponding to (5.9) amount to a combined translation and an 
SO(7) rotation in an infinitesimal neighbourhood of a point on S 7. Together these 
constitute the SO(8) group of rigid motions on the sphere. 

By requiring the siebenbein corresponding to g,,, to be invariant under (5.9) one 
can straightforwardly determine the compensating SO(7) transformation acting on 
the tangent space indices. This then allows us to determine the effect of (5.9) on an 
arbitrary Killing spinor '/" with 

D , , ' P  = ½ i y r a F , , ~ t ' ,  (g = + 1). (5.11) 
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The result takes the form 

8 *  = ¼ ( m C  r " " r r '  ) r, . . ' l" - ½ ~,( im~t  r m n "  ) i r.,'I" , (5.12) 

which shows that the two sets of Killing spinors transform according to two 
inequivalent SO(8) representations. In particular, if we choose "y = - 1, so that the 
spinors '/' and rl z are of the same Killing type, we may decompose if' in terms of ,/I 
with constant coefficients (~lq,). These transform under (5.12) according to 

(VIKS~/,) = 8m~$KII&tlL(-FIL~o). (5.13) 

Let us now focus our attention on the parallelized sphere. The parallelizing torsion is 
defined precisely as in sect. 3, but to indicate that it will now depend on the S 7 
coordinates we introduce a different notation in which the torsion is written as S "~p. 
The dependence on the S 7 coordinates is governed by the duality equation 

DraSnp q = -t- l ~'mEmnpqrst Srs t .  (5.14) 

Although the sign in this equation is fixed within the context of the compactification 
of d = 11 supergravity, we keep it arbitrary here. The duality phase 71' is determined 
by the definition of the F-matrices as indicated in (3.3). 

On the parallelized sphere the following reparametrizations are relevant 

~m IJ = icll Fmll J -~ ~ Smnpf71Fnp~ J ' (5.15) 

which satisfy 

o=t="= _ 

= - 4m~/{ 3zF,,, + ±"'~36,~ -, , ,pq,st ~ ,¢ '~trpq '~¼Sm.p( iFpT~SpqrFvr)}71J.-  - 

(5.16) 

In an infinitesimal neighbourhood of a point on S 7 this reparametrization can be 
viewed as a translation combined with a G 2 rotation, which together constitute the 
group SO(7) +- (cf. (3.25)-(3.27)). Owing to the antisymmetry in rn and n of the 
right-hand side of (5.16), the reparametrizations (5.15) leave the metric g .... in- 
variant; hence the ~,,/J are Killing vectors, which can be expressed linearly into the 
vectors (5.9). Therefore we know 

&.St"p , /=  "-, (5.17) 
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where XtJxl. is constant. It is possible to calculate X t J x t  explicitly: 

x ' % .  = n '  v . . .  + 

~ _ 1  t mnpqrstt~ - I t .  J = K p  L 
96~ e ~ r s t ~  l m n ~  71 1 p q ~  , (5.18) 

from which it is straightforward to verify that D,. xtJxt" = O, and 

X'JKLXXLMU = 1 2 6 / J  --+ 4XHMu" (5.19) 

The latter result coincides with (3.17), and this is sufficient to define projection 
operators similar to (3.21). If the plus sign is chosen in (5.14), the tensor Xtgr t  ~ is 
antisymmetric in [IJKL], and equivalent to (3.30). Combining (5.15), (5.17) and 
(5.19) one can show that the ~,is are obtained from the ~m Ig by application of the 
projection operator 

= a[alJ z ~XHKL) .  (5.20) p I J K L  4 1 V K L  -- 

Hence there are 21 linearly independent vectors ~,,ig. 
The reparametrizations corresponding to (5.15) have the special property that they 

also leave the torsion tensor invariant; the latter transforms with the standard Lie 
derivative* 

6Sm, p = 3Dim~qSnp]q + ~qDqS,,,p. (5.21) 

To show this one uses (5.14), (5.16) and the identities (3.7), (3.8). Hence, the 
reparametrizations (5.15) leave the parallelized sphere invariant, which shows that 
the spontaneous compactification has an SO(7) t invariance. This is now consistent 
with the d = 4 solutions that we have discussed in sect. 4**. 

The structure of the Killing vectors (5.15) and of (5.16) indicates that the 
isometrics of the parallelized sphere correspond to those of the SO(7)-+/G 2 coset 
space (as shown by (3.29) this space is not symmetric). An identification of this coset 
space with the parallelized sphere has been made in [22]. It is also consistent with the 
equation 

,J = + (5.22) 

which follows from (5.16) and (3.7). This equation is characteristic for the Killing 
vectors of a non-symmetric space [23]. To make a precise identification it is 

"Since S,,,,,p originates from the tensor gauge field in d = 11 supergravity, there is in p r i n c i p l e  the 
option of including a tensor gauge transformation. This can be ignored here, because we work in a 
gauge where the field strength is proportional to the gauge potential. 

** The existence of an SO(7) + symmetry has also been shown in [19] and [20]. See also [21]. 
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important to realize that the parametrization of the round sphere based on group 
elements exp(iF,, y"), where the y " are the S 7 coordinates, can be reparametrized by 
means of an SO(7) transformation to the form exp(iFmym+_ ~Cm,pF"Pym). 

It is again straightforward to exhibit the action of (5.15) on the Killing spinor 

(5.11). One finds 

~ = l ( ~ l ~  I~mn~J)[ 231~ran 31- -1-nat©36" ~ranpqrst~rstFPq .a. l'~Smnp( i rP  __+ 16"~sPqr l~qr )] ~tt 

-  v(im  I )[ + (5.23) 

Comparison with (3.25), (3.26) shows that the Killing spinors are subject to 
SO(7) + rotations. The representation depends both on the sign of the duality 
equation (5.14) and the type of Killing spinor. This offers the explanation for the 
apparent discrepancy between the pattern of supersymmetry breaking noted in [3] 
for the parallelized sphere, and the supersymmetry breaking of the d = 4 solutions of 
sect. 4. In d = 11 the natural eigenspinors of the integrability conditions that 
characterize supersymmetry breaking for the parallelized sphere and the spinors 
associated with the supersymmetries of the round sphere are Killing spinors of the 
opposite type. The latter, which should correspond to the supersymmetries of the 
gauged N = 8 theory, break uniformly under the action of (5.23) in accordance with 
the results obtained directly in four dimensions. The eigenspinors of the integrability 
condition split according to 8--* 7 + 1, as was already observed in [3], but those 
supersymmetries are not relevant for the d = 4 theory. Instead they connect Kaluza- 
Klein modes of different mass. This conclusion was reached independently in [19]. 

The two d = 4 solutions that we have presented in sect. 4 both exhibit an SO(7) 
symmetry, but are distinguished by their behaviour under parity reversal. In spite of 
this, we have found that the mass spectra are identical, when expressed in units of 
the corresponding inverse de Sitter radius. This is indicative of some intrinsic 
relation between the two solutions which one may be able to clarify in the context of 
d =  11 supergravity once the non-linear aspects of the compactification are fully 
understood. The lack of stability of the d =  4 solutions implies that Englert's 
solution [5] must be unstable in d =  11, because it is sufficient to identify one 
unstable direction. Since the higher-excited modes in the harmonic expansion on S v 
are massive it is plausible that instabilities, if present, should occur in the directions 
corresponding to the lowest eigenvalues of the mass operator. For example, varying 
the size of S 7 corresponds to a massive mode, and one can therefore anticipate 
stability against such fluctuations. This is indeed confirmed by a recent investigation 
of the stability of d = 11 solutions with respect to a restricted variety of disturbances 
[24]. Our calculation gives also independent evidence that Englert's solution is stable 
against variations in the size of the torsion. 
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