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We derive some general results for Killing vectors on arbitrary coset manifolds and explicitly 
exhibit the squashed seven-sphere as the coset space Sp4 × Sp2/Sp2 × Sp2. Using these results, we 
then analyze the zero-mass sector of supergravity on the squashed S 7 and argue that it is not 
interpretable as a spontaneously broken version of N = 8 supergravity. We also point out the 
existence of a new solution which combines squashing and torsion. 

1. I n t roduc t ion  

I t  is by  n o w  wel l  k n o w n  tha t  supe rg rav i ty  in e l even  d i m e n s i o n s  na tu ra l l y  c o m -  

pac t i f i es  to supe rg rav i ty  in fou r  d i m e n s i o n s  [1]. In  this way,  f o u r - d i m e n s i o n a l  

theor ies  w i t h  or  w i t h o u t  b r e a k i n g  of  s u p e r s y m m e t r y  can  be  o b t a i n e d .  So far  the 

fo l l owing  c o m p a c t i f i c a t i o n s  on  the  s even - sphe re  S 7 h a v e  b e e n  o b t a i n e d :  

(i) r o u n d  $7: no  s u p e r s y m m e t r y  b r e a k i n g  [2]; 

(ii) r o u n d  S 7 wi th  to r s ion  [3]: all  s u p e r s y m m e t r i e s  b r o k e n  [4, 5]; 

(iii) s q u a s h e d  $7: N = 1 s u p e r s y m m e t r y  r e m a i n s  [6]. 

In  this p a p e r  we  shall  beg in  by  p r e s e n t i n g  a n e w  so lu t ion :  

(iv) s q u a s h e d  S 7 wi th  to rs ion :  no  s u p e r s y m m e t r y  lef t  t. 

I t  is k n o w n  tha t  the  r o u n d  S 7 is a cose t  space,  n a m e l y  S O ( 8 ) / S O ( 7 )  [2]. O n  S 7 wi th  

to rs ion ,  the  v ie lbe in  and  sp in  c o n n e c t i o n  are  still  those  o f  the  m a x i m a l l y  s y m m e t r i c  

r o u n d  S 7, b u t  the  t o r s ion  f ie ld  has  less s y m m e t r y ,  n a m e l y  its s y m m e t r i e s  f o r m  the  

* On leave from the Institute for Theoretical Physics, State University of New York at Stony Brook. 
* This solution was found independently in Ref. [7]. 
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exceptional group G 2 [3, 4]. In this paper we shall exhibit that the squashed sphere is 

the coset space 

G / H  = Sp(4) × Sp(Z)/Sp(2) × Sp(2). (1.1) 

Since Sp4 - SO 5 and SP2 - SO3, this group G is a subgroup of SO 8. 
Having shown that the vacuum is described by the coset G / H  in (1.1), we will 

then turn to the massless physical excitations. As expected, in addition to the 

graviton, there is one massless gravitino corresponding to the N = 1 supersymmetry 
of the vacuum. Moreover, since SP4 × Sp2 has 10 + 3 Killing vectors, there are 13 
massless vectors. To demonstrate that there are also 13 massless fermionic partners, 

we must analyze the mass matrix of the spin-½ fields. In this way, one finds that the 
Killing vectors K ~ M  ) (M = 1,13 and c~ = 1, 7) must satisfy a remarkable identity 

a,~a D~,K(M ) 3,q~K(M) ,  (1.2) 

where a,fl v are the octonionic structure constants. 
It has been noted before that the octonions play a r61e in the solution of the 

squashed S 7 with torsion. Specifically, the torsion field A , t ~ r ( y )  can be identified 

with the octonionic structure constants [7]. In this paper we de-emphasize the r61e of 
octonions somewhat in favour of coset spaces: we show that the octonionic structure 
constants are just the structure constants c,a r which appear in the commutators of 
the form [K,,  K~] - K v where the K are the coset generators of (1.1). In fact, we 

shall prove the following: 

T h e o r e m :  the identity (1.2) with a,~ Y replaced by c~¢ ~ and 3,~ by c~v~c¢8 v holds for 

a n y  reductive Lie algebra whose Killing metric is block-diagonal on (H, K). 
Let us begin by presenting our new solution, namely the squashed S v with torsion. 

The field equations of eleven-dimensional supergravity are given by 

l t r  pQR  g.NrleRs), R M N =  - - 6 1 , ~ M P Q  R ~ N  _ 1 2 (1.3a) 

- -  eNPQ R ~  R ' &  S "  F a ,  . .R ,Fs~. . .S, , (1.3b) D M F M N P Q  -- 12 X 96 

where we have put the fermionic fields equal to zero. We use the conventions of ref. 

[8]; in particular, the photon field strength FMNPQ has strength 24 and M, N.. .  are 
flat eleven-dimensional indices. 

Spontaneous compactification means that eqs. (1.3a) and (1.3b) admit solutions 
whereby the eleven-dimensional manifold becomes a product of ordinary space-time 
and some compact internal space, at least locally. Following the ansatz of Freund 
and Rubin for F ~ o ,  and that of Englert for F~v8 we assume that the vielbein splits 

into a four- and a seven-dimensional part and put 

F m ~  = i m e  . . . . .  F,,b,, a = aqF~b~d~ J . (1.4) 
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The indices m, n . . . .  and a, b . . . .  are flat four- and seven-dimensional indices, 
respectively, and m and a are free parameters. The F a ( a =  1,7) are 8 × 8 Dirac 
matrices for seven-dimensional euclidean space, satisfying { F a, F b } = 2~b  and */is a 
covariantly constant spinor 

D ~  = c F ~ ,  (1.5) 

where c is a parameter  to be determined. 
The ansatz (1.4) solves the Maxwell equations in (1.3b) if 

8ac = i¢~ma,  (Maxwell).  (1.6) 

Substituting the ansatz in (1.4) into the Einstein equations in (1.3a) leads to two 
Einstein spaces 

R ~ =  (2m2 + 7a2 )g~ ,  R~B= - ( l m 2  +~a2)g~#.  (1.7) 

The integrability condition of (1.5), obtained by differentiating (1.5) once more reads 
quite generally [7] 

R ~  = 24c2g~,  C, Bv~Fv8~I = O, (integrability), (1.8) 

where C~Bv~ is the Weyl tensor. A last condition on the parameters is obtained when 
one requires that at least one supersymmetry is unbroken. In that case, not only the 
gravitino itself, but also its variation under supersymmetry must vanish. From the 
eleven-dimensional variation law 

8 ¢ .  + "Q s-   tPrORSl .r 
~ M  ~ ] ~ * P Q R S ,  (1.9) 

one finds with e(x, y )  = e ( x ) ~ ( y )  and using (1.4), two results 

a = O, c = - ~ imv /2 ,  (supersymmetry left). (1.10) 

Let us now consider the solutions which preserve supersymmetry. From (1.10) we 
see that in this case there is no torsion so that the Maxwell equations are automati- 
cally satisfied. Moreover, the value of c in (1.10) is compatible with the integrability 
condition and Einstein equations for R~B. From (1.10) we must find a solution of 
R~a = - ~m2g~B on a compact seven-dimensional space. There are two and only two 
solutions. 

(i) The round $7: for which the Riemann tensor is maximally symmetric, i.e. it is 
proportional to g~vga8- g~sgav so that the Weyl tensor vanishes. There are two 
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covariantly constant spinors, satisfying 

D~I+ = ~ im~ /2F~+  , D.n_  = - 1~im~/21~l _ ,  (1.11) 

which can be written as (expy"F , )~(0)  [4], but only ~/_(y) can be used to 
parametrize the supersymmetry parameter  e(x, y )  because only 7/ satisfies (1.10). 

(ii) The squashed $7: in this case the Ricci tensor is the same as for the round S 7 
but the Riemann tensor contains a non-vanishing Weyl tensor satisfying the integra- 
bility condition in (1.8). There is only one covariantly constant spinor, not two, 
because the matrices C.t~vnI'vn generate the spinor representation of G 2 [6] which can 
leave only one spinor fixed. This spinor still satisfies the criterion in (1.10) that 
supersymmetry is preserved. Actually, this spinor 7/is really constant [7]. This can be 
shown by using the general relation 

= ! ( c  c c b~ a CabCOaabc 2 \ ab dc l ea ,  (1.12) 

valid for reductive algebras whose Killing metric is block diagonal on (H,  K )  (see 
sect. 2) and noting that in a suitable representation cab c - (/'abe) c and (Fa~) b - 37, so 
that the two- and one-gamma terms in eq. (1.5) defining the covariantly constant 
spinor, cancel. 

Let us now present our new solution for the squashed S 7 with torsion. Since a 4= 0, 
the Maxwell equation in (1.6) fixes c, and this value of c clashes with (1.10) so that 
all supersymmetries are broken. Comparing the Einstein equations with the integra- 
bility condition we have 

c -= ~i~/2m, a 2 = ¼m 2 . (1.13) 

Thus the solution of the squashed S 7 with torsion is given by 

Fm,rs = ime . . . . .  Fabcd = + ½mqI~b,.arl, (1.14) 

while the vielbein is that of the squashed S 7 without torsion but rescaled such that 

R ~ = ( 2 r n 2  + 7 m 2 ) g u , ,  R~/~= - ( ~ m Z  +~rn2 )g~ t  3. (1.15) 

The Maxwell equations are satisfied because c is given by (1.13), and the 
integrability conditions are satisfied by fixing a as in (1.13). The Einstein equations 
are then satisfied by taking the vielbeins of the squashed S 7 without torsion, rescaled 
according to (1.15). 

The spinor ~ is covariantly constant and equal to the covariantly constant spinor 
of the squashed S 7 without torsion, but again with rescaled m. Although the metric 
and 7/ are the same as those of the squashed S 7 (up to rescalings) supersymmetry is 
broken, because in 3+a 4 new terms appear proportional to torsion. 
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2. Geometry of coset spaces 

In this section we will first summarize some elements of the theory of coset 
spaces* and then use them to derive a general differential equation for Killing 
vectors K~M ) (y) ,  

(2.1) 

This relation holds for any reductive Lie algebra whose Kilhng form is block-diag- 
onal on the subgroup H and its complement K. 

Let G be a Lie algebra, H a subalgebra and K a complement, so that G = H + K. 
We restrict ourselves to reductive algebras, meaning that [H, K] c K but we do not 
assume that G is symmetric (a symmetric algebra satisfies not only [H, K] c K but 
also [K, K] c H). Thus the coset transforms in a (reducible or irreducible) representa- 
tion of H. We will also assume that the Killing metric 

YMN = CuRSCNs R (2.2) 

is block-diagonal: "~MN with M in H and N in K vanishes. 
Our notation will be as follows: M, N . . . .  run over all generators of G, a, b, c, d , . . .  

will be flat indices in K, a, r ,  7, 8 will be curved K indices and i, j ,  k, l will be 
indices in H. 

Near  the identity element of the group, we write an arbitrary group element as 

g = exp(k .  K ) e x p ( h .  H ) ,  (2.3) 

where k a and h i are arbitrary numbers, and K~ and H i a basis for the generators in K 
and H, respectively. We define vielbeins e ~ ( y )  and H connections ~0~(y) by 

eYre  d y K =  exp [ (y  ~ + d y a e : ( y ) ) K , , ] e x p ( - d y a e ~ ( y ) o ~ ( y ) l - I i ) .  (2.4) 

These vielbeins, and H connections satisfy Cartan-Maurer equations: 

a , e ~ -  ave B + a b c Ci b ( i b i b o ¢bc eBev + a _ ~vefl ~o~e v ) = 0, (2.5) 

3,~¢o~ - aBo~ ~ + cjkia~o~ + c j e ~ e ~  = O. (2.6) 

Points on the coset manifold, represented by exp(y .  K),  can be swept over the 
coset manifold by left multiplication by an arbitrary group element g as in (2.3). 
Suppose one has given a connection on the coset manifold 60~bc(y) which defines 
parallel transport. If  the operations of parallel transport and sweeping out commute, 

* For a complete discussion, see a forthcoming book by B.S. DeWitt, P. van Nieuwenhuizen and 
P.C. West. 
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this connection is called invariant. The most general invariant connection is given by 

,o~b~( y ) = ~oi ci~ b + eaeo~b~(o) , (2.7) 

where 0~ab~(0) is any invariant tensor of the adjoint representation of H restricted to 
the coset. A natural set of invariant connections are the structure constants 

O,)abc(O) = )~Cac b . ( 2 . 8 )  

The relation (2.7) between the H connection ~%'(y) and the coset connection 0 ~b (y )  
forms the bridge between the group-theoretic approach with the H connection and 
the differential geometric approach with coset connection. For symmetric algebras, 
using (2.8), both connections coincide but for general reductive algebras they differ. 

For X = ½, we can rewrite the Cartan-Maurer equation in (2.5) such that there is 
no torsion 

oqae ~ h- ¢%abe ~ -- a ~ /~  = 0, (2.9) 

i a 1 c a ~ , " o ( Y )  = °~,(Y)Cib + ~e~,(Y)C~b • (2.10) 

We can now find the curvature tensor for the torsionless connection in (2.10) by 
taking a linear combination of (2.5) and (2.6) 

R c t ~ a b  ~ Oao)~ab -'~ ¢uoaaco)flc b - -  a ~ ~ ,  (2.11) 

a [ 1 C  a c c 1 a i X C d c C e  b ) ( % e _ e t ~ e , ~ ) .  (2.12) RaB b = ~ 4 bc de "t'- "~Cbi £de  "q- 1 a c d e d e 

Killing vectors K~M)(y  ) are defined by the reverse of the definition of vielbeins 

e d g M X M e y ' K = e x p [ (  y~' + d g M K g M ) ( y ) ) K , , l e x p ( - d g  M I 2 ~ ( y ) H , ) .  (2.13) 

Note that M runs over all generators of 13, hence K ~ M ) ( y )  cannot be inverted. The 
inverse of e ~ ( y )  will be denoted by e a ( y )  as usual. 

By evaluating in the following expression first the terms between curly brackets 
and equating the result to what one gets if one first evaluates the terms within 
parentheses 

(e(x"+dg'r°)K°e d g ' ~ n ( e - y ' K } e ( Y + A Y ) K ) ,  (2.14) 

one finds, for the coefficients of the N and N generators, respectively, 

~'~MCia e a, , KB(M)OBe ~ _ eBaOBK~M ) = i ~" ~ (2.15) 

K~M)O/~(e,," w i ) -- ea'~ 0 , ~  mi _--~2M(Cj ~'e ,.oai _ c j i ,  ea.o2i')i . (2.16) 
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This result tells us that the tangent v e c t o r s  K ( M  ) -~ K(~M)0~ and e ~ -  e~O~ no longer 
commute on coset manifolds, contrary to what happens on group manifolds, but 
that their commutator [K(M ), ea] is equal to an H-gauge transformation. In terms of 
Lie derivatives 

I~K, u,ea " = 6H (/2M) e~, (2.17) 

D gaM-- e K ,  M , ' ;  = ' - -  (2.18) 

i and afort ior i  are physically Thus the vielbein and connection fields e a and %, 0a~b, 
invariant [9, 4]: if one moves on the coset manifold along K ~ v ) ( y ) ,  they change only 
by an H-gauge transformation with parameter /2~(y) .  

a Let us now consider the relation (2.15) in more detail. Multiplying by ev and 
replacing e~0~e~ by -e~0/~e~, we find 

a a + a Or(K(M)e,~ ) ( O , e , -  O,e;IK~M,= --$2iMCic~e;. (2.19) 

Using the Cartan-Maurer equations for e~ to eliminate the derivatives of the 
vielbeins, we get 

(2.20) 

c i and fa~ cancel Substituting (2.10) and contracting with Cda, the terms involving % 
because we have assumed that 

= C d M N C i N  M c a = O .  Yai ~" Cda Cic (2.21) 

Thus 

C a _ _  1 C a e Cda DcK(M) -- ~(Cda Cec )K(M).  (2.22) 

Note that CaaCCec a is not the Killing metric "Yde because for that one also needs the 
t e r m s  CdiCCec i and CdciCei c. 

We now discuss up to what point K is unique, once H and G are given. The most 
general coset generators are 

R,~ = K a + d~Hj; (2.23) 

but imposing reductivity [I~, H] c I~ shows that the d~ must be invariant tensors of 
the adjoint representation of H 

d j ' c j  - d~,cia a" = O. (2.24) 
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Thus, the freedom in the choice of the generators of K can be found as follows. One 
decomposes the coset representation of H on K 

dv  a = - ci~,% a" , (2.25) 

into irreducible representations of H, and determines how many scalars there are in 
the product v ' y j  where 8yj = Cijkyk. In general there is little freedom in K, and in the 
case we study in sect. 3, it can be completely fixed by requiring block-diagonality of 
the Killing form. 

3. The squashed seven-sphere as the coset space Sp4 x Sp2 / SP2 × Sp2 

In this section we show explicitly that the coset manifold G / H ,  where G = Sp4 × 
Sp~ and H = Sp~ × Sp~ ÷L, corresponds to the squashed S 7. (We shall explain the 
superscripts I, J and L below.) We will do so by computing the factors involving 
the structure constants which appear in the fundamental expression (2.12) of the 
curvature in terms of the vielbeins. This necessitates a rather detailed discussion of 
the precise structure of the algebras G and H, as well as K, the complement of H 
in G. 

The semisimple algebra G = Sp4 q- Sp~ can be naturally thought of as the maximal 
SO 5 + SOl  subalgebra of SO s (we recall that on the algebraic level one has the 
isomorphism SO 5 ---Sp4 and SO 3 -Sp2) .  It is instructive to first consider the root 

diagram of Sp4 = SO5: 
j 

The algebras Sp t and Sp~ are the regular SP2 subalgebras corresponding to the 
orthogonal long  roots. These two algebras naturally commute and their sum gener- 
ates the SO 4 (=  SP2 x Spz) subgroup. Note that the two regular subalgebras associ- 
ated with the short roots do not  form a subalgebra; in fact, their commutators 
produce the whole G. As is obvious from the root diagram, the adjoint representa- 
tion of SP4 decomposes under the Sp~ × Sp~ subgroup into 

lo (3,1) + (1,3) + (z, 2). (3.1) 

The roots belonging to (2,2) form a diamond in the figure. Furthermore, this 
decomposition of Sp4 into SP2 + Sp2 and its complement is symmetric, i.e. the 
commutator of two generators belonging to (2, 2) is in Sp~ + S ~ .  
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The subgroup H = Sp / × Sp~ + L is determined by the following considerations. (By 
S ~  +L we mean the diagonal Sp2 subgroup of Sp~ × Sp~ generated by ( J  + L)  i = Ji 
+ Lr)  As we are interested in a seven-dimensional space and d i m ( G ) =  13, we need 
dim(H) = 6, which implies that the only possibility is in fact some Sp2 x SP2 
subgroup of G. Clearly Sp~ cannot be one of the factors in H because it would 
reduce G effectively to Spa. On the other hand, Sp~ × Sp~ would make G / H  a direct 
product space. It follows that the only possibility is of the form Sp~ × Sp J + L (or, 
equivalently, with I and J interchanged). It should be clear that the diagonal 
subgroup of Sp2 L with any other SP2 subgroup of Sp4 cannot enter as a factor in H 
for the simple reason that there would be no other Sp2 subgroup of G which 
commutes with it. This completes the determination of H: it is unique. 

We now turn to the complement K of H in the decomposition 

G = H + K.  (3.2) 

As such the generators in K are not fixed as we could add always an admixture of H 
generators to them. However, as we will show in the following, the choice of K 
generators is entirely fixed (up to some irrelevant scales) by imposing the two 
conditions that: 

(i) H + K be a reductive decomposition of G, i.e. we demand [H, K] c K (but not 
[K, K] c N); 

(ii) K and H are orthogonal with respect to the Killing metric in (2.2) of G i.e. we 
demand TMN to be block diagonal in H and K indices. 

At this point, it is convenient to further decompose K as 

K = Q + T ,  (3.3) 

where Q stands for the quartet of four generators forming the (2, 2) representation in 
(3.1). Concerning Q we make the observation that the decomposition 

G = (Sp / + Sp s + S p ~ ) + Q ,  (3.4) 

is not just reductive but in fact symmetric. This not only implies that [H, Q] = Q, but 
because of the symmetry property also that the Killing form of G is block diagonal 
in Sp~ + Sp~ + Sp2 L and Q, hence in H and Q. The remaining three generators in T 
may in general correspond to some linear combination of the generators of the three 
mutually commuting Sp2 subalgebras: 

L = ( e d a + f l J a + ' y L ~ ) ,  a =  1 ,2 ,3 .  (3.5) 

S I S I Now we see that [ P2, T] c P2, and since Sp / lies in H, reductivity requires ct = 0. It 
is easy to verify that a = 0 is in fact a sufficient condition for the decomposition 
(3.3) to be reductive. In order to implement the orthogonality condition for H and T 
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we need more explicit information on the structure constants of  G. As these are also 
necessary for the forthcoming computations, we make a digression to introduce the 
nomenclature of the generators and the indices we have adopted. 

We have chosen the following basis for G: 

( M , N  . . . .  ) ,  

( i , j , k . . . ) ,  

(i,), 

[ XM, XN ] = 
in a by now familiar notation: 

^ 

Cij  k = Eij  k ,  C~?  = e i j k~  

1 i _ 1 0 ) ~ i  
Cia 0 = COi a = 2 ~ a i  ~ CaO - -  81 ~a 

__1 i _ _ 1 0  
Cia b - -  ~F, ia b ~ Cab - -  ~T~abi  

^ 
C~a 0 = C0i12 = 1 i _ _  2 i - - 2 ~ a i ,  COa - -  ~ a '  

? 

^ __ 1 t ~ ~TEabi  Cia b - -  2 ~ i a b ,  Cab 

C~a b ~ ~'iab, ^i __ Cab - -  2~eabi . ,  

^ c __ a __ 1 V 1 2 8 a b c ,  Ca~ c ~ - -  1 V I 2 E a b c  , Cab - -  Cbc - -  

s (o), 
Q =  r a ,  (a,b,c...), 

1- = L ,  (&,/~, &.. ). (3.6) 

In (3.6) we have grouped the generators together according to their transformation 
properties under the subgroup Sp~ ÷J÷L. We see that H = {3 + 3}, T = {3},  and 
Q = (3 + 1}. The Q decomposit ion follows from the familiar fact that the (2,2) 
representation of SO n decomposes in a 3 + 1 under the diagonal subgroup or 
alternatively that in quantum mechanics the product of  two spinors yields a triplet 
and a singlet. 

We proceed by compiling the non-vanishing structure constants defined by 

(3.7) 

Cab 0 = Coa b =  Cb O =  - -  l ~ 2  ~ a b .  (3.8) 

It is important to note that in this list we have set "y in (3.5) equal to "/= - ~fl, the 
argument will be given shortly. The normalization of  the generators H i is chosen 
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such that  the two Sp2 subalgebras  obey the s tandard angular  m o m e n t u m  commuta -  
t ion relations. For  the coset generators,  we have chosen an, at this stage, somewhat  
arbi t rary  normal iza t ion  where 

[ K a ,  K b ]  = --  ~ v r i a , , b C K ~ ,  (3.9) 

in which the constants  a,~b ~ are the structure constants  of  the octonions  defined by  
the relation 

e a e b  = aabCec - -  ~ a b "  (3.10) 

This choice will prove  to be convenient  in sect. 4. 
Let  us now return briefly to the Killing metric  `/MN, and in par t icular  to the 

or thogonal i ty  of H and 1". Assuming the generators  J'~ again to be  of  the fo rm 
J'a = / 3 J , ,  + ` / L a ,  we m a y  compute  `/~a and ~a using the structure constants  given in 
(3.8) except that  now the commuta t ion  relations involving ~r will still depend on 13 
and  `/. Using that  in that  case 

= (13 + 

c a ~  ~ = k / 3 ~ o ~ c ,  

Cab ° = -- ½13~,b, (3.11) 

one finds that  

`/ia = 0,  `/73 = - ( 3 / 3 + 2 - / ) ;  (3.12) 

so that  demanding  ~a = 0 indeed yields ` / = -  313, the value used in (3.8) (the 
normal iza t ion  (3.9) f ixed/3 = ~v~) .  

In  the basis we have described in detail the Killing fo rm is actually complete ly  
diagonal,  though not  propor t iona l  to the unit  matrix,  in fact we have that  

= 20 = 20 ( 3 . 1 3 )  `/ij - 3~ij, W,~ = - 58ij, `/00 = 27, `/ab `/at; = -- 2Vr~b" 

With the help of  (3.6) it is s t ra ightforward to calculate the curvature  forms R~ in 
terms of the vielbeins e a using eq. (2.12). We find the following expressions 

1 7  o a R ° a  c - ~6 e e - 

+ a,o cebe ], 

Rab=C[_lTNe~ be - 2 e a e £ ] ,  

Ra~ c [ _ ~ e , , e ~ , + l  o e ~ e a e  b 38abee ], -~" - ~ E a b c e  e - _ 1 c ,~ 

R a ~ = c [ - - ~ e a b c e ° e C - - ~ e a e b - - ~ e a e £ ]  . 
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Apart  from the over-all constant c = - ~ these are precisely the expressions given 
by Awada, Duff  and Pope [6]. 

4. The massless excitations on squashed S 7 

The analysis of the low-energy sector of the theory obtained by spontaneous 
compactification of N = 1 supergravity in eleven dimensions on the squashed S 7 
proceeds essentially along the same lines as in the case of the round S 7 [2,5], 
however, with some important technical differences. One expands all fields of the 
eleven-dimensional theory around the given (squashed) background solution in 
terms of eigenmodes of certain operators on the squashed S 7 and then identifies the 
massless excitations as the zero modes of these operators. The fact that the theory 
under consideration has a residual N = 1 supersymmetry suggests that the massless 
states can be grouped into N = 1 supermultiplets, and this is indeed the case. Let us 
here already anticipate the final result, assuming that there exists a consistent 
truncation in which the eigenmodes which correspond to massive excitations can be 
discarded. The effective low-energy theory describes the interactions of an N = 1 (2, 3) 
supergravity multiplet with an SPa X SP2 (1, ½) vector multiplet, at least at the 
linearized level, and we expect the non-linear interactions to coincide with the ones 
that one would obtain from N =  1 tensor calculus in the usual way [10]. In 
particular, there are no  massless N = 1 (½,0-+) chiral multiplets. This means that 
there is no way to break N = 1 supersymmetry within the massless sector, and the 
theory which has both squashing and torsion cannot be interpreted as a sponta- 
neously broken version of the theory with squashing and without torsion of [6]. 

It was pointed out in ref. [5] that, before analyzing the various differential 
operators on the seven-dimensional manifold (i.e. squashed S 7 in our case), it is 
convenient to diagonalize the kinetic terms, i.e. the terms containing space-time 
derivatives. For the fermionic fields, this is accomplished by the redefinitions [11]* 

+~,(x, y )  = q,;,(x, y )  + ½YsT~,F'S//(x, y ) ,  (4.1) 

~k,(x, y )  = +~,(x, y ) ,  (F~ is 8 x 8). (4.2) 

For the bosonic fields, similar redefinitions are needed but since we will not need the 
explicit expressions here we refer the reader to refs. [2, 5] for more details. 

One next inserts (4.1), (4.2) and the analogous expressions for the bosonic fields 
into the lagrangian of eleven-dimensional supergravity and expands it about the 
given background to second order in the fluctuations. In our case, the background is, 

* In accordance with our conventions in sect. 3, we will denote the internal seven-dimensional indices 
by a, fl, T,--- if they are curved and by a, b, c,... if they are flat. 
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of course, characterized by eq. (1.4) for the four-index field strength and by 
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gMN(X, y)= ( g(~O)(x) O )  
0 g(~(y) (4.3) 

for the metric in eleven dimensions. In (4.3), g(0) denotes the usual AdS background 
metric, while g~(~(y) is the metric on the squashed S 7. In this way one obtains 
second-order differential operators for the bosonic fields and first-order differential 
operators for the fermionic fields, such that the mass spectrum of the theory is in 
one-to-one correspondence with the eigenvalues of these operators. For the spin-2, 
spin-3 and spin-1 excitations the massless modes are comparatively easy to identify; 
for spin-½, the analysis is considerably more complicated and will be presented in 
detail below. 

In accordance with the general theory, there will be only one massless graviton. 
We can therefore write 

h'~( x, y )= h,~(x) + . . . ,  (4.4) 

where h'~,(x, y) denotes the fluctuation about the AdS background g(~°)(x) (up to a 
Weyl-rescaling) and the dots in (4.4) stand for massive excitations. By N = 1 
supersymmetry, there must be a massless gravitino, i.e. the fermionic partner of 
h~,(x). Since, for the squashed S 7 there is precisely one covariantly constant spinor, 
the gravitino of the four-dimensional theory is easily identified in the expansion of 
+~(x, y), viz. 

q/~(x, y) = f~(x)n(y)  + "" . (4.5) 

In conjunction with (1.9), this guarantees that 

8~,(x)=D~e(x)+ . . . ,  (4.6) 

which is the expected transformation law. Explicit calculation confirms that q~(x) is 
indeed massless*. 

As for spin-l, we again rely on the general theory which predicts as many massless 
spin-1 fields as there are Killing vectors on the internal manifold. The latter will 
therefore carry the same labels as the generators of the isometry group which, for the 
squashed S 7, is Spa × Sp2 [12]. The massless spin-1 fields are therefore given by the 
ansatz 

h',~(x, y) = ~_,A(~M)(x)K~(M)(y) + . . .  (4.7) 
M 

* Of course, this means that there is an apparent mass term for ~bu whose coefficient is fixed by the 
requirement of masslessness in AdS space. 
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where M labels the generators of the group SPa × SP2. Again, masslessness of the 
fields A (M) can be established by an explicit calculation. 

Up to this point, the analysis has been rather straightforward. For the spin-½ 
sector, a more detailed investigation is required. We have already used N = 1 
supersymmetry to infer the existence of one massless gravitino from the existence of 
one massless graviton. In a similar fashion, one can argue that, by N = 1 supersym- 
metry, there must be 13 massless spin-½ fields which pair up with the 13 spin-1 fields 
of (4.7) into N = 1 vector multiplets. Denoting these spin-½ fields by xtM)(x), we 
thus have 

~ / ( x ,  y )  = E ep(M)(y))t(M)(X) + "'" , (4.8) 
M 

and it now remains to construct the corresponding zero modes 4~g)(y).  Besides the 
masslessness condition to be discussed below, there is another constraint on the form 
of q~g)(y)  which follows from the transformation law (1.9). Inserting (4.7) into the 
left-hand side of the elfbein transformation law 8eM A = ½gFAg, M and (4.1), (4.5) and 
(4.8) into its right-hand side, we find upon equating the resulting two expressions 
that 

6A(M'( x )K(M)(  y ) + . . . . .  ¼ ( ~F.r%~M)( y ) ) ( ~( X )~5"~,x(M)( x ) ) + . . . .  

(4.9) 

We next observe that, owing to the constancy of 7/, any spinor (with arbitrary y 
dependence) can be expressed as a linear combination of ~ and F,~ with y dependent 
coefficients. Specializing to (~(g), we recognize that 

,~(M,(y) = A(M)(y)~ + B ( , ~ ) ( y ) r a n ,  (4.10) 

which, upon insertion into (4.9), yields the condition 

A(U)( y ) + a,f~'B~M)( y ) = const. K ( i ) (  y ) . (4.11) 

Here, we used the fact that the octonionic structure constants a,,,p are given by [7] 

a,,bc = -- iqrob~n. (4.12) 

Consequently, (4.11) imposes a restriction on ~ g ) ( y )  but clearly does not entirely 
determine q~M)(y). TO determine the zero modes, we have to analyze the spin-½, 
spin- ½ part of the fermionic mass operator which, after some calculation, is found to 
be 

( Mq)) ~' = 8 ( " ~ r ~ ) o ~  - ~iv~ ( r " r  ~ - ¼~°~)q,~. (4.13) 
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What are the possible ans~tze that could satisfy Mq, = 0? From (4.10), we know that 
there are two undetermined functions A~M)(y) and B ~ ) ( y ) .  Possible ans~tze can be 
constructed out of the Killing vectors K~ (M) (y) ,  the octonion structure constants a ~ h c 
and their covariant derivatives as well as the Weyl tensor (which here does not 
vanish unlike for the round $7). For example, for A~ M), one may use K(~ M) itself or 
aaYD K ~M) However, from sects. 2 and 3, we know that there is a relation 

a /3 "1 " 

aa~VDl~K(vM)= l , [3 I ( (  M) (4.14) 

which immediately eliminates the second possibility. Eq. (4.14) is really the crucial 
relation of this section: it turns out that if it did not hold, (4.13) could not have zero 

eigenmodes! Using the relation [13] 

cde cd 1 cdefg 
aabea = 2~ab -- ~Eab aefg ,  (4.15) 

we can invert (4.14) 

_ 1 ~  ~'TL, r y S e F l  ~ / c ( M )  D~,K~ M)= a,~l~yKv(M) 12~,~l~,~e ~" ~ ' ~  ' (4.16) 

which shows that out of three possible ans~itze for n(M) present in (4.16), only two uafl 
are independent. From (4.13), we recognize that if the ansatz contains the first 
derivative of K(~ M), we must evaluate the second derivative on K(~ M). This can be 

done by means of the well-known identity [14] 

Dt~DvK(M)= R"t~vsK(M)= ( C"~vs- 2 8 ~ ) K ~ ,  (4.17) 

where we have made use of the fact that the curvature tensor on squashed S 7 differs 
from that of the (maximally symmetric) round S 7 only by the Weyl tensor C~ay8 [7]. 

Furthermore, the calculation is facilitated by the relation 

a"~vCo~8, = O, 

which follows from the relation [6] 

ca~v~ r~8n = o, 

(4.18) 

(4.19) 

by multiplication with fiF r from the left. Eqs. (4.17) and (4.18) suffice to completely 
eliminate the Weyl tensor whenever it occurs in the actual calculation of q~M). 
Finally, we need the following properties of the quantity aaa r, namely 

±o ,,~n ¢ _ ic), (4.20) Daaljrn = 6 ~ a f l y ~ e f f ~ t ~  \ 
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which follows directly from the fact that 7/is a covariantly constant spinor and the 
formula (4.12), and the identity 

1 ab 
a[aBvasl~ = - -  ~eaflT~ab[Ea~] , (4.21) 

which follows by use of Fierz identities for spinors in seven dimensions [13]. 
The final result for the zero modes ~(m M) of the mass operator (4.16) is found to be 

¢ ~ M ) ( y ) = ~ I K ( M ' ( y ) - ½ i F a ~ ( D ~ K ; M ) ( y ) _ ± .  ~,.rS*r~ w ~ M ) ¢ , , ~  
24~ctflTSe t* x.s~ax~/ ~ y ] ]  , 

(4.22) 

after some calculation where all the relations given above are needed. Clearly, there 
is the required number of massless spin-½ fields in the adjoint representation of 
Sp4 X SP2 , and the relation (4.14) ensures that the constraint (4.11) is also satisfied. 
Hence putting everything together, we get 

(4.23) 

which is the correct transformation law. 
To see that there are no further massless excitations we note that these would have 

to be present in the form of chiral (½, 0 +) multiplets. The pseudoscalars would have 
to be found in the expansion of the three-index field of the eleven-dimensional 
theory in the form 

A,~av( x ,  y )  = igF,~a~,nB( x ) + . . . ,  (4.24) 

in complete analogy with the case of the round S 7 [2, 5]. However, the 7/ which 
appears in (4.24) has the wrong parity and the spinor of opposite parity is not 
available in the case of squashed S 7, in contrast to the case of the round S 7, as we 
pointed out already in the introduction*. Hence, the field B ( x )  in (4.24) is a massive 
excitation. From the absence of massless pseudoscalar excitations we infer the 
absence of massless scalar as well as further massless spin-1 excitations by N = 1 
supersymmetry (the latter statement is confirmed by an exphcit calculation). This 
spares us the trouble of going through a detailed analysis of the scalar spin-0 sector 
(which, in the case of round S 7, is the most tedious). 

Furthermore, one can easily see that supergravity obtained by compactification on 
the squashed S 7 cannot be interpreted as a spontaneously broken version of N = 8 
supergravity. From the constancy of the covariantly constant spinor 7/, it follows that 
~/cannot be a linear combination with constant coefficients of the eight 7/I(y) of the 

* Remember that the parity of */is unambiguously fixed by the requirement of supersymmetry, i.e. eq. 
(1.1o). 
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round  S 7, because  the la t te r  are not  constant ,  i.e. 
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-¢ Y ' . a t ~ l t ( y ) ,  with cons tan t  a t ,  (4.25) 

and  therefore  the e igenmode  expans ion  of ~/will  involve higher  modes  on the round  

S 7. If  the zero mass  sector  of the squashed S 7 were to lead to a spon taneous ly  b roken  

vers ion of  N = 8 supergravi ty ,  the remain ing  supe r symmet ry  would  have to be a 

l inear  combina t i on  of the eight supersymmetr ies  of N = 8 supergravi ty  which, f rom 

(4.25), it  mani fes t ly  is not.  W e  have seen that  this conclus ion is conf i rmed  by  the 

de ta i led  analysis  of  the low-energy spec t rum of  the squashed solution.  In  terms of 

the or iginal  expans ion  into  SO(8) covar ian t  e igenmodes,  this means  the compact i f i -  

ca t ion  on the squashed S 7 shifts the zero modes  f rom the sector  which is spanned  by  

the eight 7/t 's in to  another  sector  spanned  by  the higher  modes* .  Whe the r  the 

original sector  is in te rpre tab le  as a spon taneous ly  b roken  version of  N = 8 supergrav-  

i ty  where now all eight supersymmetr ies  are b roken  and whether  it co r responds  also 

to a consis tent  t runca t ion  is, at  present ,  an open quest ion (see ref. [13] for a more  

de ta i led  discuss ion of  this problem) .  

W e  are grateful  to R. Coquereaux,  R. D ' A u r i a  and  P. Fr6 for enl ightening 
discussions.  

Note added 

I t  has recent ly  been shown that  the G 2 symmet ry  of  the paral le l ized solut ion [3] 
can  be  enlarged to SO(7) [15,13,16,17].  

Note added in proof: 

Afte r  this pape r  was submi t t ed  for pub l ica t ion  we learnt  of  ref. [18] which 

conta ins  work  a long s imilar  lines. The  authors  of  [18] have ident i f ied  yet  ano ther  

solut ion with squashing and wi thout  tors ion bu t  without supersymmetry .  They  have 

also no ted  the occurrence  of  " leve l  cross ing" for the squashed solution,  bu t  they 
have not  der ived the zero modes.  
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